Видео:Уравнение Бернулли. Практическая часть. 10 класс.Скачать
Калькуляторы на формулу Бернулли
Обратите внимание на следующие разделы, где разобраны типовые задачи на формулу Бернулли. Вы можете решить или проверить вычисления своих заданий с помощью онлайн-калькуляторов. Теорию по этой теме можно найти в онлайн-учебнике.
Видео:Теория вероятностей #8: формула Бернулли и примеры ее использования при решении задачСкачать
Схема Бернулли: решенные задачи
Задача 1. Из $n$ аккумуляторов за год хранения $k$ выходит из строя. Наудачу выбирают $m$ аккумуляторов. Определить вероятность того, что среди них $l$ исправных.
$n = 100, k = 7, m = 5, l = 3.$
Задача 2. Устройство, состоящее из пяти независимо работающих элементов, включается за время Т. Вероятность отказа каждого из них за это время равна 0,2. Найти вероятность того, что откажут:
а) три элемента;
б) не менее четырех элементов;
в) хотя бы один элемент.
Задача 3. Сколько следует сыграть партий в шахматы с вероятностью победы в одной партии, равной 1/3, чтобы наивероятнейшее число побед было равно 5?
Задача 5. Пусть вероятность того, что телевизор потребует ремонта в течение гарантийного срока, равна 0,2. Найти вероятность того, что в течение гарантийного срока из 6 телевизоров: а) не более одного потребует ремонта; б) хотя бы один не потребует ремонта.
Задача 6. Что более вероятно выиграть у равносильного противника: не менее двух партий из трёх или не более одной из двух?
Задача 7. а) Найти вероятность того, что событие А появится не менее трех раз в четырех независимых испытаниях, если вероятность появления события А в одном испытании равна 0,4;
б) событие В появится в случае, если событие А наступит не менее четырех раз. Найти вероятность наступления события В, если будет произведено пять независимых испытаний, в каждом из которых вероятность появления события А равна 0,8.
Видео:Урок 133. Закон Бернулли. Уравнение БернуллиСкачать
Формула Пуассона: решенные задачи
Задача 4. С базы в магазин отправлено 4000 тщательно упакованных доброкачественных изделий. Вероятность того, что изделие повредится в пути, равна 0.0005. Найти вероятность того, что из 4000 изделий в магазин прибудут 3 испорченных изделия.
Задача 8. В банк отправлено 4000 пакетов денежных знаков. Вероятность того, что пакет содержит недостаточное или избыточное число денежных знаков, равна 0,0001. Найти вероятность того, что при проверке будет обнаружено:
а) три ошибочно укомплектованных пакета;
б) не более трех пакетов.
Видео:Уравнение Бернулли и его приложения | Гидродинамика, ГидравликаСкачать
Задачи по гидродинамике (ЕГ)
Задачи по гидродинамике (гидравлика). Используют уравнение Бернулли. Встречаются в задачах ЕГ дополнительного уровня
Просмотр содержимого документа
«Задачи по гидродинамике (ЕГ)»
Задачи гидродинамика. Уравнение Бернулли
1) Направленная горизонтальная струя воды бьет в вертикальную стенку. С какой силой струя давит на стенку, если скорость истечения воды v = 10 м/с и вода поступает через трубку, имеющую сечение s = 4 см2? Считать, что после удара вода стекает вдоль стенки.
Дано F=?
Реш
3). В сосуд, в дне которого узкое отверстие закрыт пробкой, налита вода до высоты h = 1 м. На поверхн воды находится поршень массой m = 1 кг и пло S = 100 см2. Между поршнем и стенками сосуда вода не просачивается. Найдите скорость истечения воды из отверстия в дне сосуда сразу после того, как из отверстия будет вынута пробка. Трение не учитывать.
Реш. Воспользуемся уравнением Бернулли. Давл в струе воды p0. Давл под порш на высоте h от отв p0 + mg/S. Скорость течения жидкости под поршнем м пренебречь, так как она мала по сравнению со скоростью истечения из отверстия , потому что площадь отверстия значительно меньше площади поршня. Согласно уравнению Бернулли
4) Брусок массы m удерживается в воздухе струями воды, бьющими вертикально вверх из отверстия, сечения S . Скорость воды на выходе из отверстия v. Достигнув бруска, вода разлетается от него в горизонтальной плоскости. На какой высоте над отверстием удерживается брусок? Плотность воды
Реш Сила давления на брусок одной струи тогда
=т к из условия неразрывности струи следует, что из уравнения Бернулли имеем Решая совместно эти уравнения, получим
1) Насос представляет расположенный горизонтально цилиндр с поршнем площади S и выходящим отверстием площади s, расположенном на оси цилиндра. Определить скорость истечения струи из насоса, если поршень под действ силы F перемещается с постоянной скоростью. Плотность жидкости . []
2) По наклонной плоскости стекает широкий поток воды. На расстоянии l по течению глубина потока уменьш вдвое. На каком расстоянии глубина потока уменьшится в 4 раза? [x = 5l]
6)по горизонт распол и изогнутой под прямым углом трубе сеч S течет жидкость плотности со скор V. C какой силой жидкость действует на трубу в месте изгиба если давление жидкости на выходе из трубы p? отв
Реш изменение импульса в единицу времени
откуда
8) В широкий сосуд налита вода до высоты H. На поверхн воды налит слой масла плотности и высотой h. С какой скоростью вода начнет вытекать из сосуда, если на дне его обр отверстие? Понижением уровня воды в баке пренебречь. Плотность воды
10)В подводной лодке находящейся на глубине Н образовалась пробоина сечением S
.Какое количество воды нальется в лодку за время
Реш. Давление на одной глубине одинаково (по зну Паскаля), следовательно, снаружи давление жидкости p = ρgh. Чтобы удержать заплату, закрыв отверстие с внутренней стороны судна потребуется создать давление равное наружному p = F/S, Тогда, приравняв давления
F/S = ρgh и F = ρghS. Приняв плотность воды . имеем
F = 1,0 × 103 × 10 × 3 × 5,0 × 10−4 = 15 Н.
7) Из крана выливается вода. Начиная с некоторого места, диаметр струи уменьшается на протяжении h от а до b Сколько воды вытечет из крана за время t? a=3см b=2см h=3см t=1 мин
Реш: Воспользуемся условием стационарности течения несжимаемой жидкости
Для идеальной жидкости уравнение Бернулли: .
Поскольку жид своб падает, то давл в обоих сеч одинак, и ур Бернулли прин вид: . За время t через любое сеч протекает один и тот же объем воды, поэтому . .Подставив полученное значение v1 получим : .
2)На рис 3 2 манометра различной формы Найти разницу давлений показываемых этими манометрами если они поочередно измеряют давление в одной и той же трубе в которой течет вода со скоростью v
3)По гибкому шлангу сеч S течет жидкость плотн ρ со скор v. Найти натяж нити AB, соед концы A и B шланга, если изв, что она явл диам полуокружн, кот обр шланг (рис.).
4) Если полн открыт кран хол воды, а кран гор воды закрыт (рис.), то ванна наполн за t1= 8 мин; если при этом на вых отв насад шланг с душем на конце, то время наполн увел до t2 = 14 мин. Когда кран хол воды закрыт, а кран гор открыт полн, время наполн t3 = 12 мин; при тех же усл, но с душем на конце − t4 = 18 мин. За какое время наполн ванна, если полн отк оба крана? А если при этом насажен шланг с душем?
5) В дне бака высотой H=4см проделано отв пл Бак наполнен доверху при этом ур-нь постоянен из-за пополн из водоп. Какую подачу воды д обесп водопровод чтобы уровень в баке оставался неизменным? Коэф-т расхода от
РЕШ расход при истечении из малого отв скорость струи по ф-ле Торичелли
6)какую мощность должен иметь электродвигатель привода водяного насоса если насос при подаче создает напор H=40м а его полный кпд
Потребл мощ, т. е. мощн, кот на работу насоса затрач электродв (NЭД),= полезной мощн с учетом КПД: NЭД = NП/η = ρgQH/η = 1000×9,81×0,05×40/0,6 = 32700 Вт = 32,7 кВт
7) Привод водян насоса обеспечивает частоту вращения его вала n1 = 15 с -1 , при этом подача насоса Q1 = 0,01 м 3 /с, а напор H1 = 20 м. какова должна быть частотта вращения вала насоса, если потребуется увеличить его напор до 80 м. Как изменится при этом подача насоса?
реш: Зависимость работы парового насоса от частоты вращения вала
при увеличении частоты вращения вала насоса в 2 раза его подача тоже возрастет в 2 раза, и составит Q2 = 0,02 м 3 /с.
Видео:Закон БернуллиСкачать
Решение задач по физике по уравнению бернулли
Уравнение Бернулли для реальной и идеальной жидкости
Уравнение Бернулли позволяет выполнить расчет водоснабжения и отопления: Подобрать диаметры и насосы. В этой статье будет расписан энергетический и геометрический смысл уравнения Бернулли.
График Бернулли и уравнение Бернулли для идеальной жидкости:
График Бернулли и уравнение Бернулли для реальной жидкости:
Смысл уравнения Бернулли
Смысл уравнения Бернули в том, чтобы показать, что внутри системы заполненной жидкостью (участка трубопровода) сохраняется общая энергия между разными точками. То есть на участке трубопровода необходимо выделить две точки, и эти две точки равны друг другу по значению полной энергии. Полная энергия состоит из потенциальной и кинетической энергии.
Назначение уравнения Бернули
Понять, как распределяется давление в системе трубопроводов. А также с помощью уравнения находить неизвестные параметры внутри системы. Например, найти давление в каждой течке пространства системы заполненной жидкостью.
Подробнее на видео: (для запуска видео кликните по окошку) На видео намного больше информации
Решая задачу с уравнением Бернулли, Вы фактически занимаетесь гидравлическим расчетом. О том, как делать гидравлический расчет — написано тут: Конструктор водяного отопления
Задача. Пример решения уравнения Бернулли
По решению задачи необходимо найти давление в точке 2 при известных параметрах: давление и расход.
Как понять уравнение Бернулли?
Для расчета уравнения Бернулли необходимо выбрать две точки в пространстве
Точка 1 – это место где известно давление
Точка 2 – это место где нужно узнать давление
Поймите, что каждый кусок формулы измеряется давлением: м.в.ст. (метр водяного столба)
То есть для того, чтобы быстро считать гидравлику систем водоснабжения и отопления, необходимо меньше всего выражаться в Барах, Паскалях и тому подобное.
Проще выражать давление в единице измерения: м.в.ст. (метр водяного столба)
Вы этим самым упростите себе жизнь… просто другая единица это еще один процесс, который отнимает время.
Сборка формулы уравнения Бернулли
Как избавится от минуса?
Как избавится от множителя (-1)?
Необходимо множитель (-1) помножить на каждый слагаемый член. Знак каждого слагаемого члена меняется на противоположный. То есть (+ на -) (- на +). Далее перестановка слагаемых.
Что такое идеальная жидкость?
Идеальная жидкость — это жидкость, не обладающая внутренним трением. То есть такая жидкость не создает гидравлическое сопротивление.
Реальная жидкость — это жидкость, которая обладает вязкостью. То есть внутренним сопротивлением.
Формула Бернулли для реальной жидкости
Коэффициент Кориолиса – это поправка кинетической энергии на реальную жидкость.
Потому что реальная жидкость движется не равномерно
У реальной жидкости серединная струйка воды движется быстрее остальных. При ламинарном режиме градиент: Чем ближе к стенке, тем медленнее движется поток воды.
Формула коэффициента Кориолиса
Что такое коэффициент Кориолиса?
Коэффициент Кориолиса характеризует отношение действительной кинетической энергии потока жидкости в данном сечении к той кинетической энергии потока, которую он имел бы, если бы все частицы двигались с одинаковой скоростью, равной средней скорости потока.
Чему равен коэффициент Кориолиса?
Нд.п. – Это динамические потери. Это потери вызванные движением воды.
Имеются дополнительные задачи с уравнением Бернули на реальную жидкость:
Посмотрите видеоурок по составлению уравнения Бернулли:
Как сделать гидравлический расчет погружного насоса?
🎬 Видео
Закон БернуллиСкачать
Урок 134. Применения уравнения Бернулли (ч.1)Скачать
Уравнение Бернулли гидравликаСкачать
Уравнение Бернулли для потока жидкостиСкачать
Математика без Ху!ни. Теория вероятностей. Схема БернуллиСкачать
10. Уравнения БернуллиСкачать
Гидродинамика. Уравнение Бернулли. Физика 10 классСкачать
Урок 132. Основные понятия гидродинамики. Уравнение непрерывностиСкачать
Как ПРАВИЛЬНО решать задачи по физике?Скачать
Уравнение БернуллиСкачать
ФИЗИКА. Закон Бернулли 😊 #егэ #огэ #онлайншкола #репетиторСкачать
Гидростатическое давление . Решение задачСкачать
Уравнение Бернулли Метод БернуллиСкачать
Формула БернуллиСкачать
Формула БернуллиСкачать