//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘
- Калькулятор онлайн. Решение показательных уравнений.
- Немного теории.
- Показательная функция, её свойства и график
- Показательные уравнения
- Калькулятор Уравнений. Решение Уравнений Онлайн
- Построить график функции y = x²-4x онлайн . Таблица точек . Нули функции .
- График функции y = x²-4x (x во 2-ой степени (в квадрате) минус 4 умножить на x)
- Округление:
- Таблица точек функции f(x) = x^2-4x
- Построение графика функции y = x²-4x по шагам
- Направление ветвей параболы
- Найдем координаты вершины параболы
- Решение уравнения x²-4x = 0 . Поиск нулей функции.
- Перечеяение с осью y
- Построение графика квадратной функции
- Свойства функции y = x²-4x
- Инструменты для написания уравнений
- Функции
- Операторы
- 📽️ Видео
Видео:Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать
Калькулятор онлайн.
Решение показательных уравнений.
Этот математический калькулятор онлайн поможет вам решить показательное уравнение. Программа для решения показательного уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения результата.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >> С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> Введите показательное уравнение
Решить уравнение
Видео:Я теряю корни ★ 99 ошиблись ★ Решите уравнение ★ x^x=(1/2)^(1/2)Скачать
Немного теории.
Видео:Функция y=x2 и её график – 8 класс алгебраСкачать
Показательная функция, её свойства и график
Напомним основные свойства степени. Пусть а > 0, b > 0, n, m — любые действительные числа. Тогда
1) a n a m = a n+m
4) (ab) n = a n b n
7) a n > 1, если a > 1, n > 0
8) a n m , если a > 1, n n > a m , если 0 x , где a — заданное положительное число, x — переменная. Такие функции называют показательными. Это название объясняется тем, что аргументом показательной функции является показатель степени, а основанием степени — заданное число.
Определение. Показательной функцией называется функция вида y = a x , где а — заданное число, a > 0, ( a neq 1)
Показательная функция обладает следующими свойствами
1) Область определения показательной функции — множество всех действительных чисел.
Это свойство следует из того, что степень a x где a > 0, определена для всех действительных чисел x.
2) Множество значений показательной функции — множество всех положительных чисел.
Чтобы убедиться в этом, нужно показать, что уравнение a x = b, где а > 0, ( a neq 1), не имеет корней, если ( b leqslant 0), и имеет корень при любом b > 0.
3) Показательная функция у = a x является возрастающей на множестве всех действительных чисел, если a > 1, и убывающей, если 0 x при a > 0 и при 0 x при a > 0 проходит через точку (0; 1) и расположен выше оси Oх.
Если х x при a > 0.
Если х > 0 и |х| увеличивается, то график быстро поднимается вверх.
График функции у = a x при 0 0 и увеличивается, то график быстро приближается к оси Ох (не пересекая её). Таким образом, ось Ох является горизонтальной асимптотой графика.
Если х
Видео:7 класс, 35 урок, Графическое решение уравненийСкачать
Показательные уравнения
Рассмотрим несколько примеров показательных уравнений, т.е. уравнений, в которых неизвестное содержится в показателе степени. Решение показательных уравнений часто сводится к решению уравнения a x = a b где а > 0, ( a neq 1), х — неизвестное. Это уравнение решается с помощью свойства степени: степени с одинаковым основанием а > 0, ( a neq 1) равны тогда и только тогда, когда равны их показатели.
Решить уравнение 2 3x • 3 x = 576
Так как 2 3x = (2 3 ) x = 8 x , 576 = 24 2 , то уравнение можно записать в виде 8 x • 3 x = 24 2 , или в виде 24 x = 24 2 , откуда х = 2.
Ответ х = 2
Решить уравнение 3 х + 1 — 2 • 3 x — 2 = 25
Вынося в левой части за скобки общий множитель 3 х — 2 , получаем 3 х — 2 (3 3 — 2) = 25, 3 х — 2 • 25 = 25,
откуда 3 х — 2 = 1, x — 2 = 0, x = 2
Ответ х = 2
Решить уравнение 3 х = 7 х
Так как ( 7^x neq 0 ) , то уравнение можно записать в виде ( frac = 1 ), откуда ( left( frac right) ^x = 1 ), х = 0
Ответ х = 0
Решить уравнение 9 х — 4 • 3 х — 45 = 0
Заменой 3 х = t данное уравнение сводится к квадратному уравнению t 2 — 4t — 45 = 0. Решая это уравнение, находим его корни: t1 = 9, t2 = -5, откуда 3 х = 9, 3 х = -5.
Уравнение 3 х = 9 имеет корень х = 2, а уравнение 3 х = -5 не имеет корней, так как показательная функция не может принимать отрицательные значения.
Ответ х = 2
Решить уравнение 3 • 2 х + 1 + 2 • 5 x — 2 = 5 х + 2 х — 2
Запишем уравнение в виде
3 • 2 х + 1 — 2 x — 2 = 5 х — 2 • 5 х — 2 , откуда
2 х — 2 (3 • 2 3 — 1) = 5 х — 2 ( 5 2 — 2 )
2 х — 2 • 23 = 5 х — 2 • 23
( left( frac right) ^ = 1 )
x — 2 = 0
Ответ х = 2
Решить уравнение 3 |х — 1| = 3 |х + 3|
Так как 3 > 0, ( 3 neq 1), то исходное уравнение равносильно уравнению |x-1| = |x+3|
Возводя это уравнение в квадрат, получаем его следствие (х — 1) 2 = (х + 3) 2 , откуда
х 2 — 2х + 1 = х 2 + 6х + 9, 8x = -8, х = -1
Проверка показывает, что х = -1 — корень исходного уравнения.
Ответ х = -1
Видео:Как построить график функции без таблицыСкачать
Калькулятор Уравнений. Решение Уравнений Онлайн
Ввод распознает различные синонимы функций, как asin , arsin , arcsin
Знак умножения и скобки расставляются дополнительно — запись 2sinx сходна 2*sin(x)
Список математических функций и констант :
• ln(x) — натуральный логарифм
• sh(x) — гиперболический синус
• ch(x) — гиперболический косинус
• th(x) — гиперболический тангенс
• cth(x) — гиперболический котангенс
• sch(x) — гиперболический секанс
• csch(x) — гиперболический косеканс
• arsh(x) — обратный гиперболический синус
• arch(x) — обратный гиперболический косинус
• arth(x) — обратный гиперболический тангенс
• arcth(x) — обратный гиперболический котангенс
• arsch(x) — обратный гиперболический секанс
• arcsch(x) — обратный гиперболический косеканс
Видео:Математика 2 класс (Урок№26 - Уравнение. Решение уравнений подбором неизвестного числа.)Скачать
Построить график функции y = x²-4x онлайн . Таблица точек . Нули функции .
Видео:Занятие 1. График линейной функции y=kx+bСкачать
График функции y = x²-4x (x во 2-ой степени (в квадрате) минус 4 умножить на x)
Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово «авто» или оставить поля пустыми (эквивалентно «авто»)
Округление:
Видео:Решение систем уравнений методом подстановкиСкачать
Таблица точек функции f(x) = x^2-4x
Показать/скрыть таблицу точек
x | f(x) |
---|---|
-10 | 140 |
-9.5 | 128.25 |
-9 | 117 |
-8.5 | 106.25 |
-8 | 96 |
-7.5 | 86.25 |
-7 | 77 |
-6.5 | 68.25 |
-6 | 60 |
-5.5 | 52.25 |
-5 | 45 |
-4.5 | 38.25 |
-4 | 32 |
-3.5 | 26.25 |
-3 | 21 |
-2.5 | 16.25 |
-2 | 12 |
-1.5 | 8.25 |
-1 | 5 |
-0.5 | 2.25 |
0 | 0 |
0.5 | -1.75 |
1 | -3 |
1.5 | -3.75 |
2 | -4 |
2.5 | -3.75 |
3 | -3 |
3.5 | -1.75 |
4 | 0 |
4.5 | 2.25 |
5 | 5 |
5.5 | 8.25 |
6 | 12 |
6.5 | 16.25 |
7 | 21 |
7.5 | 26.25 |
8 | 32 |
8.5 | 38.25 |
9 | 45 |
9.5 | 52.25 |
10 | 60 |
График построен по уравнению, но можно воспользоваться таблицей точек, чтобы построить такой же график по точкам .
Чтобы скачать график, нажмите на кнопку ‘Скачать график’ под ним .
Видео:7 класс, 36 урок, Что означает в математике запись y = f(х)Скачать
Построение графика функции y = x²-4x по шагам
x²-4x = 0 — это квадратная функция. Коэффициенты a, b, c нашей квадратной функции равны:
Ее график — симметричная парабола. Найдем направление ветвей нашей параболы.
Направление ветвей параболы
Если коэффициент a положительный, то ветви направлены вверх, если отрицательный — вниз.
У нас коэффициент a — положительный, значит ветви нашей параболы направлены вверх.
Найдем координаты вершины параболы
Для того, чтобы найти y, подставим наш найденный x в уравнение:
Координаты вершины нашей нашей параболы [x0, y0] = [2, -4].
Решение уравнения x²-4x = 0 . Поиск нулей функции.
Найдем точки пересечения с осью x. Для этого y должен равняться 0. То есть решим уравнение: x²-4x = 0
x²-4x = 0 — это квадратное уравнение, найдем его дискриминант:
Так как дискриминант больше нуля, то у данного уравнения два корня, найдем их:
Подставим значения x1 и x2 в наше уравнение:
То есть график функции пересекается с осью x в точках 4 и 0 . Наши точки :
Перечеяение с осью y
Найдем точку пересечения с осью y. Она будет одна, при x3 = 0:
У нас эта точка равна точке пересечения с осью x [x3, y3] = [0, 0].
Построение графика квадратной функции
- Для построения графика нужно провести вспомогательную линию (можно пунктиром) из точки вершины параболы [2, -4] параллельно оси y. Относительно этой линии парабола будет идти симметрично. Левая и правая часть графика относительно этой линии называется ветви параболы.
- Для построения симметричной параболы нужно минимум три точки — вершина параболы и еще две. Эти две точки мы возьмем из нашего квадратного уравнения. И того у нас есть четыре точки [x, y] для построения нашего графика:
- [2, -4]
- [4, 0]
- [0, 0]
- [0, 0]
Для большей точности можно взять еще несколько из таблицы точек. Чтобы высчитать их нужно взять значение x из таблицы и подставить в функцию y = x²-4x. Калькулятор это сделал за Вас.
Видео:График функции y=x² (y=аx).Скачать
Свойства функции y = x²-4x
- Область определения (x in (- infty;+ infty)) — все действительные числа.
- Область значений (y in [-4;+ infty)) — все действительные числа больше или равные -4.
- Функция убывает при (x lt 2), функция возрастает при (x gt 2).
- Наименьшее значение функции y = -4 — в вершине параболы при x = 2.
Видео:Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать
Инструменты для написания уравнений
Для написания математических выражений доступно следующее:
Функции
Операторы
^ — возведение в степень
x^(1/n) — корень n-ой степени от числа x. То есть 8^(1/3) = 3 √8 = 2
📽️ Видео
Решить уравнение - Математика - 6 классСкачать
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Как построить график линейной функции.Скачать
Решение системы линейных уравнений графическим методом. 7 класс.Скачать
Решение уравнений, 6 классСкачать
РЕШЕНИЕ УРАВНЕНИЙ |ПОДРОБНОЕ ОБЪЯСНЕНИЕ КАК РЕШИТЬ УРАВНЕНИЯ / ПРОСТЫЕ УРАВНЕНИЯ 2 КЛАСС МАТЕМАТИКАСкачать
Алгебра 8 класс (Урок№14 - Функция y = k/x и её график.)Скачать
ФУНКЦИЯ y = √¯x ( корень из х ) МАТЕМАТИКАСкачать
Графики функций y=ax²+n и y=a(x-m)². Алгебра, 9 классСкачать