//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘
- Калькулятор онлайн. Решение уравнений и неравенств с модулями.
- Немного теории.
- Уравнения и неравенства с модулями
- ИНФОРМАТИКА LR_6. Лабораторная работа 6. «Работа с редактором формул microsoft equation 0» Задания
- Лабораторная работа №6.
- “РАБОТА С РЕДАКТОРОМ
- ФОРМУЛ MICROSOFT EQUATION 3.0”
- Системы уравнений по-шагам
- Результат
- Примеры систем уравнений
- Правила ввода
- 🔍 Видео
Видео:Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать
Калькулятор онлайн.
Решение уравнений и неравенств с модулями.
Этот математический калькулятор онлайн поможет вам решить уравнение или неравенство с модулями. Программа для решения уравнений и неравенств с модулями не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения результата.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >> С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> |x| или abs(x) — модуль x
Введите уравнение или неравенство с модулями
Решить уравнение или неравенство
Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Немного теории.
Видео:Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать
Уравнения и неравенства с модулями
В курсе алгебры основной школы могут встретится простейшие уравнения и неравенства с модулями. Для их решения можно применять геометрический метод, основанный на том, что ( |x-a| ) — это расстояние на числовой прямой между точками x и a: ( |x-a| = rho (x;; a) ). Например, для решения уравнения ( |x-3|=2 ) нужно найти на числовой прямой точки, удалённые от точки 3 на расстояние 2. Таких точек две: ( x_1=1 ) и ( x_2=5 ).
Решая неравенство ( |2x+7| 0 ), то уравнение ( |f(x)|=c ) равносильно совокупности уравнений: ( left[begin f(x)=c \ f(x)=-c endright. )
2) Если ( c > 0 ), то неравенство ( |f(x)| c ) равносильно совокупности неравенств: ( left[begin f(x) c endright. )
4) Если обе части неравенства ( f(x) 0. Значит, |2х – 4| = (2х – 4), |х + 3| = (х + 3). Таким образом, на рассматриваемом промежутке заданное уравнение принимает вид: (2х – 4) + (х + 3) = 8. Решив это уравнение, находим: х = 3. Это значение принадлежит рассматриваемому промежутку, а потому является корнем заданного уравнения.
Итак, (x_1=-1, ; x_2=3 ).
Второй способ
Преобразуем уравнение к виду 2|x – 2| + |x + 3| = 8. Переведём эту аналитическую модель на геометрический язык: нам нужно найти на координатной прямой такие точки М(х), которые удовлетворяют условию ( 2rho(x; ;2)+ rho(x; ;-3) =8 ) или
MA + 2MB = 8
( здесь A = A(–3), B = B(2) ).
Интересующая нас точка М не может находиться левее точки А, поскольку в этом случае 2MB > 10 и, следовательно, равенство MA + 2MB = 8 выполняться не может.
Рассмотрим случай, когда точка ( M_1(x) ) лежит между А и В. Для такой точки равенство MA + 2MB = 8 принимает вид:
(х – (–3)) + 2(2 – х) = 8,
откуда находим: x = –1.
Рассмотрим случай, когда точка ( M_2(x) ) лежит правее точки B. Для такой точки равенство MA + 2MB = 8 принимает вид:
(х – (–3)) + 2(х – 2) = 8,
откуда находим: х = 3.
Ответ: –1; 3.
Пусть теперь требуется решить неравенство ( |f(x)| |f(x)| ). Отсюда сразу следует, что ( g(x) > 0 ). Воспользуемся тем, что при ( g(x) > 0 ) неравенство ( |f(x)| 0, \ -g(x) 0 \ f(x) -g(x) endright. )
Третий способ.
Воспользуемся тем, что при ( g(x) > 0 ) обе части неравенства ( |f(x)| 0 \ (f(x))^2 0 \ x^2 — 3x + 2 -(2x — x^2) endright. )
Решая эту систему, получаем:
( left<begin x(x — 2) 0 \ (x^2 — 3x + 2)^2 0 endright. Rightarrow )
( left<begin 0 0 endright. Rightarrow )
( left<begin 0 05 endright. )
Из последней системы находим: ( 05 g(x) ). Освободиться от знака модуля можно тремя способами.
Первый способ
Если (f(x) geqslant 0), то ( |f(x)| = f(x) ) и заданное неравенство принимает вид ( f(x) > g(x) ).
Если (f(x) g(x) ).
Таким образом, задача сводится к решению совокупности двух систем неравенств:
( left<begin f(x) geqslant 0 \ f(x) > g(x) endright. ) ( left<begin f(x) g(x) endright. )
Второй способ.
Рассмотрим два случая: ( g(x) geqslant 0, ; g(x) g(x) ) выполняется для всех x из области определения выражения f(x).
Если ( g(x) geqslant 0 ), то воспользуемся тем, что согласно утверждению 3) в самом начале данной теории неравенство ( |f(x)| > g(x) ) равносильно совокупности неравенств ( f(x) g(x) ).
Таким образом, заданное неравенство сводится к совокупности трёх систем:
( left<begin g(x) g(x) endright. )
Третий способ.
Воспользуемся тем, что при ( g(x) geqslant 0 ) неравенство ( |f(x)| > g(x) ) равносильно неравенству ( (|f(x)|)^2 > (g(x))^2 ). Это позволит свести неравенство ( |f(x)| > g(x) ) к совокупности систем:
( left<begin g(x) (g(x))^2 endright. )
ПРИМЕР 5. Решить неравенство ( |x^2 — 3x + 2| geqslant 2x — x^2 )
Первый способ
Задача сводится к решению совокупности двух систем неравенств:
( left<begin x^2 — 3x + 2 geqslant 0 \ x^2 — 3x + 2 geqslant 2x — x^2 endright. ) ( left<begin x^2 — 3x + 2 0 ), то заданное неравенство равносильно совокупности двух неравенств:
( left[begin x^2 — 3x + 2 geqslant 2x — x^2 \ x^2 — 3x + 2 leqslant -(2x — x^2) endright. )
Таким образом, получаем совокупность неравенства и двух систем неравенств:
( 2x — x^2 leqslant 0; ) ( left<begin 2x — x^2 > 0 \ x^2 — 3x + 2 geqslant 2x — x^2; endright. ) ( left<begin 2x — x^2 > 0 \ x^2 — 3x + 2 leqslant -(2x — x^2) endright. )
Решив неравенство ( 2x — x^2 leqslant 0 ), получим: ( x leqslant 0,; x geqslant 2 )
Решив первую систему, получим: ( 0 0 ), то обе части заданного неравенства можно возвести в квадрат. Таким образом, получаем совокупность неравенства и системы неравенств:
( 2x — x^2 leqslant 0; ) ( left<begin 2x — x^2 > 0 \ (x^2 — 3x + 2)^2 geqslant (2x — x^2)^2 endright. )
Решив неравенство ( 2x — x^2 leqslant 0 ), получим: ( x leqslant 0,; x geqslant 2 )
Решая систему, получаем последовательно:
( left<begin x(x — 2)
Видео:Никто не решил ➜ Удобная подстановка ➜ Решите уравнение ➜ x^3-3x+1=0Скачать
ИНФОРМАТИКА LR_6. Лабораторная работа 6. «Работа с редактором формул microsoft equation 0» Задания
Название | Лабораторная работа 6. «Работа с редактором формул microsoft equation 0» Задания |
Дата | 04.06.2019 |
Размер | 126 Kb. |
Формат файла | |
Имя файла | ИНФОРМАТИКА LR_6.doc |
Тип | Лабораторная работа #80314 |
Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать Лабораторная работа №6.Видео:Как решать Диофантовы уравнения ★ 9x+13y=-1 ★ Решите уравнение в целых числахСкачать “РАБОТА С РЕДАКТОРОМВидео:АЛГЕБРА С НУЛЯ — Точки Экстремума ФункцииСкачать ФОРМУЛ MICROSOFT EQUATION 3.0”
а) по образцу 1; б) по образцу 3 (воспользоваться только средствами Microsoft Word, а не редактора формул); в) по образцу 4 (воспользоваться только средствами Microsoft Word, а не редактора формул); е) по образцу 7.
а) вставить формулу в рамку; б) оттенить формулу фоном. Результат сохранить в своей папке (каждый образец в отдельный файл). BaSO4 — сульфат бария NaOH — гидрат натрия H2O – вода Теорема. Решение уравнения (1) содержит max(0,) + max(0,) – r произвольных комплексных постоянных и находится по формуле: Представим матрицу S A , B в виде: Sn = , , , где W1 и W2 – волновые сопротивления граничащих сред, связанные с материальными параметрами сред, заполняющих блоки, соотношениями: W1,2 = . Блоки контакта с границей имеют выход на один виртуальный волновод и описываются матрицей рассеяния Sb = , где r = -1 для идеально проводящей стенки и r = 1 для идеальной магнитной стенки. Конечная проводимость металла может быть учтена путем использования в матрице рассеяния коэффициента отражения r вида: r = Видео:13. Как решить дифференциальное уравнение первого порядка?Скачать Системы уравнений по-шагамВидео:Как решить квадратное уравнение за 30 секунд#математика #алгебра #уравнение #дискриминант #репетиторСкачать РезультатПримеры систем уравнений
Указанные выше примеры содержат также:
Правила вводаМожно делать следующие операции 2*x — умножение 3/x — деление x^3 — возведение в степень x + 7 — сложение x — 6 — вычитание Действительные числа вводить в виде 7.5, не 7,5 Чтобы увидеть подробное решение, 🔍 ВидеоКак решить уравнение #россия #сша #америка #уравненияСкачать Решение тригонометрических уравнений. Однородные уравнения. 10 класс.Скачать Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0Скачать Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | МатематикаСкачать Математика без Ху!ни. Метод Гаусса.Скачать 5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать СЛОЖИТЕ ДВА КОРНЯСкачать Все типы 34 задач с 0 и до уровня ЕГЭ 2024 за 6 часов | Екатерина СтрогановаСкачать 7 класс, 4 урок, Линейное уравнение с одной переменнойСкачать Excel. Функции ЕСЛИ; И; ИЛИ +Примеры использованияСкачать 5 Функция Excel СЧЁТЕСЛИСкачать |