Решение уравнений вида arcsin x

Видео:ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функцииСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ —  Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функции

Арксинус. Решение уравнения sin x = a

п.1. Понятие арксинуса

В записи (y=sinx) аргумент x — это значение угла (в градусах или радианах), функция y – синус угла, действительное число в пределах [-1;1]. Т.е., по заданному углу мы находим косинус.
Можно поставить обратную задачу: по заданному синусy найти угол. Но одному значению синусa соответствует бесконечное количество углов. Например, если (sinx=1), то (x=fracpi2+2pi k, kinmathbb); если (sinx=0), то (x=pi k, kinmathbb) и т.д.
Поэтому, чтобы построить однозначную обратную функцию, ограничим значения углов x отрезком, на котором синус принимает все значения из [-1;1], но только один раз: (-fracpi2 leq xleq fracpi2) (правая половина числовой окружности).

(arcsinfrac12=fracpi6, arcsinleft(-frac<sqrt>right)=-frac)
(arcsin2) – не существует, т.к. 2> 1

п.2. График и свойства функции y=arcsinx

Решение уравнений вида arcsin x
1. Область определения (-1leq xleq1) .
2. Функция ограничена сверху и снизу (-fracpi2leq arcsinxleq fracpi2) . Область значений (yin[-fracpi2; fracpi2])
3. Максимальное значение (y_=fracpi2) достигается в точке x=1
Минимальное значение (y_=-fracpi2) достигается в точке x =-1
4. Функция возрастает на области определения.
5. Функция непрерывна на области определения.
6. Функция нечётная: (arcsin(-x)=-arcsin(x)) .

п.3. Уравнение sin⁡x=a

Решение уравнений вида arcsin xЗначениями арксинуса могут быть только углы от (-fracpi2) до (fracpi2) (от -90° до 90°). А как выразить другие углы через арксинус?

Углы в левой части числовой окружности записывают как разность π и арксинуса (угла справа). А остальные углы, которые превышают π по модулю, записывают через сумму арксинуса и величин, которые «не помещаются» в область значений арксинуса.

1) Решим уравнение (sinx=frac12).
Найдем точку (frac12) в числовой окружности на оси синусов (ось OY). Построим горизонталь – перпендикуляр, проходящий через через эту точку. Он пересечёт числовую окружность в двух точках, соответствующих углам (fracpi6) и (frac) — это базовые корни.
Если взять корень справа (fracpi6) и прибавить к нему полный оборот (fracpi6+2pi=frac), синус полученного угла (sinfrac=frac12), т.е. (frac) также является корнем уравнения. Корнями будут и все другие углы вида (fracpi6+2pi k) (с любым количеством добавленных или вычтенных полных оборотов). Аналогично, корнями будут все углы вида (frac+2pi k).
Получаем ответ: (x_1=fracpi6+2pi k) и (x_2=frac+2pi k)
Заметим, что (arcsinfrac12=fracpi6). Полученный ответ является записью вида
(x_1=arcsinfrac12+2pi k) и (x_2=pi-arcsinfrac12+2pi k)
А т.к. арксинус для (frac12) точно известен и равен (fracpi6), то мы его просто подставляем и пишем ответ. Но так бывает далеко не всегда.

2) Решим уравнение (sinx=0,8)

Решение уравнений вида arcsin xНайдем точку 0,8 в числовой окружности на оси синусов (ось OY). Построим горизонталь – перпендикуляр, проходящий через точку. Он пересечёт числовую окружность в двух точках.
По определению правая точка – это угол, равный arcsin0,8.
Тогда левая точка – это разность развернутого угла и арксинуса, т.е. (π–arcsin⁡0,8).
Добавление или вычитание полных оборотов к каждому из решений даст другие корни.
Получаем ответ:
(x_1=arcsin0,8+2pi k,)
(x_2=pi-arcsin0,8+2pi k)

Докажем, что семейства решений для корней справа и слева можно записать одним выражением (x=(-1)^k arcsina+pi k).
Действительно, для чётных (k=2n) получаем: $$ x=(-1)^ arcsina+pi cdot 2n=arcsina+2pi n $$ это семейство решений для корня справа (с добавлением и вычитанием полных оборотов).
Для нечётных (k=2n+1):
$$ x=(-1)^ arcsina+pi cdot (2n+1)=-arcsina+2pi n +pi=pi-arcsina+2pi n $$ это семейство решений для корня слева (с добавлением и вычитанием полных оборотов).
Обратное преобразование двух семейств решений в общую запись аналогично.
Следовательно: $$ x=(-1)^k arcsina+pi kLeftrightarrow left[ begin x=arcsina+2pi n\ x=pi-arcsina+2pi n end right. $$ Что и требовалось доказать.

Для примеров, решённых выше, можем записать: $$ 1) left[ begin x_1=fracpi6+2pi k\ x_2=frac+2pi k end right. Leftrightarrow x=(-1)^kfracpi6 +pi k $$
$$ 2) left[ begin x_1=arcsin0,8+2pi k\ x_2=pi-arcsin0,8+2pi k end right. Leftrightarrow x=(-1)^karcsin0,8 +pi k $$ Выбор общей или раздельной записи решения зависит от задачи.
Как правило, если ответ еще не найден, и нужны дальнейшие преобразования, решение записывают как два раздельных семейства.
Если же просто нужно записать ответ, то пишут общее выражение.

п.4. Примеры

Пример 1. Найдите функцию, обратную арксинусу. Постройте графики арксинуса и найденной функции в одной системе координат.

Для (y=arcsinx) область определения (-1leq xleq 1), область значений (-fracpi2leq yleq fracpi2).
Обратная функция (y=sinx) должна иметь ограниченную область определения (-fracpi2leq xleq fracpi2) и область значений (-1leq yleq 1).
Строим графики:
Решение уравнений вида arcsin x
Графики симметричны относительно прямой y=x.
Обратная функция найдена верно.

Пример 2. Решите уравнения:

a) (sin x=-1)
Решение уравнений вида arcsin x
(x=-fracpi2+2pi k)
б) (sin x=frac<sqrt>)
Решение уравнений вида arcsin x
$$ left[ begin x_1=fracpi4+2pi k\ x_2=frac+2pi k end right. Leftrightarrow x=(-1)^frac +pi k $$
в) (sin x=0)
Решение уравнений вида arcsin x
(x=pi k)
г) (sin x=sqrt)
Решение уравнений вида arcsin x
(sqrtgt 1, xinvarnothing)
Решений нет
д) (sin x=0,7)
Решение уравнений вида arcsin x
begin left[ begin x_1=arcsin(0,7)+2pi k\ x_2=pi-arcsin(0,7)+2pi k end right. Leftrightarrow\ Leftrightarrow x=(-1)^k arcsin(0,7) +pi k end

e) (sin x=-0,2)
Решение уравнений вида arcsin x
Арксинус нечетный, поэтому: $$ srcsin(-0,2)=-arcsin(0,2) $$ Получаем: begin left[ begin x_1=-arcsin(0,2)+2pi k\ x_2=pi+arcsin(0,7)+2pi k end right. Leftrightarrow\ Leftrightarrow x=(-1)^arcsin(0,2) +pi k end

Пример 3. Запишите в порядке возрастания: $$ arcsin0,2; arcsin(-0,7); arcsinfracpi4 $$

Решение уравнений вида arcsin xСпособ 1. Решение с помощью числовой окружности

Отмечаем на оси синусов (ось OY) точки с абсциссами 0,2; -0,7; (fracpi4approx 0,79)
Значения синусов (углы) считываются на правой половине окружности: чем больше синус (от -1 до 1), тем больше угол (от (-fracpi2) до (fracpi2)).
Получаем: $$ arcsin(-0,7)lt arcsin0,2lt arcsinfracpi4 $$Решение уравнений вида arcsin xСпособ 2. Решение с помощью графика (y=arcsinx)

Отмечаем на оси OY аргументы 0,2; -0,7; (fracpi4approx 0,79). Восстанавливаем перпендикуляры на кривую, отмечаем точки пересечения. Из точек пересечения с кривой восстанавливаем перпендикуляры на ось OY — получаем значения арксинусов по возрастанию: $$ arcsin(-0,7)lt arcsin0,2lt arcsinfracpi4 $$Способ 3. Аналитический
Арксинус – функция возрастающая: чем больше аргумент, тем больше функция.
Поэтому располагаем данные в условии аргументы по возрастанию: -0,7; 0,2; (fracpi4).
И записываем арксинусы по возрастанию: (arcsin(-0,7)lt arcsin0,2lt arcsinfracpi4)

Пример 4*. Решите уравнения:
(a) arcsin(x^2-3x+3)=fracpi2) begin x^2-3x+3=sinfracpi2=1\ x^2-3x+2=0\ (x-2)(x-1)=0\ x_1=1, x_2=2 end Ответ:

(б) arcsin^2x-arcsinx-2=0)
( text -1leq xleq 1 )
Замена переменных: (t=arcsin x, -fracpi2leq tleq fracpi2)
Решаем квадратное уравнение: $$ t^2-t-2=0Rightarrow (t-2)(t+1)=0Rightarrow left[ begin t_1=2gt fracpi2 — text\ t_2=-1 end right. $$ Возвращаемся к исходной переменной: begin arcsinx=-1\ x=sin(-1)=-sin1 end Ответ: -sin1

(в) arcsin^2x-pi arcsinx+frac=0)
( text -1leq xleq 1 )
Замена переменных: (t=arcsin x, -fracpi2leq tleq fracpi2)
Решаем квадратное уравнение: begin t^2-pi t+frac=0\ D=(-pi)^2-4cdot frac=frac, sqrt=fracpi3 Rightarrow left[ begin t_1=frac=fracpi3\ t_2=frac=fracgt fracpi2 — text end right. end Возвращаемся к исходной переменной:
begin arcsinx=fracpi3\ x=sinfracpi3=frac<sqrt> end Ответ: (frac<sqrt>)

Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Арксинус. Решение простейших уравнений с синусом. Часть 2

Арксинусом числа (a) ((a∈[-1;1])) называют число (x∈[-frac;frac]) синус которого равен (a) т.е.

Проще говоря, арксинус обратен синусу.

На круге это выглядит так:

Решение уравнений вида arcsin x Решение уравнений вида arcsin x

Видео:10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать

10 класс, 23 урок, Методы решения тригонометрических уравнений

Как вычислить арксинус?

Чтобы вычислить арксинус — нужно ответить на вопрос: синус какого числа (лежащего в пределах от (-frac) до (frac) ) равен аргументу арксинуса?

Например, вычислите значение арксинуса:

а) Синус какого числа равен (-frac)? Или в более точной формулировке можно спросить так: если (sin ⁡x=-frac), то чему равен (x)? Причем, обратите внимание, нам нужно такое значение, которое лежит между (-frac) и (frac). Ответ очевиден:

б) Синус какого числа равен (frac<sqrt>)? Кто-то вспоминает тригонометрический круг, кто-то таблицу, но в любом случае ответ (frac).

в) Синус от чего равен (-1)?
Иначе говоря, (sin ⁡x=-1), (x=) ?

Тригонометрический круг со всеми стандартными арксинусами:

Решение уравнений вида arcsin x

Видео:Простейшие тригонометрические уравнения. y=cosx. 1 часть. 10 класс.Скачать

Простейшие тригонометрические уравнения. y=cosx. 1 часть. 10 класс.

Зачем нужен арксинус? Решение уравнения (sin x=a)

Чтобы понять зачем придумали арксинус, давайте решим уравнение: (sin ⁡x=frac).

Это не вызывает затруднений:

Решение уравнений вида arcsin x

Внимание! Если вдруг затруднения всё же были, то почитайте здесь о решении простейших уравнений с синусом.

А теперь решите уравнение: (sin ⁡x=frac).

Решение уравнений вида arcsin x

Что тут будет ответом? Не (frac), не (frac), даже не (frac) — вообще никакие привычные числа не подходят, однако при этом очевидно, что решения есть. Но как их записать?

Вот тут-то на помощь и приходит арксинус! Значение правой точки равно (arcsin⁡frac), потому что известно, что синус равен (frac). Длина дуги от (0) до правой точки тогда тоже будет равна (arcsin⁡frac). Тогда чему равно значение второй точки? С учетом того, что правая точка находится на расстоянии равному (arcsin⁡frac) от (π), то её значение составляет (π- arcsin⁡frac).

Ок, значение этих двух точек нашли. Теперь запишем полный ответ: ( left[ beginx=arcsin frac+2πn, n∈Z\ x=π-arcsin frac+2πl, l∈Zendright.) Без арксинусов решить уравнение (sin ⁡x=frac) не получилось бы. Как и уравнение (sin ⁡x=0,125), (sin ⁡x=-frac), (sin⁡ x=frac<sqrt>) и многие другие. Фактически без арксинуса мы можем решать только (9) простейших уравнений с синусом:

Решение уравнений вида arcsin x

С арксинусом – бесконечное количество.

Пример. Решите тригонометрическое уравнение: (sin ⁡x=frac<sqrt>).
Решение:

Решение уравнений вида arcsin x

Пример. Решите тригонометрическое уравнение: (sin ⁡x=frac<sqrt>).

Решение:
Кто поторопился написать ответ ( left[ beginx=arcsin frac<sqrt>+2πn, n∈Z\ x=π-arcsin frac<sqrt>+2πl, l∈Zendright.), тот на ЕГЭ потеряет 2 балла. Дело в том, что в отличии от прошлых примеров (arcsin⁡ frac<sqrt>) — вычислимое значение, но чтобы это стало очевидно нужно избавиться от иррациональности в знаменателе аргумента. Для этого умножим и числитель и знаменатель дробь на корень из двух (frac<sqrt> = frac<1 cdot sqrt> <sqrtcdot sqrt>= frac<sqrt>). Таким образом, получаем:

Значит в ответе вместо арксинусов нужно написать (frac).

Пример. Решите тригонометрическое уравнение: (sin ⁡x=frac).

Решение:
И вновь тот, кто поторопился написать ( left[ beginx= arcsin frac+2πn, n∈Z\ x=π- arcsinfrac+2πl, l∈Zendright.) на ЕГЭ потеряет (2) балла. Что не так? – спросите вы. Ведь точно не табличное значение, почему нельзя написать (arcsin⁡frac)? Пролистайте до самого верха, туда, где было определение арксинуса. Там написана маленькая, но очень важная деталь – аргумент арксинуса должен быть меньше или равен (1) и больше или равен (-1). Ведь синус не может выходить за эти пределы! И если решить уравнение с помощью круга, а не бездумно пользоваться готовыми формулами, то станет очевидно, что у такого уравнения решений нет.

Решение уравнений вида arcsin x

Думаю, вы уловили закономерность.

Если (sin ⁡x) равен не табличному значению между (1) и (-1), то решения будут выглядеть как: ( left[ beginx= arcsin a +2πn, n∈Z\ x=π- arcsin a +2πl, l∈Zendright.)

Видео:Решение уравнений вида tg x = a и ctg x = aСкачать

Решение уравнений вида tg x = a и ctg x = a

Арксинус отрицательного числа

Прежде чем научиться решать тригонометрические уравнения с отрицательным синусом советую запомнить формулу:

Если хотите понять логику этой формулы, внимательно рассмотрите картинку ниже:

Решение уравнений вида arcsin x

Удивил последний пример? Почему в нем формула не работает? Потому что запись (arcsin⁡(-frac<sqrt>)) в принципе неверна, ведь (-frac<sqrt> Синус
Тригонометрические уравнения

Видео:КАК РЕШАТЬ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ? // УРАВНЕНИЕ COSX=AСкачать

КАК РЕШАТЬ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ? // УРАВНЕНИЕ COSX=A

Уравнения и неравенства, содержащие обратные тригонометрические функции

Задачи, связанные с обратными тригонометрическими функциями, часто вызывают у школьников старших классов значительные трудности. Связано это, прежде всего, с тем, что в действующих учебниках и учебных пособиях подобным задачам уделяется не слишком большое внимание, и если с задачами на вычисление значений обратных тригонометрических функций учащиеся еще как-то справляются, то уравнения и неравенства, содержащие эти функции, нередко ставят их в тупик. Последнее не удивительно, поскольку практически ни в одном учебнике (включая учебники для классов с углубленным изучением математики) не излагается методика решения даже простейших уравнений и неравенств такого рода. Предлагаемая вашему вниманию статья посвящена методам решения уравнений и неравенств, содержащих обратные тригонометрические функции. Надеемся, что она окажется полезной для учителей, работающих в старших классах – как общеобразовательных, так и математических.

Вначале напомним важнейшие свойства обратных тригонометрических функций.

1 Функция y = arcsin x определена и монотонно возрастает на отрезке [– 1; 1];

arcsin (– x) = – arcsin x (x О [– 1; 1]);
Решение уравнений вида arcsin x

2 Функция y = arccos x определена и монотонно убывает на отрезке [– 1; 1];

3 Функция y = arctg x определена и монотонно возрастает на R;

arctg (– x) = – arctg x (x О R);
Решение уравнений вида arcsin x

4 Функция y = arcctg x определена и монотонно убывает на R;

5

Решение уравнений вида arcsin x

Свойства монотонности и ограниченности являются ключевыми при решении многих уравнений и неравенств, содержащих обратные тригонометрические функции. Перейдем к рассмотрению методов решения этих уравнений и неравенств.

I. Уравнения и неравенства, левая и правая части которых являются одноименными обратными тригонометрическими функциями

Решение уравнений и неравенств, левая и правая части которых представляют собой одноименные обратные тригонометрические функции различных аргументов, основывается, прежде всего, на таком свойстве этих функций, как монотонность. Напомним, что функции y = arcsin t и y = arctg t монотонно возрастают, а функции y = arccos t и y = arcctg t монотонно убывают на своих областях определения. Поэтому справедливы следующие равносильные переходы.

1 .

Решение уравнений вида arcsin x

2 .

Решение уравнений вида arcsin x

3 .

4 .

Замечание 1. Какой из двух равносильных систем пользоваться при решении уравнений 1а) и 2а), зависит от того, какое неравенство проще: | f(x) | Ј 1 (тогда используем первую систему), или | g(x) | Ј 1 (в этом случае используем вторую систему).

Пример 1. Решить уравнение arcsin (3x 2 – 4x – 1) = arcsin (x + 1).

Решение. Уравнение равносильно системе

Решение уравнений вида arcsin x

Замечание 2. Решать неравенство, входящее в систему, вообще говоря, не обязательно. Достаточно проверить, удовлетворяют ли неравенству найденные корни уравнения, как это и было сделано при решении примера 1.

Пример 2. Решить неравенство arcctg (8x 2 – 6x – 1) Ј arcctg (4x 2 – x + 8).

Решение. Неравенство равносильно следующему:

Решение уравнений вида arcsin x

Пример 3. Решить неравенство 3arcsin 2x

Решение уравнений вида arcsin x

Пример 4. Решить неравенство arccos (x 2 – 3) Ј arccos (x + 3).

Решение уравнений вида arcsin x

Пример 5. Решить уравнение arccos (4x 2 – 3x – 2) + arccos (3x 2 – 8x – 4) = p .

Решение. Так как p – arccos t = arccos (– t), то имеет место следующая цепочка равносильных преобразований:

arccos (4x 2 – 3x – 2) = p – arccos (3x 2 – 8x – 4) Ы
Ы arccos (4x 2 – 3x – 2) = arccos (– 3x 2 + 8x + 4) Ы

Решение уравнений вида arcsin x

Аналогичные равносильные преобразования используются и при решении задач с параметрами.

Пример 7. Решить уравнение с параметром a: arcsin (ax 2 – ax + 1) + arcsin x = 0.

Решение. Уравнение равносильно уравнению

Решение уравнений вида arcsin x

Рассмотрим два случая:

1) a = 0. В этом случае система примет вид: Решение уравнений вида arcsin x

2) a № 0. В этом случае уравнение системы является квадратным. Его корни: Решение уравнений вида arcsin x
Так как | x | Ј 1, то Решение уравнений вида arcsin x . Если a = – 1, то x2 = x1 = 1. Если a О (– Ґ Ч ; – 1) И [1; Ґ ), то уравнение имеет два корня.

Ответ: при Решение уравнений вида arcsin x при a = – 1 и a = 0 x = 1; при прочих a решений нет.

Пример 8. Решить неравенство с параметром a: arccos (3ax + 1) Ј arccos (2x + 3a – 1).

Решение. Неравенство равносильно системе Решение уравнений вида arcsin x

Решать последнюю систему можно графо-аналитическим методом, учитывая то, что при a > Решение уравнений вида arcsin x первое неравенство системы равносильно неравенству x і 1, при a Решение уравнений вида arcsin x – неравенству x Ј 1, при a = Решение уравнений вида arcsin x решением первого неравенства является любое действительное число. Множество всех точек (x; a) плоскости Oxa, удовлетворяющих системе, показано на рис. 1 штриховкой.

Решение уравнений вида arcsin xОтвет: при | a | > Решение уравнений вида arcsin xрешений нет; при a = – Решение уравнений вида arcsin xx = 1;

Решение уравнений вида arcsin x

II. Уравнения и неравенства, левая и правая части которых являются разноименными обратными тригонометрическими функциями

При решении уравнений и неравенств, левая и правая части которых являются разноименными обратными тригонометрическими функциями, пользуются известными тригонометрическими тождествами. Эта группа задач является чуть более сложной по сравнению с предыдущей. При решении многих уравнений такого рода бывает целесообразно не обсуждать вопрос о равносильности преобразований, а сразу переходить к уравнению-следствию и после его решения делать необходимую проверку. Рассуждения здесь могут быть примерно следующими. Пусть требуется решить уравнение arcsin f(x) = arccos g(x). Предположим, что x0 – решение этого уравнения. Обозначим arcsin f(x0) = arccos g(x0) через a. Тогда sin a = f(x0), cos a = g(x0), откуда f 2 (x0) + g 2 (x0) = 1. Итак, arcsin f(x) = arccos g(x) Ю f 2 (x) + g 2 (x) = 1. (1)

Рассуждая аналогично, можно получить следующие переходы:

Решение уравнений вида arcsin x

Решение уравнений вида arcsin x

Замечание 3. Корнем каждого из уравнений (1)–(4) может быть только такое число x0, для которого f(x0) і 0 и g(x0) і 0. В противном случае множество значений левой и правой частей уравнения не пересекаются.

Пример 9. Решить уравнение Решение уравнений вида arcsin x

Решение уравнений вида arcsin x

Корень Решение уравнений вида arcsin x является посторонним.

Пример 10. Решить уравнение Решение уравнений вида arcsin x

Решение уравнений вида arcsin x

Корень x = – 2 является посторонним.

Ответ: . Решение уравнений вида arcsin x

Пример 11. Решить уравнение arctg (2sin x) = arcctg (cos x).

Решение уравнений вида arcsin x

Корни вида Решение уравнений вида arcsin x являются посторонними.

Ответ: Решение уравнений вида arcsin x

При решении неравенств, левая и правая части которых представляют собой разноименные обратные тригонометрические функции, целесообразно использовать метод интервалов, а в некоторых случаях учитывать свойства монотонных функций.

Пример 12. Решить неравенство Решение уравнений вида arcsin x

Решение. Рассмотрим функцию Решение уравнений вида arcsin x

и решим неравенство f(x) Ј 0 методом интервалов.

1) Найдем D(f). Для этого решим систему

Решение уравнений вида arcsin x

2) Найдем нули f(x). Для этого решим уравнение

Решение уравнений вида arcsin x

Решение уравнений вида arcsin x

Корень x = – 2 является посторонним.

3) Решим неравенство f(x) Ј 0 методом интервалов.

Решение уравнений вида arcsin x

Замечание 4. Заметим, что найдя корень уравнения Решение уравнений вида arcsin x можно было не обращаться к методу интервалов, а воспользоваться тем, что функция Решение уравнений вида arcsin x является монотонно возрастающей, а функция Решение уравнений вида arcsin x монотонно убывающей на отрезке Решение уравнений вида arcsin x . Поэтому решением исходного неравенства является промежуток [– 2; 1]. Следует, однако, понимать, что метод интервалов является более универсальным, – ведь его можно применять и в тех случаях, когда использование свойств монотонных функций не приводит к искомому результату.

При решении уравнений и неравенств данного типа, содержащих параметры, становится актуальным вопрос о равносильности преобразований. Чтобы преобразования (1)–(4) сделать равносильными, следует учесть естественные ограничения, связанные с областями определения обратных тригонометрических функций и множествами их значений (см. замечание 3). Так, например,

Решение уравнений вида arcsin x

Пример 13. Решить уравнение с параметром a: arcctg (x – 2a) = arctg (2xa).

Решение. Данное уравнение равносильно системе Решение уравнений вида arcsin x

Графиком квадратного трехчлена f(x) = 2x 2 – 5ax + 2a2 – 1 является парабола, ветви которой направлены вверх. Поскольку f(2a) = – 1 2a. Это корень Решение уравнений вида arcsin x

Ответ: при любом a Решение уравнений вида arcsin x

III. Замена переменной

Некоторые уравнения и неравенства, содержащие обратные тригонометрические функции, можно свести к алгебраическим, сделав соответствующую замену переменной. При этом следует помнить о естественных ограничениях на вводимую переменную, связанных с ограниченностью обратных тригонометрических функций.

Пример 14. Решить уравнение Решение уравнений вида arcsin x

Решение. Обозначим Решение уравнений вида arcsin x После преобразований получим уравнение

Решение уравнений вида arcsin x

Поскольку Решение уравнений вида arcsin x

откуда Решение уравнений вида arcsin x

Ответ: Решение уравнений вида arcsin x

Пример 15. Решить неравенство arccos 2 x – 3arccos x + 2 і 2.

Решение. Пусть arccos x = t, 0 Ј t Ј p . Тогда Решение уравнений вида arcsin x

Поскольку Решение уравнений вида arcsin x откуда Решение уравнений вида arcsin x

Ответ: [– 1; cos 2] И [cos 1; 1].

Иногда свести уравнение или неравенство к алгебраическому можно с помощью тождества

Решение уравнений вида arcsin x

Пример 16. Решить уравнение Решение уравнений вида arcsin x

Решение. Данное уравнение равносильно следующему:

Решение уравнений вида arcsin x

Пусть arcsin x = t, Решение уравнений вида arcsin x

Тогда Решение уравнений вида arcsin x

Решение уравнений вида arcsin x

Решение уравнений вида arcsin x

IV. Использование свойств монотонности и ограниченности обратных тригонометрических функций

Решение некоторых уравнений и неравенств, содержащих обратные тригонометрические функции, основывается исключительно на таких свойствах этих функций, как монотонность и ограниченность. При этом используются следующие теоремы.

Теорема 1. Если функция y = f(x) монотонна, то уравнение f(x) = c (c = const) имеет не более одного решения.

Теорема 2. Если функция y = f(x) монотонно возрастает, а функция y = g(x) монотонно убывает, то уравнение f(x) = g(x) имеет не более одного решения.

Теорема 3. Если Решение уравнений вида arcsin x то на множестве X уравнение f(x) = g(x) равносильно
системе Решение уравнений вида arcsin x

Пример 17. Решить уравнение 2arcsin 2x = 3arccos x.

Решение. Функция y = 2arcsin 2x является монотонно возрастающей, а функция y = 3arccos x – монотонно убывающей. Число x = 0,5 является, очевидно, корнем данного уравнения. В силу теоремы 2 этот корень – единственный.

Пример 18. Решить уравнение Решение уравнений вида arcsin x

Решение. Пусть x 2 + x = t. Тогда уравнение примет вид Решение уравнений вида arcsin x

Функции Решение уравнений вида arcsin xявляются монотонно возрастающими. Поэтому функция Решение уравнений вида arcsin xтакже является монотонно возрастающей. В силу теоремы 1 уравнение Решение уравнений вида arcsin xимеет не более одного корня. Очевидно, что t = 0 является корнем этого уравнения. Поэтому x 2 + x = 0 Решение уравнений вида arcsin x

Пример 19. Решить неравенство Решение уравнений вида arcsin x

Решение. Левая часть неравенства представляет собой монотонно убывающую на отрезке Решение уравнений вида arcsin xфункцию Решение уравнений вида arcsin xУравнение Решение уравнений вида arcsin xв силу теоремы 1 имеет не более одного корня. Очевидно, что Решение уравнений вида arcsin x– корень этого уравнения. Поэтому решением неравенства Решение уравнений вида arcsin xявляется отрезок Решение уравнений вида arcsin x

Ответ: Решение уравнений вида arcsin x

Пример 20. Решить уравнение arcsin (x(x + y)) + arcsin (y(x + y)) = p .

Решение. Поскольку arcsin Решение уравнений вида arcsin xто левая часть уравнения не превосходит Решение уравнений вида arcsin xЗнак равенства возможен, лишь если каждое слагаемое левой части равно Решение уравнений вида arcsin x. Таким образом, уравнение равносильно системе:

Решение уравнений вида arcsin x

Решение последней системы не представляет труда.

🔥 Видео

Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.Скачать

Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.

Обратные тригонометрические функции, y=arcsinx и y=arccosx, их свойства и графики. 10 класс.Скачать

Обратные тригонометрические функции, y=arcsinx и y=arccosx, их свойства и графики. 10 класс.

Решение уравнений вида sin x = aСкачать

Решение уравнений вида sin x = a

10 класс. Решение уравнений sin x = aСкачать

10 класс. Решение уравнений sin x = a

Арксинус. Решение уравнения sin t = a | Алгебра 10 класс #27 | ИнфоурокСкачать

Арксинус. Решение уравнения sin t = a | Алгебра 10 класс #27 | Инфоурок

Решение тригонометрических уравнений. Однородные уравнения. 10 класс.Скачать

Решение тригонометрических уравнений. Однородные уравнения. 10 класс.

10 класс, 22 урок, Простейшие тригонометрические уравнения неравенстваСкачать

10 класс, 22 урок, Простейшие тригонометрические уравнения неравенства

Алгебра 10 класс. 18 октября. Что такое arccos арккосинусСкачать

Алгебра 10 класс. 18 октября. Что такое arccos арккосинус

Уравнение sinx=aСкачать

Уравнение sinx=a

Арк-функции. Простейшие тригонометрические уравнения | Осторожно, спойлер! | Борис Трушин !Скачать

Арк-функции. Простейшие тригонометрические уравнения | Осторожно, спойлер! | Борис Трушин !

РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэСкачать

РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэ

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по Математике

Алгебра 10 класс (Урок№41 - Уравнение cos x = a.)Скачать

Алгебра 10 класс (Урок№41 - Уравнение cos x = a.)

Решение уравнений вида cos x =aСкачать

Решение уравнений вида cos x =a
Поделиться или сохранить к себе: