Решение уравнения методом деления отрезка пополам паскаль

Лихоманенко Николай Иванович

Ведёт: Лихоманенко Николай Иванович —> Название или описание блога (изменить)

Видео:Алгоритмы. Нахождение корней уравнений методом деления отрезка пополам.Скачать

Алгоритмы. Нахождение корней уравнений методом деления отрезка пополам.

Видео:Деление отрезка пополамСкачать

Деление отрезка пополам

Поиск по сайту

Последние новости
  • Начало

Видео:Численное решение уравнений, урок 2/5. Метод деления отрезка пополамСкачать

Численное решение уравнений, урок 2/5. Метод деления отрезка пополам

Звонки

Решение уравнения методом деления отрезка пополам паскаль

Видео:Деление отрезка пополамСкачать

Деление отрезка пополам

Новое в блогах

Видео:Методы деления отрезка пополам и золотого сеченияСкачать

Методы деления отрезка пополам и золотого сечения

10 класс. П.70 Практическая работа №62. Решение уравнений методом деления отрезка пополам

Учебник. К.Ю Поляков, Е.А. Ерёмин. Информатика. 10 класс. Углублённый уровень. §70 Решение уравнений

Практическая работа №62. Решение уравнений методом методом деления отрезка пополам

Напишите программу, которая находит все решения заданного вам уравнения на интервале [-5;5]. Программа должна выполнить следующие действия:

1. Определяет и выводит на экран интервалы, на которых расположены корни уравнения.

2. На каждом интервале, используя метод перебора, ищет решение с точностью 0,001 и выводит полученные решения на экран.

Вычисление функции, стоящей в левой части уравнения, оформите в виде подпрограммы.

Уровень A. Интервалы, на которых расположены корни, можно найти с помощью электронных таблиц. Программа запрашивает границы очередного интервала и выводит найденный корень уравнения.

Введите границы интервала:

Уровень B. Составить две программы, одна из которых выделяет все интервалы, на которых находятся корни, а вторая запрашивает границы очередного интервала и выводит найденный корень уравнения, а также число шагов, которые потребовались для достижения заданной точности.

Введите границы интервала:

Уровень C. Составить одну программу, которая работает полностью автоматически: достаточно ввести в программу функцию и запустить. Программа находит все интервалы, на которых расположены корни и уточняет решения. После того, как очередной интервал найден, программа выводит его на экран и, применяя метод деления отрезка пополам, уточняет решение и определяет необходимое для этого количество шагов.

Вариант 1. x 3 — 8*x + 1 = sin(x)

program pr62ABC;

function f(x: real): real;

begin

f := x * x * x — 8 * x + 1 — 5 * sin(x);

end ;

const

var

delta, a, b, c: real;

begin

writeln(‘Введите границы интервала:’);

if (f(a) * f(b) > 0 ) then writeln(‘На промежутке может не быть корней’)

else begin

while b — a > delta do

begin

if f(a) * f(c)

then b := c

else a := c;

end;

writeln(‘Решение: ‘, (a + b) / 2:6:3);

writeln(‘Число шагов: ‘, k);

end ;

while a

begin

while (f(a) * f(a + 0.1) > 0) and (a

if (f(a) * f(a + 0.1)

then begin

writeln(‘Интервал [‘, a, ‘;’, a + 0.1, ‘]’);

Видео:Метод половинного деления - ВизуализацияСкачать

Метод половинного деления - Визуализация

Метод половинного деления на Паскале (Pascal) — Лабораторная работа

1. Постановка задачи 3

2. Анализ задачи 3

3. Схема алгоритма. 6

4. Текст программы на Паскале 7

5. Результаты расчёта 8

7. Список литературы 9

1. Постановка задачи

Создать программный продукт, который находит искомый корень уравнения в отрезке при помощи метода половинного деления.

Метод половинного деления.

Для этого метода существенно, чтобы функция f(x) была непрерывна и ограничена в заданном интервале [a, b], внутри которого находится корень. Предполагается также, что значения функции на концах интервала f(a) и f(b) имеют разные знаки, т.е. выполняется условие f(a)f(b) .

Обозначим исходный интервал [a, b] как [a0, b0]. Для нахождения корня уравнения f(x) = 0 отрезок [a0, b0] делится пополам, т.е. вычисляется начальное приближение x0 = (a0 + b0)/2. Если f(x0) = 0, то значение x0 = x* является корнем уравнения. В противном случае выбирается один из отрезков [a0, x0] или [x0, b0], на концах которого функция f(x) имеет разные знаки, так как корень лежит в этой половине. Далее выбранный отрезок обозначается как [a1, b1], вновь делится пополам точкой x1 = (a1 + b1)/2 и т.д. В результате на некоторой итерации получается точный корень x* уравнения f(x) = 0, либо бесконечная последовательность вложенных отрезков [a0, b0], [a1, b1], ., [ai, bi], ., таких, что f(ai)f(bi)  (i =1, 2, .), сходящихся к корню x*.

Если требуется определить корень x* с погрешностью , то деление исходного интервала [a, b] продолжают до тех пор, пока длина отрезка [ai, bi] не станет меньше 2, что записывается в форме условия bi — ai 2.

В этом случае середина последнего интервала [ai, bi] с требуемой степенью точности дает приближенное значение корня

Метод половинного деления легко реализуется на ЭВМ и является наиболее универсальным среди итерационных методов уточнения корней. Его применение гарантирует получение решения для любой непрерывной функции f(x), если найден интервал, на котором она изменяет знак. В том случае, когда корни не отделены, будет найден один из корней уравнения. Метод всегда сходится, но скорость сходимости является небольшой, так как за одну итерацию точность увеличивается примерно в два раза. Поэтому на практике метод половинного деления обычно применяется для грубого нахождения корней уравнения, поскольку при повышении требуемой точности значительно возрастает объем вычислений.

Видео:Метод половинного деления решение нелинейного уравненияСкачать

Метод половинного деления решение нелинейного уравнения

Приближенное вычисление корня уравнения методом деления отрезка пополам

Раздел программы: “Научно-технические расчёты на ЭВМ”

Тема урока: “Приближенное вычисление корня уравнения методом деления отрезка пополам”

Продолжительность занятия: 2 академических часа.

Тип урока: урок изучения нового материала.

Вид урока: комбинированный.

Время проведения: первый урок по теме “Приближенные вычисления”

Цели урока:

  • Развитие представлений о применениях ЭВМ для научно-технических расчетов.
  • Формирование системно-информационного подхода к анализу окружающего мира.
  • Формирование общеучебных и общенаучных навыков работы с информацией.

Задачи урока:

  • Воспитательная – развитие познавательного интереса, воспитание информационной культуры, воспитание умения четко организовать самостоятельную работу.
  • Образовательная – изучить и закрепить приемы использования языка программирования для решения задач приближенного решения уравнений, закрепить знания и умения по теме “Алгоритмизация и программирование”.
  • Развивающая – расширение кругозора.

Методы: Словесные, наглядные, практические.

Организационные формы работы: фронтальные, индивидуальные.

Материально-техническая база: доска, ПК с установленным ПО ЯП Turbo Pascal 7.0.

Межпредметная связь: математика.

Требования к знаниям и умениям: учащиеся должны знать основные команды языка программирования для задач вычислительного характера, уметь составлять и записывать алгоритмы с использование циклов и ветвлений; по записи алгоритма записывать программу на языке программирования Turbo Pascal.

Содержание этапа урока

Вид и формы работы1. Организационный моментПриветствие2. Мотивационное начало урока.Постановка цели урока.3 Изучение нового материала.
Ознакомление с новым методом приближенного
решения уравнений,
показ образца действий.Работа в тетради.4. Закрепление и проверка полученных знаний.Фронтальный опрос.

Работа в тетради по кодированию программ
по заданному алгоритму.5. Упражнения творческого характера.Лабораторная работа:
применение созданной программы
для приближенного вычисления корня функции.
Работа в тетради.
Защита результатов.6 Подведение итогов урока, домашнее задание.Работа в тетради.

I. Организационный момент

II. Мотивационное начало урока. Постановка цели урока

Учитель: Вычисления на компьютере обладают большей гибкостью, чем привычные всем вычисления в математике. Рассмотрим для примера задачу вычисления корня уравнения f(x) = 0. В курсе школьной математики вам известен метод дискриминанта для уравнений вида:
ax 2 + bx + c = 0, выражаемой по формуле Решение уравнения методом деления отрезка пополам паскаль. Однако, во многих случаях, ответ не выражается формулой (например, для корня уравнения cos(x) = x формулы просто нет). Но можно, не выводя точных формул, вычислить корень приближенно, с заданной точностью, например, до 0,0001. Сегодня мы рассмотрим один из приближенных методов вычисления корня уравнения – метод деления отрезка пополам.

III. Изучение нового материала.

Учитель: Рассмотрим задачу в следующей постановке.

Дано уравнение f(x) = 0 и числа a и b: a f(b) 0.

Если V–точный корень уравнения f(V) = 0, a * f(b) E, то перейти к пункту 1).

Любая точка отрезка [a, b] при таком алгоритме даст приближенное решение с заданной точностью.

Запишем алгоритм решения нашей задачи в виде блок схемы: (См. рис. 2).

Решение уравнения методом деления отрезка пополам паскаль

Учитель: Есть ли вопросы?

Если у учащихся есть вопросы, то необходимо все уяснить, прежде чем переходить к следующему этапу урока/

Учитель: Какой алгоритм по структуре у нас получился?

ПО: циклический, причем использовать надо цикл с предусловием.

Учитель: Что необходимо вписать в блоки, помеченные звездочкой ( * )?

ПО: Здесь необходимо записать команду вычисления конкретной функции в точке a и в точке c.

Учитель: Что необходимо предварительно сделать, прежде чем применять этот алгоритм для нахождения корня уравнения?

ПО: Необходимо, в первую очередь, проверить, удовлетворяет ли функция постановке задачи: является ли график функции непрерывной линией на отрезке [a, b], разные ли знаки имеет функция на концах отрезка [a, b].

IV. Этап закрепления, проверки полученных знаний

Учитель: Можно ли применять метод деления отрезка пополам для нахождения корней уравнений, на заданных отрезках (уравнения записаны на доске):

  1. x 2 – 5 = 0, [0, 3] (ПО: функция непрерывна на отрезке и f(0) *f(3) 4 + cos(x) – 2 = 0 [0, 2] (ПО: функция непрерывна на отрезке и f(0)*f(2) 5 – 1 = 0 [–5, 2] (ПО: функция непрерывна на отрезке и f(– 5)*f(2) e do
    Begin c : = (a + b)/2;
    fc : = … ;
    If fc . fa 2 cos(2x) + 1 = 0 [0, Решение уравнения методом деления отрезка пополам паскаль/2]
  2. x 3 + x 2 + x + 1 = 0 [–2,1]
  3. x 5 – 0,3 | x – 1 | = 0 [0,1]
  4. 2xcos(x) = 0 [0, Решение уравнения методом деления отрезка пополам паскаль/4]
  5. tg(x) – (x + 1)/2 = 0 [0, Решение уравнения методом деления отрезка пополам паскаль/4]

3. Это задание для учащихся математического класса: Вычислить значения Решение уравнения методом деления отрезка пополам паскаль, используя этот же метод деления отрезка пополам. Ответы сравните с расчетами на инженерном калькуляторе.
ВСЕ результаты вычислений фиксируются в тетради.

4. Результаты лабораторной работы должны быть защищены в индивидуальном порядке в беседе с учителем: проверяется понимание метода и используемой программы.

Вопросы для собеседования:

  1. В чем смысл переменной…?
  2. Что означает данная команда…?
  3. Как вы записывали для функции а) – е) выражение в команде fa : = .
  4. Для чего в программе используются операторные скобки?
  5. Для чего использовали в программе команду ветвления? Цикла?
  6. Где в программе осуществляется выбор отрезка, где находится корень уравнения?

На выполнение задания дается 30 минут. (Для выполнения задания учащиеся рассаживаются за компьютеры, загружают среду программирования и начинают проверять программу).

Защита результатов осуществляется по мере готовности учащихся, наиболее продвинутые учащиеся назначаются консультантами и принимают зачет вместе с учителем.

VI. Подведение итогов. Домашнее задание

Учитель: Подведем итоги. Сегодня на уроке вы узнали, как находить решение уравнений методом деления отрезка пополам, как использовать для этого компьютер. Я проверила во время практической работы и в процессе защиты результатов работы как вы усвоили материал, вы хорошо справились с заданием и получили следующие отметки… На этом изучение применений компьютера для научно-технических расчетов не заканчивается, предлагаю проанализировать свои записи в тетради и выполнить домашнее задание: подумать над вопросом “Какие методы поиска площадей фигур вы знаете?”. Запишите его себе в тетрадь.
Спасибо всем за работу.

🎬 Видео

1.1 Решение нелинейных уравнений метод деления отрезка пополам (бисекций) Мathcad15Скачать

1.1 Решение нелинейных уравнений метод деления отрезка пополам (бисекций) Мathcad15

12й класс; Информатика; "Численные методы. Метод половинного деления"Скачать

12й класс; Информатика; "Численные методы. Метод половинного деления"

Метод половинного деления. ДихотомияСкачать

Метод половинного деления. Дихотомия

Решение нелинейного уравнения методом деления отрезка пополамСкачать

Решение нелинейного уравнения методом деления отрезка пополам

Метод простых итераций - PascalСкачать

Метод простых итераций - Pascal

Метод Ньютона (метод касательных) Пример РешенияСкачать

Метод Ньютона (метод касательных) Пример Решения

5.1 Численные методы решения уравнений F(x)=0Скачать

5.1 Численные методы решения уравнений F(x)=0

14 Метод половинного деления Ручной счет Численные методы решения нелинейного уравненияСкачать

14 Метод половинного деления Ручной счет Численные методы решения нелинейного уравнения

Метод дихотомииСкачать

Метод дихотомии

Урок 10. C++ Метод половинного деленияСкачать

Урок 10.  C++ Метод половинного деления

Бинарный поиск (Метод деления пополам)Скачать

Бинарный поиск (Метод деления пополам)

Решение уравнений (метод дихотомии) на C#Скачать

Решение уравнений (метод дихотомии) на C#

Алгоритмы. Нахождение корней уравнения методом хордСкачать

Алгоритмы. Нахождение корней уравнения методом хорд
Поделиться или сохранить к себе: