Решение задач на проценты с помощью систем уравнений

Видео:Урок по теме РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ СИСТЕМЫ УРАВНЕНИЙ 7 КЛАСССкачать

Урок по теме РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ СИСТЕМЫ УРАВНЕНИЙ 7 КЛАСС

Решение задач на проценты с помощью систем уравнений

В курсе 7-11 класса практически отсутствуют задачи на проценты. Так как эти задачи можно решать с помощью уравнений и систем уравнений, то их необходимо включать в курс алгебры при изучении данных тем.

Задача 1. (решаемая с помощью уравнения, сводимого к линейному)

В растворе содержится 40% соли. Если добавить 120 г соли, то в растворе будет содержаться 70% соли. Сколько граммов соли было в растворе первоначально?

Пусть x г весь первоначальный раствор, тогда

0.4x г – соли в первоначальном растворе,

(x + 120) г – стало раствора,

(0,4x + 120) г – стало соли в растворе, которая теперь составляет 70% раствора, т.е. 0,7 от всего раствора, составляем уравнение:

0,4x +120 = 0,7(x + 120), решив которое получим

Задача 2. (решаемая с помощью уравнения, сводимого к квадратному)

В сплаве золота с серебром содержится 80 г золота. К сплаву добавили 100 г чистого золота. Содержание золота в сплаве повысилось на 20%. Сколько серебра было в сплаве?

Пусть x г – серебра в сплаве, тогда

(x + 80) г – масса первоначального сплава,

(x + 180) г – масса нового сплава,

80/(x+80) г – часть золота в первом сплаве,

180/(x+180) г – часть золота во втором сплаве,

Т.к. содержание золота повысилось на 20% (т.е. на 1/5), составляем уравнение:

решая которое получим

x- 240x + 14400 = 0

Задача 3. (решаемая с помощью системы уравнений)

Вычислите массу и пробу сплава серебра с медью, зная, что сплавив его с 3 кг чистого серебра, получим сплав 900-й пробы (т.е. в сплаве 90% серебра), а сплавив с 2 кг сплава 900-й пробы, получим сплав 840-й пробы.

Пусть x кг – масса сплава, y% — серебра в сплаве, тогда

(y : 100) · x = 0,01xy (кг) – серебра в сплаве,

(x + 3) кг – нового первого сплава,

(0,01xy + 3) кг – серебра в новом первом сплаве.

Т.к. серебра в новом первом сплаве 90%, составляем уравнение:

0,01xy + 3 = 0,9(x + 3).

(x + 2) кг – масса второго сплава,

2 кг сплава 900-й пробы будут содержать 0,9 · 2 = 1,8 (кг) серебра, тогда

(0,01xy + 1,8) кг – масса серебра во втором сплаве.

Т.к. серебра во втором сплаве 84%, составляем уравнение:

0,01xy + 1,8 = 0,84(x + 2).

Получаем систему уравнений:

0,01xy + 3 = 0,9(x + 3) x = 3

0,01xy + 1,8 = 0,84(x + 2) y = 80

Ответ: 3 кг 800-ой пробы

Задача 4. (решаемая с помощью системы уравнений)

Фабрика должна была сшить 360 костюмов. В первые 8 дней она перевыполняла план на 20%, а в остальные на 25%. Сколько дней работала фабрика, если всего сшито 442 костюма?

Пусть x костюмов должна была сшить фабрика за один день,

y дней должна была работать.

Т.к. всего должно было быть сшито 360 костюмов, составляем уравнение:

1,2x · 8 костюмов сшили за первые 8 дней,

1,25x(y — 8) костюмов сшили за остальные дни.

Т.к. всего сшито 442 костюма, составляем уравнение:

1,2x · 8 + 1,25x(y — 8) = 442.

Получаем систему уравнений:

1,2x · 8 + 1,25x(y — 8) = 442 y = 18

Задача 5. (решаемая с помощью алгебраических выражений)

Процесс очищения воды в водохранилище от содержания в ней тяжелых металлов состоит из четырех этапов. На каждом этапе содержание уменьшается на определенное количество процентов к их количеству на предыдущем этапе:

На сколько процентов в результате уменьшается их количество?

Пусть x – количество воды, тогда оставшееся количество тяжелых металлов после очистки:

На 1-ом этапе – 0,75x

На 2-ом этапе – 0,8 · (0,75x) = 0,6x

На 3-ем этапе – 0,85 · (0,6x) = 0,51x

На 4-ом этапе – 0,9 · (0,51x) = 0,459x.

Таким образом всего ушло x — 0,459x = 0,541x, т.е. 54,1% тяжелых металлов.

Задача 6. (решаемая комбинированным способом)

В январе завод выполнил 105% месячного плана выпуска готовой продукции, а в феврале дал продукции на 4% больше, чем в январе. На сколько процентов завод перевыполнил двухмесячный план выпуска продукции?

Пусть x – месячный план, тогда

1,05x – выпущено в январе,

1,04 · (1,05x) = 1,092x – выпущено в феврале, а всего за два месяца выпущено

1,05x + 1,092x = 2,142x.

Таким образом двухмесячный план 2x, а фактически выполнено 2,142x, т.е.

y = (2,142x · 100) : (2x) = 107,1%, т.е. план перевыполнен на 7,1%.

Задача 7. (решаемая логическими рассуждениями)

В одном из городов Украины часть жителей говорит только по-русски, часть только по-украински, часть говорит и по-русски и по-украински. Известно, что 90% жителей говорит по-русски, а 80% по-украински. Какой процент жителей этого города говорит на обоих языках?

На каждых 100 жителей – 90 говорит по-русски, значит, 10 не говорит по-русски, т.е. 10 говорит только по-украински. Известно, что из каждых 100 жителей говорит по-украински 80 человек, из них, как мы выяснили, 10 человек говорит только по-украински, следовательно из этих 80 знают еще и русский 80 – 10 = 70 человек, т.е. 70%

Видео:Алгоритм решения задач с помощью систем уравнений. Практическая часть. 9 класс.Скачать

Алгоритм решения задач с помощью систем уравнений. Практическая часть. 9 класс.

Решение задач на проценты с помощью систем уравнений

В курсе 7-11 класса практически отсутствуют задачи на проценты. Так как эти задачи можно решать с помощью уравнений и систем уравнений, то их необходимо включать в курс алгебры при изучении данных тем.

Задача 1. (решаемая с помощью уравнения, сводимого к линейному)

В растворе содержится 40% соли. Если добавить 120 г соли, то в растворе будет содержаться 70% соли. Сколько граммов соли было в растворе первоначально?

Пусть x г весь первоначальный раствор, тогда

0.4x г – соли в первоначальном растворе,

(x + 120) г – стало раствора,

(0,4x + 120) г – стало соли в растворе, которая теперь составляет 70% раствора, т.е. 0,7 от всего раствора, составляем уравнение:

0,4x +120 = 0,7(x + 120), решив которое получим

Задача 2. (решаемая с помощью уравнения, сводимого к квадратному)

В сплаве золота с серебром содержится 80 г золота. К сплаву добавили 100 г чистого золота. Содержание золота в сплаве повысилось на 20%. Сколько серебра было в сплаве?

Пусть x г – серебра в сплаве, тогда

(x + 80) г – масса первоначального сплава,

(x + 180) г – масса нового сплава,

80/(x+80) г – часть золота в первом сплаве,

180/(x+180) г – часть золота во втором сплаве,

Т.к. содержание золота повысилось на 20% (т.е. на 1/5), составляем уравнение:

решая которое получим

x- 240x + 14400 = 0

Задача 3. (решаемая с помощью системы уравнений)

Вычислите массу и пробу сплава серебра с медью, зная, что сплавив его с 3 кг чистого серебра, получим сплав 900-й пробы (т.е. в сплаве 90% серебра), а сплавив с 2 кг сплава 900-й пробы, получим сплав 840-й пробы.

Пусть x кг – масса сплава, y% — серебра в сплаве, тогда

(y : 100) · x = 0,01xy (кг) – серебра в сплаве,

(x + 3) кг – нового первого сплава,

(0,01xy + 3) кг – серебра в новом первом сплаве.

Т.к. серебра в новом первом сплаве 90%, составляем уравнение:

0,01xy + 3 = 0,9(x + 3).

(x + 2) кг – масса второго сплава,

2 кг сплава 900-й пробы будут содержать 0,9 · 2 = 1,8 (кг) серебра, тогда

(0,01xy + 1,8) кг – масса серебра во втором сплаве.

Т.к. серебра во втором сплаве 84%, составляем уравнение:

0,01xy + 1,8 = 0,84(x + 2).

Получаем систему уравнений:

0,01xy + 3 = 0,9(x + 3) x = 3

0,01xy + 1,8 = 0,84(x + 2) y = 80

Ответ: 3 кг 800-ой пробы

Задача 4. (решаемая с помощью системы уравнений)

Фабрика должна была сшить 360 костюмов. В первые 8 дней она перевыполняла план на 20%, а в остальные на 25%. Сколько дней работала фабрика, если всего сшито 442 костюма?

Пусть x костюмов должна была сшить фабрика за один день,

y дней должна была работать.

Т.к. всего должно было быть сшито 360 костюмов, составляем уравнение:

1,2x · 8 костюмов сшили за первые 8 дней,

1,25x(y — 8) костюмов сшили за остальные дни.

Т.к. всего сшито 442 костюма, составляем уравнение:

1,2x · 8 + 1,25x(y — 8) = 442.

Получаем систему уравнений:

1,2x · 8 + 1,25x(y — 8) = 442 y = 18

Задача 5. (решаемая с помощью алгебраических выражений)

Процесс очищения воды в водохранилище от содержания в ней тяжелых металлов состоит из четырех этапов. На каждом этапе содержание уменьшается на определенное количество процентов к их количеству на предыдущем этапе:

На сколько процентов в результате уменьшается их количество?

Пусть x – количество воды, тогда оставшееся количество тяжелых металлов после очистки:

На 1-ом этапе – 0,75x

На 2-ом этапе – 0,8 · (0,75x) = 0,6x

На 3-ем этапе – 0,85 · (0,6x) = 0,51x

На 4-ом этапе – 0,9 · (0,51x) = 0,459x.

Таким образом всего ушло x — 0,459x = 0,541x, т.е. 54,1% тяжелых металлов.

Задача 6. (решаемая комбинированным способом)

В январе завод выполнил 105% месячного плана выпуска готовой продукции, а в феврале дал продукции на 4% больше, чем в январе. На сколько процентов завод перевыполнил двухмесячный план выпуска продукции?

Пусть x – месячный план, тогда

1,05x – выпущено в январе,

1,04 · (1,05x) = 1,092x – выпущено в феврале, а всего за два месяца выпущено

1,05x + 1,092x = 2,142x.

Таким образом двухмесячный план 2x, а фактически выполнено 2,142x, т.е.

y = (2,142x · 100) : (2x) = 107,1%, т.е. план перевыполнен на 7,1%.

Задача 7. (решаемая логическими рассуждениями)

В одном из городов Украины часть жителей говорит только по-русски, часть только по-украински, часть говорит и по-русски и по-украински. Известно, что 90% жителей говорит по-русски, а 80% по-украински. Какой процент жителей этого города говорит на обоих языках?

На каждых 100 жителей – 90 говорит по-русски, значит, 10 не говорит по-русски, т.е. 10 говорит только по-украински. Известно, что из каждых 100 жителей говорит по-украински 80 человек, из них, как мы выяснили, 10 человек говорит только по-украински, следовательно из этих 80 знают еще и русский 80 – 10 = 70 человек, т.е. 70%

Видео:Решение задач на проценты способом пропорции. 6 класс.Скачать

Решение задач на проценты способом пропорции. 6 класс.

Как решать задачи с процентами

Решение задач на проценты с помощью систем уравнений

О чем эта статья:

Видео:Алгоритм решения задач с помощью систем уравнений. Практическая часть. 9 класс.Скачать

Алгоритм решения задач с помощью систем уравнений. Практическая часть. 9 класс.

Основные определения

Когда мы описываем разные части целого, мы используем такие понятия, как половина (1/2), треть (1/3), четверть (1/4). Это удобно: отрезать половину пирога, пройти треть пути, закончить первую четверть в школе.

Чтобы называть сотые доли, придумали процент (1/100): с латинского языка — «за сто».

Процент — это одна сотая часть от любого числа. Обозначается вот так: %.

Как перевести проценты в десятичную дробь? Нужно убрать знак % и разделить число на 100. Например, 18% — это 18 : 100 = 0,18.

А если нужно перевести десятичную дробь в проценты — умножаем дробь на 100 и добавляем знак %. Например:

0,18 = 0,18 · 100% = 18%.

А вот, как перевести проценты в десятичную дробь — обратным действием:

Выразить дробь в процентах просто. Для перевода сначала превратим ее в десятичную дробь, а потом используем предыдущее правило и переведем десятичную дробь в проценты:

Видео:ЕГЭ №11. Задачи на проценты | Математика | TutorOnlineСкачать

ЕГЭ №11. Задачи на проценты | Математика | TutorOnline

Типы задач на проценты

В 5, 6, 7, 8, 9 классах в задачках по математике на проценты сравнивают части одного целого, определяют долю части от целого, ищут целое по части. Давайте рассмотрим все виды задач на проценты.

Тип 1. Нахождение процента от числа

Чтобы найти процент от числа, нужно число умножить на процент.

Задача. Блогер записал 500 видео для тиктока, но его продюсер сказал, что 20% из них — отстой. Сколько роликов придется перезаписать блогеру?

Как решаем: нужно найти 20% от общего количества снятых роликов (500).

Ответ: из общего количества снятых роликов продюсер забраковал 100 штук.

Тип 2. Нахождение числа по его проценту

Чтобы найти число по его проценту, нужно его известную часть разделить на то, сколько процентов она составляет от числа.

Задачи по поиску процента по числу и числа по его проценту очень похожи. Чтобы не перепутать — внимательно читаем условия, иначе зайдем в тупик или решим неправильно. Если в задании есть слова «который», «что составляет» и «который составляет» — перед нами задача по нахождению числа по его проценту.

Задача. Школьник решил 40 задач из учебника. Что составляет 16% числа всех задач в книге. Сколько всего задач собрано в этом учебнике?

Как решаем: мы не знаем, сколько всего задач в учебнике. Но нам известно, что 40 задач составляют 16% от общего количества. Запишем 16% в виде дроби: 0,16. Далее известную нам часть целого разделим на ту долю, которую она составляет от всего целого.

40 : 0,16 = 40 · 100 : 16 = 250

Ответ: 250 задач собрано в этом учебнике.

Тип 3. Нахождение процентного отношения двух чисел

Чтобы найти, сколько процентов одно число составляет от другого, нужно ту часть, о которой спрашивается, разделить на общее количество и умножить на 100%.

Задача. В секретном чатике 25 человек. 10 из них — девочки. Сколько процентов девочек в чате?

Как решаем: поделим 10 на 25, полученную дробь переведем в проценты.

10/25 * 100% = 2/5 * 100% = 2 * 100/5 = 40%

Ответ: в чатике 40% девочек.

Тип 4. Увеличение числа на процент

Чтобы увеличить число на некоторое количество процентов, можно найти число, которое выражает нужное количество процентов от данного числа, и сложить его с данным числом.

А можно воспользоваться формулой:

a = b · (1 + с : 100),

где a — число, которое нужно найти,

b — первоначальное значение,

c — проценты.

Задача. В прошлом месяце стикерпак стоил 110 рублей. А в этом месяце на 12% больше. Сколько стоит стикер-пак?

Как решаем: можно найти 12% от 110:

Прибавить к исходному числу:

110 + 13,2 = 123,2 рубля.

Или можно воспользоваться формулой, тогда:

110 · (1 + 12 : 100) = 110 · 1,12 = 123,2.

Ответ: стоимость стикерпака в этом месяце — 123 рубля 20 копеек.

Тип 5. Уменьшение числа на процент

Чтобы уменьшить число на несколько процентов, можно найти число, которое выражает нужное количество процентов данного числа, и вычесть его от данного числа.

А можно воспользоваться формулой:

a = b · (1 − с : 100),

где a — число, которое нужно найти,

b — первоначальное значение,

c — проценты.

Задача. В прошлом году школу закончили 100 ребят. А в этом году выпускников на 25% меньше. Сколько выпускников в этом году?

Как решаем: можно найти 25% от 100:

Вычесть из исходного числа 100 − 25 = 75 человек.

Или можно воспользоваться формулой, тогда:

100 · (1 − 25 : 100) = 75/p>

Ответ: 75 выпускников в этом году.

Тип 6. Задачи на простые проценты

Простые проценты — метод расчета процентов, при котором начисления происходят на первоначальную сумму вклада или долга.

Формула расчета выглядит так:

S = а · (1 + у · х : 100),

где a — исходная сумма,

S — сумма, которая наращивается,

x — процентная ставка,

y — количество периодов начисления процента.

Задача. Марии срочно понадобились деньги и она взяла на один год в долг 70 000 рублей под 8% ежемесячно. Сколько денег она вернет через год?

Как решаем: подставим в формулу данные из условий задачи.

70 000 · (1 + 12 · 8 : 100) = 137 200

Ответ: 137 200 рублей вернет Мария через год.

Тип 7. Задачи на сложные проценты

Сложные проценты — это метод расчета процентов, когда проценты прибыли прибавляют к сумме на остатке каждый месяц. В следующий раз проценты начисляют на эту новую сумму.

Формула расчета выглядит так:

S = а · (1 + х : 100) y ,

где S — наращиваемая сумма,

a — исходная,

x — процентная ставка,

y — количество периодов начисления процента.

Задача. Антон хочет оформить вклад 10 000 рублей на 5 лет в банке, который дает 10% годовых. Какую сумму снимет Антон через 5 лет хранения денег в этом банке?

Как решаем: просто подставим в формулу данные из условий задачи:

10000 · (1 + 10 : 100)3 = 13 310

Ответ: 13 310 рублей снимет Антон через год.

Курсы по математике для учеников с 1 по 11 классы. Вводный урок — бесплатно!

Видео:#73 Урок 34. Задачи с . Решение задач с процентами составлением систем уравнений. Алгебра 7 класс.Скачать

#73 Урок 34. Задачи с . Решение задач с процентами составлением систем уравнений. Алгебра 7 класс.

Способы нахождения процента

Деление числа на 100

При делении на 100 получается 1% от этого числа. Это правило можно использовать по-разному. Например, чтобы узнать процент от суммы, нужно умножить их на размер 1%. А чтобы перевести известное значение, следует разделить его на размер 1%. Этот метод отлично помогает в вопросе, как перевести целое число в проценты.

Представьте, что вы пришли в магазин за шоколадом. Обычно он стоит 250 рублей, но сегодня скидка 15%. Если у вас есть дисконтная карта магазина, шоколад обойдется вам в 225 рублей. Чем будет выгоднее воспользоваться: скидкой или картой?

Как решаем:

Переведем 15% в рубли:

250 : 100 = 2,5 — это 1% от стоимости шоколада,

значит 2,5 * 15 = 37,5 — это 15%.

Видео:Задача на проценты - три способа решенияСкачать

Задача на проценты - три способа решения

Задачи на проценты с решением

Как мы уже убедились, решать задачи на проценты совсем несложно. Для закрепления материала рассмотрим реальные примеры на проценты из учебников и несколько заданий для подготовки к ЕГЭ.

Задача 1. Организм взрослого человека на 70% состоит из воды. Какова масса воды в теле человека, который весит 76 кг?

Ответ: масса воды 53,2 кг

Задача 2. Цена товара понизилась на 40%, затем еще на 25%. На сколько процентов понизилась цена товара по сравнению с первоначальной ценой?

Обозначим первоначальную цену товара через х. После первого понижения цена станет равной.

Второе понижение цены составляет 25% от новой цены 0,6х, поэтому после второго понижения получим:

0,6х — 0,25 * 0,6x = 0,45x

После двух понижений изменение цены составит:

Так как величина 0,55x составляет 55% от величины x, то цена товара понизилась на 55%.

Задача 3. Четыре пары брюк дешевле одного пальто на 8%. На сколько процентов пять пар брюк стоят дороже, чем одно пальто?

По условиям задачи стоимость четырех пар брюк — это 92% от стоимости пальто

Получается, что стоимость одной пары брюк — это 23% стоимости пальто.

Теперь умножим стоимость одной пары брюк на пять и узнаем, что пять пар брюк обойдутся в 115% стоимости пальто.

Ответ: пять пар брюк на 15% дороже, чем одно пальто.

Задача 4. Семья состоит из трех человек: муж, жена и дочь-студентка. Если зарплата мужа вырастет в два раза, общий доход семьи возрастет на 67%. Если дочери в три раза урежут стипендию, общий доход этой семьи уменьшится на 4%. Вычислить, какой процент в общий доход семьи приносит заработок жены.

По условиям задачи общий доход семьи напрямую зависит от доходов мужа. Благодаря увеличению зарплаты общий доход семьи вырастет на 67%. Значит, зарплата мужа составляет как раз 67% от общего дохода.

Если стипендия дочери уменьшится в три раза (т.е. на 1/3), останется 2/3 — это и есть 4%, на которые уменьшился бы семейных доход.

Можно составить простую пропорцию и выяснить, что раз 2/3 стипендии — это 4% дохода, то вся стипендия — это 6%.

А теперь отнимем от всего дохода вклад мужа и дочери и узнаем, какой процент составляет заработок жены в общем доходе семьи: 100 – 67 – 6 = 27.

Ответ: заработок жены составляет 27%.

Задача 5. В свежих абрикосах 90% влаги, а в сухофрукте кураге только 5%. Сколько килограммов абрикосов нужно, чтобы получить 20 килограммов кураги?

Исходя из условия, в абрикосах 10% питательного вещества, а в кураге в концентрированном виде — 95%.

Поэтому в 20 килограммах кураги 20 * 0,95 = 19 кг питательного вещества.

Значит, 19 килограммов питательного вещества в абрикосах — это 10% веса свежих абрикосов. Найдем число по проценту.

Ответ: 190 кг свежих абрикосов потребуется для изготовления 20 кг кураги.

🌟 Видео

Алгоритм решения задач с помощью систем уравнений. Практическая часть. 9 класс.Скачать

Алгоритм решения задач с помощью систем уравнений. Практическая часть. 9 класс.

18. Решение задач на проценты с помощью уравнения.Скачать

18. Решение задач на проценты с помощью уравнения.

АЛГЕБРА 7 класс. Решение задач с помощью систем уравненийСкачать

АЛГЕБРА 7 класс. Решение задач с помощью систем уравнений

Урок 88. Решение задач на проценты с помощью систем двух линейных уравнений.Скачать

Урок 88. Решение задач на проценты с помощью систем двух линейных уравнений.

Решение задач с помощью систем уравнений | Алгебра 7 класс #48 | ИнфоурокСкачать

Решение задач с помощью систем уравнений | Алгебра 7 класс #48 | Инфоурок

Решение задач с помощью систем уравнений второй степени. Алгебра, 9 классСкачать

Решение задач с помощью систем уравнений второй степени. Алгебра, 9 класс

7 класс// АЛГЕБРА // Решение задач с помощью систем уравненийСкачать

7 класс// АЛГЕБРА // Решение задач с помощью систем уравнений

Решение задач с помощью систем уравнений второй степени. Урок 17. Алгебра 9 классСкачать

Решение задач с помощью систем уравнений второй степени. Урок 17. Алгебра 9 класс

Решение задач на процентыСкачать

Решение задач на проценты

№22 из ОГЭ. Задачи на смеси и сплавы | Математика | TutorOnlineСкачать

№22 из ОГЭ. Задачи на смеси и сплавы | Математика | TutorOnline

Решение задач на проценты способом пропорции. Практическая часть - решение задачи. 6 класс.Скачать

Решение задач на проценты способом пропорции. Практическая часть - решение задачи. 6 класс.

РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ УРАВНЕНИЙ. §3 алгебра 7 классСкачать

РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ УРАВНЕНИЙ. §3 алгебра 7 класс

Как решать задачи с процентами #математика #проценты #задачи #репетитор #репетиторматематикаСкачать

Как решать задачи с процентами #математика #проценты #задачи #репетитор #репетиторматематика
Поделиться или сохранить к себе: