Все корни этого уравнения принадлежащие промежутку от 0 до 3 пи на 2

Отбор корней в тригонометрическом уравнение

В этой статье и постараюсь объяснить 2 способа отбора корней в тригонометрическом уравнение: с помощью неравенств и с помощью тригонометрической окружности. Перейдем сразу к наглядному примеру и походу дела будем разбираться.

а) Решить уравнение sqrt(2)cos^2x=sin(Pi/2+x)
б) Найдите все корни этого уравнения, принадлежащие промежутку [-7Pi/2; -2Pi]

Решим пункт а.

Воспользуемся формулой приведения для синуса sin(Pi/2+x) = cos(x)

sqrt(2)cos^2x — cosx = 0

cosx(sqrt(2)cosx — 1) = 0

x1 = Pi/2 + Pin, n ∈ Z

sqrt(2)cosx — 1 = 0

x2 = arccos(sqrt(2)/2) + 2Pin, n ∈ Z
x3 = -arccos(sqrt(2)/2) + 2Pin, n ∈ Z

x2 = Pi/4 + 2Pin, n ∈ Z
x3 = -Pi/4 + 2Pin, n ∈ Z

Решим пункт б.

1) Отбор корней с помощью неравенств

Здесь все делается просто, полученные корни подставляем в заданный нам промежуток [-7Pi/2; -2Pi], находим целые значения для n.

-7Pi/2 меньше или равно Pi/2 + Pin меньше или равно -2Pi

Сразу делим все на Pi

-7/2 меньше или равно 1/2 + n меньше или равно -2

-7/2 — 1/2 меньше или равно n меньше или равно -2 — 1/2

-4 меньше или равно n меньше или равно -5/2

Целые n в этом промежутку это -4 и -3. Значит корни принадлежащие этому промежутку буду Pi/2 + Pi(-4) = -7Pi/2, Pi/2 + Pi(-3) = -5Pi/2

Аналогично делаем еще два неравенства

-7Pi/2 меньше или равно Pi/4 + 2Pin меньше или равно -2Pi
-15/8 меньше или равно n меньше или равно -9/8

Целых n в этом промежутке нет

-7Pi/2 меньше или равно -Pi/4 + 2Pin меньше или равно -2Pi
-13/8 меньше или равно n меньше или равно -7/8

Одно целое n в этом промежутку это -1. Значит отобранный корень на этом промежутку -Pi/4 + 2Pi*(-1) = -9Pi/4.

Значит ответ в пункте б: -7Pi/2, -5Pi/2, -9Pi/4

2) Отбор корней с помощью тригонометрической окружности

Чтобы пользоваться этим способом надо понимать как работает эта окружность. Постараюсь простым языком объяснить как это понимаю я. Думаю в школах на уроках алгебры эта тема объяснялась много раз умными словами учителя, в учебниках сложные формулировки. Лично я понимаю это как окружность, которую можно обходить бесконечное число раз, объясняется это тем, что функции синус и косинус периодичны.

Обойдем раз против часовой стрелки

Обойдем 2 раза против часовой стрелки

Обойдем 1 раз по часовой стрелки (значения будут отрицательные)

Вернемся к нашем вопросу, нам надо отобрать корни на промежутке [-7Pi/2; -2Pi]

Чтобы попасть к числам -7Pi/2 и -2Pi надо обойти окружность против часовой стрелки два раза. Для того, чтобы найти корни уравнения на этом промежутке надо прикидывать и подставлять.

Рассмотри x = Pi/2 + Pin. Какой приблизительно должен быть n, чтобы значение x было где-то в этом промежутке? Подставляем, допустим -2, получаем Pi/2 — 2Pi = -3Pi/2, очевидно это не входит в наш промежуток, значит берем меньше -3, Pi/2 — 3Pi = -5Pi/2, это подходит, попробуем еще -4, Pi/2 — 4Pi = -7Pi/2, также подходит.

Рассуждая аналогично для Pi/4 + 2Pin и -Pi/4 + 2Pin, находим еще один корень -9Pi/4.

Сравнение двух методов.

Первый способ (с помощью неравенств) гораздо надежнее и намного проще для пониманию, но если действительно серьезно разобраться с тригонометрической окружностью и со вторым методом отбора, то отбор корней будет гораздо быстрее, можно сэкономить около 15 минут на экзамене.

Видео:Нахождение корней уравнения, принадлежащих промежуткуСкачать

Нахождение корней уравнения, принадлежащих промежутку

Задания по теме «Тригонометрические уравнения»

Открытый банк заданий по теме тригонометрические уравнения. Задания C1 из ЕГЭ по математике (профильный уровень)

Видео:Отбор корней по окружностиСкачать

Отбор корней по окружности

Задание №1179

Условие

а) Решите уравнение 2(sin x-cos x)=tgx-1.

б) Укажите корни этого уравнения, принадлежащие промежутку left[ frac2;,3pi right].

Решение

а) Раскрыв скобки и перенеся все слагаемые в левую часть, получим уравнение 1+2 sin x-2 cos x-tg x=0. Учитывая, что cos x neq 0, слагаемое 2 sin x можно заменить на 2 tg x cos x, получим уравнение 1+2 tg x cos x-2 cos x-tg x=0, которое способом группировки можно привести к виду (1-tg x)(1-2 cos x)=0.

1) 1-tg x=0, tg x=1, x=fracpi 4+pi n, n in mathbb Z;

2) 1-2 cos x=0, cos x=frac12, x=pm fracpi 3+2pi n, n in mathbb Z.

б) С помощью числовой окружности отберём корни, принадлежащие промежутку left[ frac2;, 3pi right].

Все корни этого уравнения принадлежащие промежутку от 0 до 3 пи на 2

x_1=fracpi 4+2pi =frac4,

x_2=fracpi 3+2pi =frac3,

x_3=-fracpi 3+2pi =frac3.

Ответ

а) fracpi 4+pi n, pmfracpi 3+2pi n, n in mathbb Z;

б) frac3, frac3, frac4.

Видео:Три способа отбора корней в задании 13 ЕГЭ профильСкачать

Три способа отбора корней в задании 13 ЕГЭ профиль

Задание №1178

Условие

а) Решите уравнение (2sin ^24x-3cos 4x)cdot sqrt =0.

б) Укажите корни этого уравнения, принадлежащие промежутку left( 0;,frac2right] ;

Решение

а) ОДЗ: begin tgxgeqslant 0\xneq fracpi 2+pi k,k in mathbb Z. end

Исходное уравнение на ОДЗ равносильно совокупности уравнений

left[!!begin 2 sin ^2 4x-3 cos 4x=0,\tg x=0. endright.

Решим первое уравнение. Для этого сделаем замену cos 4x=t, t in [-1; 1]. Тогда sin^24x=1-t^2. Получим:

t_1=frac12, t_2=-2, t_2notin [-1; 1].

4x=pm fracpi 3+2pi n,

x=pm fracpi +frac2, n in mathbb Z.

Решим второе уравнение.

tg x=0,, x=pi k, k in mathbb Z.

При помощи единичной окружности найдём решения, которые удовлетворяют ОДЗ.

Все корни этого уравнения принадлежащие промежутку от 0 до 3 пи на 2

Знаком «+» отмечены 1 -я и 3 -я четверти, в которых tg x>0.

Получим: x=pi k, k in mathbb Z; x=fracpi +pi n, n in mathbb Z; x=frac+pi m, m in mathbb Z.

б) Найдём корни, принадлежащие промежутку left( 0;,frac2right].

Все корни этого уравнения принадлежащие промежутку от 0 до 3 пи на 2

Ответ

а) pi k, k in mathbb Z; fracpi +pi n, n in mathbb Z; frac+pi m, m in mathbb Z.

Видео:Отбор корней по окружностиСкачать

Отбор корней по окружности

Задание №1177

Условие

а) Решите уравнение: cos ^2x+cos ^2fracpi 6=cos ^22x+sin ^2fracpi 3;

б) Укажите все корни, принадлежащие промежутку left( frac2;,frac2right].

Решение

а) Так как sin fracpi 3=cos fracpi 6, то sin ^2fracpi 3=cos ^2fracpi 6, значит, заданное уравнение равносильно уравнению cos^2x=cos ^22x, которое, в свою очередь, равносильно уравнению cos^2x-cos ^2 2x=0.

Но cos ^2x-cos ^22x= (cos x-cos 2x)cdot (cos x+cos 2x) и

cos 2x=2 cos ^2 x-1, поэтому уравнение примет вид

(cos x-(2 cos ^2 x-1)),cdot (cos x+(2 cos ^2 x-1))=0,

(2 cos ^2 x-cos x-1),cdot (2 cos ^2 x+cos x-1)=0.

Тогда либо 2 cos ^2 x-cos x-1=0, либо 2 cos ^2 x+cos x-1=0.

Решая первое уравнение как квадратное уравнение относительно cos x, получаем:

(cos x)_=frac4=frac4. Поэтому либо cos x=1, либо cos x=-frac12. Если cos x=1, то x=2kpi , k in mathbb Z. Если cos x=-frac12, то x=pm frac3+2spi , s in mathbb Z.

Аналогично, решая второе уравнение, получаем либо cos x=-1, либо cos x=frac12. Если cos x=-1, то корни x=pi +2mpi , m in mathbb Z. Если cos x=frac12, то x=pm fracpi 3+2npi , n in mathbb Z.

Объединим полученные решения:

x=mpi , m in mathbb Z; x=pm fracpi 3 +spi , s in mathbb Z.

б) Выберем корни, которые попали в заданный промежуток, с помощью числовой окружности.

Все корни этого уравнения принадлежащие промежутку от 0 до 3 пи на 2

Получим: x_1 =frac3, x_2=4pi , x_3 =frac3.

Ответ

а) mpi, m in mathbb Z; pm fracpi 3 +spi , s in mathbb Z;

б) frac3, 4pi , frac3.

Видео:N 35 Алгебра 11 класс КолягинСкачать

N 35 Алгебра 11 класс Колягин

Задание №1176

Условие

а) Решите уравнение 10cos ^2frac x2=frac<11+5ctgleft( dfrac2-xright) >.

б) Укажите корни этого уравнения, принадлежащие интервалу left( -2pi ; -frac2right).

Решение

а) 1. Согласно формуле приведения, ctgleft( frac2-xright) =tgx. Областью определения уравнения будут такие значения x , что cos x neq 0 и tg x neq -1. Преобразуем уравнение, пользуясь формулой косинуса двойного угла 2 cos ^2 frac x2=1+cos x. Получим уравнение: 5(1+cos x) =frac.

Заметим, что frac= frac= 5+frac, поэтому уравнение принимает вид: 5+5 cos x=5 +frac. Отсюда cos x =frac, cos x+sin x =frac65.

2. Преобразуем sin x+cos x по формуле приведения и формуле суммы косинусов: sin x=cos left(fracpi 2-xright), cos x+sin x= cos x+cos left(fracpi 2-xright)= 2cos fracpi 4cos left(x-fracpi 4right)= sqrt 2cos left( x-fracpi 4right) = frac65.

Отсюда cos left(x-fracpi 4right) =frac5. Значит, x-fracpi 4= arccos frac5+2pi k, k in mathbb Z,

или x-fracpi 4= -arccos frac5+2pi t, t in mathbb Z.

Поэтому x=fracpi 4+arccos frac5+2pi k,k in mathbb Z,

или x =fracpi 4-arccos frac5+2pi t,t in mathbb Z.

Найденные значения x принадлежат области определения.

б) Выясним сначала куда попадают корни уравнения при k=0 и t=0. Это будут соответственно числа a=fracpi 4+arccos frac5 и b=fracpi 4-arccos frac5.

1. Докажем вспомогательное неравенство:

Заметим также, что left( frac5right) ^2=frac значит frac5

2. Из неравенств (1) по свойству арккосинуса получаем:

Отсюда fracpi 4+0

Аналогично, -fracpi 4

0=fracpi 4-fracpi 4 fracpi 4

При k=-1 и t=-1 получаем корни уравнения a-2pi и b-2pi.

Bigg( a-2pi =-frac74pi +arccos frac5,, b-2pi =-frac74pi -arccos frac5Bigg). При этом -2pi

-2pi Значит, эти корни принадлежат заданному промежутку left( -2pi , -frac2right).

При остальных значениях k и t корни уравнения не принадлежат заданному промежутку.

Действительно, если kgeqslant 1 и tgeqslant 1, то корни больше 2pi. Если kleqslant -2 и tleqslant -2, то корни меньше -frac2.

Ответ

а) fracpi4pm arccosfrac5+2pi k, kinmathbb Z;

б) -frac4pm arccosfrac5.

Видео:3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из ВебиумаСкачать

3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из Вебиума

Задание №1175

Условие

а) Решите уравнение sin left( fracpi 2+xright) =sin (-2x).

б) Найдите все корни этого уравнения, принадлежащие промежутку [0; pi ];

Решение

а) Преобразуем уравнение:

cos x+2 sin x cos x=0,

x =fracpi 2+pi n, n in mathbb Z;

x=(-1)^cdot fracpi 6+pi k, k in mathbb Z.

б) Корни, принадлежащие отрезку [0; pi ], найдём с помощью единичной окружности.

Все корни этого уравнения принадлежащие промежутку от 0 до 3 пи на 2

Указанному промежутку принадлежит единственное число fracpi 2.

Ответ

а) fracpi 2+pi n, n in mathbb Z; (-1)^cdot fracpi 6+pi k, k in mathbb Z;

б) fracpi 2.

Видео:Нахождение корней уравнения, принадлежащих промежуткуСкачать

Нахождение корней уравнения, принадлежащих промежутку

Задание №1174

Условие

б) Найдите все корни этого уравнения, принадлежащие отрезку left[ -frac; -frac2 right].

Решение

а) Найдём ОДЗ уравнения: cos 2x neq -1, cos (pi +x) neq -1; Отсюда ОДЗ: x neq frac pi 2+pi k,

k in mathbb Z, x neq 2pi n, n in mathbb Z. Заметим, что при sin x=1, x=frac pi 2+2pi k, k in mathbb Z.

Полученное множество значений x не входит в ОДЗ.

Значит, sin x neq 1.

Разделим обе части уравнения на множитель (sin x-1), отличный от нуля. Получим уравнение frac 1=frac 1, или уравнение 1+cos 2x=1+cos (pi +x). Применяя в левой части формулу понижения степени, а в правой — формулу приведения, получим уравнение 2 cos ^2 x=1-cos x. Это уравнение с помощью замены cos x=t, где -1 leqslant t leqslant 1 сводим к квадратному: 2t^2+t-1=0, корни которого t_1=-1 и t_2=frac12. Возвращаясь к переменной x , получим cos x = frac12 или cos x=-1, откуда x=frac pi 3+2pi m, m in mathbb Z, x=-frac pi 3+2pi n, n in mathbb Z, x=pi +2pi k, k in mathbb Z.

б) Решим неравенства

1) -frac2 leqslant frac3+2pi m leqslant -frac pi 2 ,

2) -frac2 leqslant -frac pi 3+2pi n leqslant -frac pi

3) -frac2 leqslant pi+2pi k leqslant -frac pi 2 , m, n, k in mathbb Z.

1) -frac2 leqslant frac3+2pi m leqslant -frac pi 2 , -frac32 leqslant frac13+2m leqslant -frac12 -frac6 leqslant 2m leqslant -frac56 , -frac leqslant m leqslant -frac5.

Нет целых чисел, принадлежащих промежутку left [-frac;-frac5right] .

2) -frac 2 leqslant -frac3+2pi n leqslant -frac, -frac32 leqslant -frac13 +2n leqslant -frac12 , -frac76 leqslant 2n leqslant -frac1, -frac7 leqslant n leqslant -frac1.

Нет целых чисел, принадлежащих промежутку left[ -frac7 ; -frac1 right].

3) -frac2 leqslant pi +2pi kleqslant -frac2, -frac32 leqslant 1+2kleqslant -frac12, -frac52 leqslant 2k leqslant -frac32, -frac54 leqslant k leqslant -frac34.

Этому неравенству удовлетворяет k=-1, тогда x=-pi.

Ответ

а) frac pi 3+2pi m; -frac pi 3+2pi n; pi +2pi k, m, n, k in mathbb Z;

📹 Видео

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Решаем все типы задач № 12Скачать

Решаем все типы задач № 12

Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать

Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor online

Нахождение корней уравнения, принадлежащие промежуткуСкачать

Нахождение корней уравнения, принадлежащие промежутку

РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэСкачать

РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэ

10 класс, 11 урок, Числовая окружностьСкачать

10 класс, 11 урок, Числовая окружность

СЛОЖИТЕ ДВА КОРНЯСкачать

СЛОЖИТЕ ДВА КОРНЯ

Как решить такое уравнение ➜ c³+c²=2 ➜ Решаем на разных множествахСкачать

Как решить такое уравнение ➜ c³+c²=2 ➜ Решаем на разных множествах

Задание №13. Как отбирать корни в тригонометрической окружности? 🤔Скачать

Задание №13. Как отбирать корни в тригонометрической окружности? 🤔

Диофантовы уравнения x³-y³=91Скачать

Диофантовы уравнения x³-y³=91

ЕГЭ-ПРОФИЛЬ. ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ. ЗАДАНИЕ-12Скачать

ЕГЭ-ПРОФИЛЬ. ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ. ЗАДАНИЕ-12

N 36 Алгебра 11 класс Колягин ГДЗ Тригонометрические неравенства КосинусСкачать

N 36 Алгебра 11 класс Колягин ГДЗ Тригонометрические неравенства Косинус

Математика| Преобразование тригонометрических выражений. Формулы и задачиСкачать

Математика| Преобразование тригонометрических выражений. Формулы и задачи
Поделиться или сохранить к себе: