//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘
- Калькулятор онлайн. Решение показательных уравнений.
- Немного теории.
- Показательная функция, её свойства и график
- Показательные уравнения
- Калькулятор Уравнений. Решение Уравнений Онлайн
- Построить график функции y = x²-4x онлайн . Таблица точек . Нули функции .
- График функции y = x²-4x (x во 2-ой степени (в квадрате) минус 4 умножить на x)
- Округление:
- Таблица точек функции f(x) = x^2-4x
- Построение графика функции y = x²-4x по шагам
- Направление ветвей параболы
- Найдем координаты вершины параболы
- Решение уравнения x²-4x = 0 . Поиск нулей функции.
- Перечеяение с осью y
- Построение графика квадратной функции
- Свойства функции y = x²-4x
- Инструменты для написания уравнений
- Функции
- Операторы
- 📽️ Видео
Видео:Я теряю корни ★ 99 ошиблись ★ Решите уравнение ★ x^x=(1/2)^(1/2)Скачать
Калькулятор онлайн.
Решение показательных уравнений.
Этот математический калькулятор онлайн поможет вам решить показательное уравнение. Программа для решения показательного уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения результата.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >> С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> Введите показательное уравнение
Решить уравнение
Видео:Функция y=x2 и её график – 8 класс алгебраСкачать
Немного теории.
Видео:Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать
Показательная функция, её свойства и график
Напомним основные свойства степени. Пусть а > 0, b > 0, n, m — любые действительные числа. Тогда
1) a n a m = a n+m
4) (ab) n = a n b n
7) a n > 1, если a > 1, n > 0
8) a n m , если a > 1, n n > a m , если 0 x , где a — заданное положительное число, x — переменная. Такие функции называют показательными. Это название объясняется тем, что аргументом показательной функции является показатель степени, а основанием степени — заданное число.
Определение. Показательной функцией называется функция вида y = a x , где а — заданное число, a > 0, ( a neq 1)
Показательная функция обладает следующими свойствами
1) Область определения показательной функции — множество всех действительных чисел.
Это свойство следует из того, что степень a x где a > 0, определена для всех действительных чисел x.
2) Множество значений показательной функции — множество всех положительных чисел.
Чтобы убедиться в этом, нужно показать, что уравнение a x = b, где а > 0, ( a neq 1), не имеет корней, если ( b leqslant 0), и имеет корень при любом b > 0.
3) Показательная функция у = a x является возрастающей на множестве всех действительных чисел, если a > 1, и убывающей, если 0 x при a > 0 и при 0 x при a > 0 проходит через точку (0; 1) и расположен выше оси Oх.
Если х x при a > 0.
Если х > 0 и |х| увеличивается, то график быстро поднимается вверх.
График функции у = a x при 0 0 и увеличивается, то график быстро приближается к оси Ох (не пересекая её). Таким образом, ось Ох является горизонтальной асимптотой графика.
Если х
Видео:Занятие 1. График линейной функции y=kx+bСкачать
Показательные уравнения
Рассмотрим несколько примеров показательных уравнений, т.е. уравнений, в которых неизвестное содержится в показателе степени. Решение показательных уравнений часто сводится к решению уравнения a x = a b где а > 0, ( a neq 1), х — неизвестное. Это уравнение решается с помощью свойства степени: степени с одинаковым основанием а > 0, ( a neq 1) равны тогда и только тогда, когда равны их показатели.
Решить уравнение 2 3x • 3 x = 576
Так как 2 3x = (2 3 ) x = 8 x , 576 = 24 2 , то уравнение можно записать в виде 8 x • 3 x = 24 2 , или в виде 24 x = 24 2 , откуда х = 2.
Ответ х = 2
Решить уравнение 3 х + 1 — 2 • 3 x — 2 = 25
Вынося в левой части за скобки общий множитель 3 х — 2 , получаем 3 х — 2 (3 3 — 2) = 25, 3 х — 2 • 25 = 25,
откуда 3 х — 2 = 1, x — 2 = 0, x = 2
Ответ х = 2
Решить уравнение 3 х = 7 х
Так как ( 7^x neq 0 ) , то уравнение можно записать в виде ( frac = 1 ), откуда ( left( frac right) ^x = 1 ), х = 0
Ответ х = 0
Решить уравнение 9 х — 4 • 3 х — 45 = 0
Заменой 3 х = t данное уравнение сводится к квадратному уравнению t 2 — 4t — 45 = 0. Решая это уравнение, находим его корни: t1 = 9, t2 = -5, откуда 3 х = 9, 3 х = -5.
Уравнение 3 х = 9 имеет корень х = 2, а уравнение 3 х = -5 не имеет корней, так как показательная функция не может принимать отрицательные значения.
Ответ х = 2
Решить уравнение 3 • 2 х + 1 + 2 • 5 x — 2 = 5 х + 2 х — 2
Запишем уравнение в виде
3 • 2 х + 1 — 2 x — 2 = 5 х — 2 • 5 х — 2 , откуда
2 х — 2 (3 • 2 3 — 1) = 5 х — 2 ( 5 2 — 2 )
2 х — 2 • 23 = 5 х — 2 • 23
( left( frac right) ^ = 1 )
x — 2 = 0
Ответ х = 2
Решить уравнение 3 |х — 1| = 3 |х + 3|
Так как 3 > 0, ( 3 neq 1), то исходное уравнение равносильно уравнению |x-1| = |x+3|
Возводя это уравнение в квадрат, получаем его следствие (х — 1) 2 = (х + 3) 2 , откуда
х 2 — 2х + 1 = х 2 + 6х + 9, 8x = -8, х = -1
Проверка показывает, что х = -1 — корень исходного уравнения.
Ответ х = -1
Видео:Решение систем уравнений методом подстановкиСкачать
Калькулятор Уравнений. Решение Уравнений Онлайн
Ввод распознает различные синонимы функций, как asin , arsin , arcsin
Знак умножения и скобки расставляются дополнительно — запись 2sinx сходна 2*sin(x)
Список математических функций и констант :
• ln(x) — натуральный логарифм
• sh(x) — гиперболический синус
• ch(x) — гиперболический косинус
• th(x) — гиперболический тангенс
• cth(x) — гиперболический котангенс
• sch(x) — гиперболический секанс
• csch(x) — гиперболический косеканс
• arsh(x) — обратный гиперболический синус
• arch(x) — обратный гиперболический косинус
• arth(x) — обратный гиперболический тангенс
• arcth(x) — обратный гиперболический котангенс
• arsch(x) — обратный гиперболический секанс
• arcsch(x) — обратный гиперболический косеканс
Видео:7 класс, 35 урок, Графическое решение уравненийСкачать
Построить график функции y = x²-4x онлайн . Таблица точек . Нули функции .
Видео:Как построить график функции без таблицыСкачать
График функции y = x²-4x (x во 2-ой степени (в квадрате) минус 4 умножить на x)
Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово «авто» или оставить поля пустыми (эквивалентно «авто»)
Округление:
Видео:Математика 2 класс (Урок№26 - Уравнение. Решение уравнений подбором неизвестного числа.)Скачать
Таблица точек функции f(x) = x^2-4x
Показать/скрыть таблицу точек
x | f(x) |
---|---|
-10 | 140 |
-9.5 | 128.25 |
-9 | 117 |
-8.5 | 106.25 |
-8 | 96 |
-7.5 | 86.25 |
-7 | 77 |
-6.5 | 68.25 |
-6 | 60 |
-5.5 | 52.25 |
-5 | 45 |
-4.5 | 38.25 |
-4 | 32 |
-3.5 | 26.25 |
-3 | 21 |
-2.5 | 16.25 |
-2 | 12 |
-1.5 | 8.25 |
-1 | 5 |
-0.5 | 2.25 |
0 | 0 |
0.5 | -1.75 |
1 | -3 |
1.5 | -3.75 |
2 | -4 |
2.5 | -3.75 |
3 | -3 |
3.5 | -1.75 |
4 | 0 |
4.5 | 2.25 |
5 | 5 |
5.5 | 8.25 |
6 | 12 |
6.5 | 16.25 |
7 | 21 |
7.5 | 26.25 |
8 | 32 |
8.5 | 38.25 |
9 | 45 |
9.5 | 52.25 |
10 | 60 |
График построен по уравнению, но можно воспользоваться таблицей точек, чтобы построить такой же график по точкам .
Чтобы скачать график, нажмите на кнопку ‘Скачать график’ под ним .
Видео:Решить уравнение - Математика - 6 классСкачать
Построение графика функции y = x²-4x по шагам
x²-4x = 0 — это квадратная функция. Коэффициенты a, b, c нашей квадратной функции равны:
Ее график — симметричная парабола. Найдем направление ветвей нашей параболы.
Направление ветвей параболы
Если коэффициент a положительный, то ветви направлены вверх, если отрицательный — вниз.
У нас коэффициент a — положительный, значит ветви нашей параболы направлены вверх.
Найдем координаты вершины параболы
Для того, чтобы найти y, подставим наш найденный x в уравнение:
Координаты вершины нашей нашей параболы [x0, y0] = [2, -4].
Решение уравнения x²-4x = 0 . Поиск нулей функции.
Найдем точки пересечения с осью x. Для этого y должен равняться 0. То есть решим уравнение: x²-4x = 0
x²-4x = 0 — это квадратное уравнение, найдем его дискриминант:
Так как дискриминант больше нуля, то у данного уравнения два корня, найдем их:
Подставим значения x1 и x2 в наше уравнение:
То есть график функции пересекается с осью x в точках 4 и 0 . Наши точки :
Перечеяение с осью y
Найдем точку пересечения с осью y. Она будет одна, при x3 = 0:
У нас эта точка равна точке пересечения с осью x [x3, y3] = [0, 0].
Построение графика квадратной функции
- Для построения графика нужно провести вспомогательную линию (можно пунктиром) из точки вершины параболы [2, -4] параллельно оси y. Относительно этой линии парабола будет идти симметрично. Левая и правая часть графика относительно этой линии называется ветви параболы.
- Для построения симметричной параболы нужно минимум три точки — вершина параболы и еще две. Эти две точки мы возьмем из нашего квадратного уравнения. И того у нас есть четыре точки [x, y] для построения нашего графика:
- [2, -4]
- [4, 0]
- [0, 0]
- [0, 0]
Для большей точности можно взять еще несколько из таблицы точек. Чтобы высчитать их нужно взять значение x из таблицы и подставить в функцию y = x²-4x. Калькулятор это сделал за Вас.
Видео:График функции y=x² (y=аx).Скачать
Свойства функции y = x²-4x
- Область определения (x in (- infty;+ infty)) — все действительные числа.
- Область значений (y in [-4;+ infty)) — все действительные числа больше или равные -4.
- Функция убывает при (x lt 2), функция возрастает при (x gt 2).
- Наименьшее значение функции y = -4 — в вершине параболы при x = 2.
Видео:7 класс, 36 урок, Что означает в математике запись y = f(х)Скачать
Инструменты для написания уравнений
Для написания математических выражений доступно следующее:
Функции
Операторы
^ — возведение в степень
x^(1/n) — корень n-ой степени от числа x. То есть 8^(1/3) = 3 √8 = 2
📽️ Видео
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать
Как построить график линейной функции.Скачать
РЕШЕНИЕ УРАВНЕНИЙ |ПОДРОБНОЕ ОБЪЯСНЕНИЕ КАК РЕШИТЬ УРАВНЕНИЯ / ПРОСТЫЕ УРАВНЕНИЯ 2 КЛАСС МАТЕМАТИКАСкачать
Алгебра 8 класс (Урок№14 - Функция y = k/x и её график.)Скачать
Решение уравнений, 6 классСкачать
Решение системы линейных уравнений графическим методом. 7 класс.Скачать
Графики функций y=ax²+n и y=a(x-m)². Алгебра, 9 классСкачать
ФУНКЦИЯ y = √¯x ( корень из х ) МАТЕМАТИКАСкачать