Решить смешанную задачу для неоднородного уравнения теплопроводности

Метод Фурье для уравнения теплопроводности

Содержание:

Решить смешанную задачу для неоднородного уравнения теплопроводности

Решить смешанную задачу для неоднородного уравнения теплопроводности

Решить смешанную задачу для неоднородного уравнения теплопроводности

Решить смешанную задачу для неоднородного уравнения теплопроводности

Решить смешанную задачу для неоднородного уравнения теплопроводности

Решить смешанную задачу для неоднородного уравнения теплопроводности

По этой ссылке вы найдёте полный курс лекций по математике:

Видео:Решение первой краевой задачи для неоднородного уравнения теплопроводности.Скачать

Решение первой краевой задачи для неоднородного уравнения теплопроводности.

Займемся решением первой смешанной задачи для уравнения теплопроводности: найти решение и(х, t) уравнения удовлетворяющее начальному условию и граничным условиям Начнем с простейшей задачи: найти решение u(x,t) однородного уравнения удовлетворяющее начальному условию и нулевым (однородным) граничным условиям Метод Фурье для уравнения теплопроводности.

Будем искать нетривиальные решения уравнения (4), удовлетворяющие граничным условиям (6), в виде Псдстаапя в форме (7) в уравнение (4), получим или откуда имеем два обыжювенных дифференциальных уравнения Чтобы получить нетривиальные решения и(х, *) вида (7), удовлетворяющие граничным условиям (6), необходимо найти нетривиальные решения уравнения (10), удовлетворяющие граничным условиям.

Таким образом, для определения фунмдои Х(х) мы приходим к задаче на собственные значения: найти те значения параметра А, при которых существуют нетривиальные решения задачи Эта задача была рассмотрена в предыдущей главе. Там было показано, что только при существуют нетривиальные решения При А = А„ общее решение уравнения (9) имеет вид удовлетворяют уравнению (4) и граничным условиям (6). Образуем формальный ряд.

Потребовав, чтобы функция и(х> t), определяемая формулой (12), удовлетворяла начальному условию , получим Ряд (13) представляет собой разложение заданной функции в ряд Фурье по синусам в интервале (О, I). Коэффициенты а„ разложения определяются по известным формулам Метод Фурье для уравнения теплопроводности Предположим, что Тогдаряд (13) с коэффициентами, определяемыми по формулам (14), будет сходиться к функции абсолютно и равномерно.

Так как при то ряд при также сходится абсолютно и равномерно.

Поэтому функция и(х, t) — сумма ряда (12) — непрерывна в области и удовлетворяет начальному и граничному условиям. Остается показать, что функция и(х, t) удовлетворяет уравнению (4) в области 0. Для этого достаточно показать, что ряды, полученные из (12) почленным дифференцированием по t один раз и почленным дифференцированием по х два раза, также абсолютно и равномерно сходятся при.

Видео:Решение неоднородного уравнения теплопроводностиСкачать

Решение неоднородного уравнения теплопроводности

Но это следует из того, что при любом t > 0 если п достаточно велико. Единственность решения задачи (4)-(6) и непрерывная зависимость решения от начальной функции были уже установлены ранее. Таким образом, для t > 0 задача (4)-(6) поставлена корректно; напротив, для отрицательных t зада ча эта некорректна. Замечание.

В отличие отдомового уравнения уравнение неомметрично огноситн о времени t: если заменить t на -t, то получаем уравнение другого вида описывает необратимые процессы: Мы можем предсказать, каким станет данное и через промежуток времени данной t, но мы не можем с уверенностью сказать, какн м было это и за время t до рассматриваемого момента. Это раолич иемежду предсказание м и предысторией типично для параболического ура внения и не имеет места, например, для волнового уравн сния; в случае последнего заглянуть в прошлое так же легко, как и в будущее.

Возможно вам будут полезны данные страницы:

Пример:

Видео:Метод Фурье для неоднородного уравнения теплопроводностиСкачать

Метод Фурье для неоднородного уравнения теплопроводности

Найти распределение температуры в однородном стерве длины ж, если начальная температура стержня и на концах стержня поддерживается нулевая температура. 4 Задача сводится к решению уравнения при начальном условии и граничных условиях Применяя метод Фурье, ищем нетривиальные решения уравнения (15), удовлетворяющие граничным условиям (17), в виде Подставляя u(x,t) в форме (18) в уравнение (15) и разделяя переменные, получим откуда Собственные значения задачи . собственные функции Хп(х) = мп пх.

При А = А„ общее решение уравнения (19) имеет вид Tn(t) = апе а п\ так что Решение задачи (15)—(17) ищем в виде ряда Потребовав выполнения начального условия (16), получим откуда . Поэтому решением исходной задачи будет фунхция 2. Рассмотрим теперь следующую задачу: найти решение гх(ж, t) неоднородного уравнения _ удовДстворя ющее начальному условию и однородным граничным услови м Предположим, что функци / непрерывна, имеет непрерывную производ-ную и при всех t > 0 выполняется условие .

Решение задач:

Решение задачи (1)-(3) будем искать в виде где определим как решение задачи а функци — как решение задачи Задача (8)—(10) рассмотрена в п. 1. Будем искать решение v(x, t) задачи (5)-(7) в виде ряда по собстве нным функциям < краевой задачи . Подсгааяяя t) в виде в уравнение (5), получим Разложим функцию /ОМ) в ряд Фурье по синусам, где Сравнивая два разложения (12) и (13) функции /(х, t) в ряд Фурье, получаем ! Пользуясь начальным условием для v(x, t).

Метод Фурье для уравнения теплопроводности.

Находим, что Решения уравнений (15) при начальных условиях (16) имеют вид: Подставляя найденные выражения для Tn(t) в ряд (11), получим решение Функция будет решением исходной задачи (1)-(3). 3. Рассмотрим задачу: найти в области решение уравнения при начальном условии и неоднородных граничных условиях Непосредственно метод Фурье неприменим из-за неоднородности условий (20).

Видео:8.1 Решение уравнения теплопроводности на отрезкеСкачать

8.1 Решение уравнения теплопроводности на отрезке

Введем новую неизвестную функцию v(x, t), положив где Тогда решение задачи (18)—(20) сведется к решению задачи (1)-(3), рассмотренной в п. 2, для функции v(x, J). Упражнения 1. Задан бесконечный однородный стержень. Покажи те, что если начальная температура то влобой момент температура стержня 2. Ко|рцы стержня длиной ж поддерживаются при температуре, равной нулю. Начальная температура определяется формулой Определите температуру стержня для любого момента времени t > 0. 3.

Концы стержня длиной I поддерживаются при температуре, равной нулю. Начальная температура стержня определяется формулой Определите температуру стержня для любого момента времени t > 0. 4. Концы стержня длиной I поддерживаются при температуре, равной нулю. Начальное распределение температуры Определите температуру стержня для любого момента времени t > 0. Ответы

Присылайте задания в любое время дня и ночи в ➔ Решить смешанную задачу для неоднородного уравнения теплопроводностиРешить смешанную задачу для неоднородного уравнения теплопроводности

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Видео:Численные методы математической физики - Решение смешанной задачи для уравнения теплопроводностиСкачать

Численные методы математической физики - Решение смешанной задачи для уравнения теплопроводности

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.


источники:

🔥 Видео

8.2 Теплопроводность на отрезке. Сложные задачи.Скачать

8.2 Теплопроводность на отрезке. Сложные задачи.

Уравнение в частных производных Уравнение теплопроводностиСкачать

Уравнение в частных производных  Уравнение теплопроводности

Решение задачи Коши для уравнения теплопроводности (Часть 2)Скачать

Решение задачи Коши для уравнения теплопроводности (Часть 2)

Решение первой начально-краевой задачи для одномерного уравнения теплопроводности.Скачать

Решение первой начально-краевой задачи для одномерного уравнения теплопроводности.

Уравнение колебаний струны. Метод разделения переменных. Метод ФурьеСкачать

Уравнение колебаний струны. Метод разделения переменных. Метод Фурье

Решение задачи Коши для уравнения теплопроводности (Часть 1)Скачать

Решение задачи Коши для уравнения теплопроводности (Часть 1)

Лекция №1.1 Явная и неявная схемы для уравнения теплопроводностиСкачать

Лекция №1.1 Явная и неявная схемы для уравнения теплопроводности

Стационарное решение одномерного уравнения теплопроводности.Скачать

Стационарное решение одномерного уравнения теплопроводности.

Решение Пуассона одномерного уравнения теплопроводностиСкачать

Решение Пуассона одномерного уравнения теплопроводности

12. Как остывает шар (решение уравнения теплопроводности)Скачать

12. Как остывает шар (решение уравнения теплопроводности)

Неоднородное уравнение колебания струныСкачать

Неоднородное уравнение колебания струны

Решение уравнения теплопроводности методом конечных разностейСкачать

Решение уравнения теплопроводности методом конечных разностей

15. Решение уравнения теплопроводности в кругеСкачать

15. Решение уравнения теплопроводности в круге
Поделиться или сохранить к себе: