Итак, необходимо решить уравнение с комплексными переменными, найти корни этого уравнения. Рассмотрим принцип решения комплексных уравнений, научимся извлекать корень из комплексного числа.
Для того, чтобы решить уравнение n-й степени с комплексными числами, используем общую формулу:
где |z| — модуль числа, φ = arg z — главное значение аргумента, n — степень корня, k — параметр, принимает значения : k = .
Пример 1. Найти все корни уравнения
Выразим z из уравнения:
Все корни заданного уравнения являются значениями корня третьей степени из комплексного числа
Воспользуемся общей формулой для вычисления корней степени n комплексного числа z. Найдем все необходимые значения для формулы:
Подставим найденные значения в формулу:
Последовательно подставляя вместо k значения 0, 1, 2 найдем три корня исходного уравнения.
Пример 2. Найти все корни уравнения
Найдем дискриминант уравнения:
Поскольку дискриминант отрицательный, уравнение имеет два комплексно-сопряженных корня. Вычислим корень из дискриминанта:
Найдем корни уравнения:
Ответ:
Пример 3. Найти все корни уравнения
Выразим z из уравнения:
Все корни заданного уравнения являются значениями корня четвертой степени из комплексного числа
Вновь используем общую формулу для нахождения корней уравнения n степени комплексного числа z.
n = 4 — количество корней данного уравнения. k = . Найдем модуль комплексного числа:
Подставим найденные значения в формулу:
Последовательно подставляя вместо k значения 0, 1, 2, 3 найдем все 4 корня уравнения:
Пример 4. Найти корни уравнения
Решение кубического уравнения комплексными числами:
Воспользуемся общей формулой для вычисления корней степени 3 комплексного числа z.
Найдем все необходимые значения для формулы:
Подставим найденные значения в формулу:
Последовательно подставляя вместо k значения 0, 1, 2 найдем три корня исходного уравнения:
Домашнее задание: Самостоятельно составить и решить уравнение с комплексными числами.
Условия: переменная z должна быть «спрятана» и представлена в качестве аргумента тригонометрической функции косинуса. Чтобы привести данное уравнение к привычной форме, нужно «вытащить» z, а для этого необходимо помнить, как решаются тригонометрические уравнения,а также знать, как применять свойства логарифмической функции от комплексного числа.
После того, как мы решили тригонометрическое уравнение с комплексным числом, получаем «голый» z, который представлен в качестве аргумента обратной тригонометрической функции. Чтобы преобразовать данное выражение, нужно использовать формулу разложения арккосинуса в логарифм.
Вместо z — выражение (3i/4) и дальше все делаем по приведенной выше формуле, преобразовывая выражение под корнем, используя свойства мнимой единицы i.
Как быть далее? Теперь будем использовать формулу для решения выражения с натуральным логарифмом.
Для того чтобы найти корни логарифмического уравнения, нужно найти модуль комплексного числа |z| и его аргумент φ = arg z. По сути, перед нами чисто мнимое число.
Теперь предлагаем ознакомиться с формулами, которые могут пригодиться при решении уравнений или неравенств с комплексными числами. Это формулы, где комплексное число выступает в роли аргумента тригонометрической функции, логарифмической функции или показательной функции.
- Примеры решения алгебраических уравнений на множестве комплексных чисел (Приведите примеры решения алгебраических уравнений на множестве комплексных чисел)
- Комплексные числа и их приложение к решению уравнений третьей и четвертой степени (стр. 1 )
- Пользуясь понятиями противоположного и обратного комплексного числа, определим операции вычитания и деления комплексных чисел.
- Степени мнимой единицы
- Модуль комплексного числа.
- Свойства операции сопряжения
- .
- Последнее уравнение равносильно системе уравнений
- 📸 Видео
Видео:10 класс, 35 урок, Комплексные числа и квадратные уравненияСкачать
Примеры решения алгебраических уравнений на множестве комплексных чисел (Приведите примеры решения алгебраических уравнений на множестве комплексных чисел)
1. Алгебраические уравнения первой степени:
, – единственный простой корень.
.
Ответ: .
2. Квадратные уравнения:
, – всегда имеет два корня (различных или равных).
1) .
Ответ: .
2) .
Ответ: .
3) , .
Ответ: , .
3. Двучленные уравнения степени :
, – всегда имеет различных корней.
,
;
;
.
Ответ: , .
4. Решить кубическое уравнение .
Уравнение третьей степени имеет три корня (действительные или комплексные), при этом нужно считать каждый корень столько раз, какова его кратность. Так как все коэффициенты данного уравнения являются действительными числами, то комплексные корни уравнения, если они есть, будут парными комплексно сопряженными.
Подбором находим первый корень уравнения , так как .
По следствию из теоремы Безу . Вычисляем это деление «в столбик»:
Представляя теперь многочлен в виде произведения линейно и квадратного множителя, получим:
.
Другие корни находим как корни квадратного уравнения:
.
Ответ: , .
5. Составить алгебраическое уравнение наименьшей степени с действительными коэффициентами, если известно, что числа x1 = 3 и x2 = 1 + i являются его корнями, причем x1 является двукратным корнем, а x2 — простым.
Число тоже является корнем уравнения, т.к. коэффициенты уравнения должны быть действительными.
Всего искомое уравнение имеет 4 корня: x1, x1, x2, . Поэтому его степень равна 4. Составляем многочлен 4-й степени с нулями x1, x1, x2, по формуле (6):
Þ
.
Искомое уравнение имеет вид P4(x) = 0.
Ответ: .
Вопросы для самопроверки
1. Сформулируйте определение комплексного числа
2. Что называется комплексным числом?
3. Какое название или смысл имеет формула?
4. Поясните смысл обозначений в этой формуле:
5. ⌂ .
6. Что такое мнимая единица?
7. Что такое действительная часть комплексного числа z?
8. Что такое мнимая часть комплексного числа z?
9. Что такое комплексно сопряженное число?
10. Что такое противоположное число?
11. Что такое комплексный ноль?
12. Что такое чисто мнимое число?
13. Сформулируйте смысл комплексного равенства.
14. В чём состоит геометрическое изображение комплексных чисел?
15. Что такое модуль и аргумент комплексного числа?
16. Что называется модулем комплексного числа?
17. Что такое аргумент комплексного числа?
18. Какое название или смысл имеет формула?
19. Поясните смысл обозначений в этой формуле:
20. ⌂ .
21. Что такое алгебраическая и тригонометрическая формы комплексного числа?
22. Какое название или смысл имеет формула?
23. Поясните смысл обозначений в этой формуле:
24. ⌂ .
25. Что называется алгебраической формой комплексного числа?
26. Что называется тригонометрической формой комплексного числа?
27. Дайте определения и перечислите основные свойства арифметических действий над комплексными числами.
28. Какое название или смысл имеет формула?
29. Поясните смысл обозначений в этой формуле:
31. Какое название или смысл имеет формула?
32. Поясните смысл обозначений в этой формуле:
33. ⌂ .
34. Какое название или смысл имеет формула?
35. Поясните смысл обозначений в этой формуле:
36. ⌂ .
37. Что такое формула Муавра?
38. Какое название или смысл имеет формула?
39. Поясните смысл обозначений в этой формуле:
40. ⌂ .
41. Что называется корнем степени n из комплексного числа?
42. Какое название или смысл имеет формула?
43. Поясните смысл обозначений в этой формуле:
44. ⌂ .
45. Что называется показательной формой комплексного числа?
46. Какое название или смысл имеет формула?
47. Поясните смысл обозначений в этой формуле:
48. ⌂ .
49. Что такое формулы Эйлера?
50. Какое название или смысл имеет формула?
51. Поясните смысл обозначений в этой формуле:
52. ⌂ .
53. Что называется целой функцией?
54. Что называется алгебраическим многочленом?
55. Что называется полиномом?
56. Что такое степень многочлена?
57. Что такое коэффициенты многочлена?
58. Что называется алгебраическим уравнением n-й степени?
59. Что называется нулем функции?
60. Что называется корнем уравнения?
61. Перечислите основные свойства многочленов.
62. Сформулируйте свойство о тождественном равенстве многочленов.
63. Сформулируйте свойство о делении многочлена на разность (x – х0).
64. Сформулируйте теорему теорема Безу.
65. Какое название или смысл имеет формула?
66. Поясните смысл обозначений в этой формуле:
67. ⌂ .
68. Сформулируйте свойство о существовании нуля многочлена.
69. Сформулируйте теорему теорема алгебры основная.
70. Какое название или смысл имеет формула?
71. Поясните смысл обозначений в этой формуле:
72. ⌂ .
73. Что называется k-кратным нулем многочлена?
74. Что называется простым нулем многочлена?
75. Сформулируйте свойство о количестве корней алгебраического уравнения.
76. Сформулируйте свойство о комплексных корнях алгебраического уравнения
77. с действительными коэффициентами.
78. Сформулируйте свойство о разложении многочлена с действительными коэффициентами на линейные и квадратичные множители.
79. Приведите примеры решения алгебраических уравнений на множестве комплексных чисел
k-кратным нулем многочлена называется. (стр. 18)
алгебраическим многочленом называется. (стр. 14)
алгебраическим уравнением n-й степени называется. (стр. 14)
алгебраической формой комплексного числа называется. (стр. 5)
аргумент комплексного числа это. (стр. 4)
действительная часть комплексного числа z это. (стр. 2)
комплексно сопряженное число это. (стр. 2)
комплексный ноль это. (стр. 2)
комплексным числом называется. (стр. 2)
корнем степени n из комплексного числа называется. (стр. 10)
корнем уравнения называется. (стр. 14)
коэффициенты многочлена это. (стр. 14)
мнимая единица это. (стр. 2)
мнимая часть комплексного числа z это. (стр. 2)
модулем комплексного числа называется. (стр. 4)
нулем функции называется. (стр. 14)
показательной формой комплексного числа называется. (стр. 11)
полиномом называется. (стр. 14)
простым нулем многочлена называется. (стр. 18)
противоположное число это. (стр. 2)
степень многочлена это. (стр. 14)
тригонометрической формой комплексного числа называется. (стр. 5)
Видео:Комплексные корни квадратных уравнений. 11 класс.Скачать
Комплексные числа и их приложение к решению уравнений третьей и четвертой степени (стр. 1 )
Из за большого объема этот материал размещен на нескольких страницах: 1 2 3 4 5 |
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
«ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ»
КОМПЛЕКСНЫЕ ЧИСЛА И ИХ
ПРИЛОЖЕНИЕ К РЕШЕНИЮ
И ЧЕТВЕРТОЙ СТЕПЕНИ
Учебное пособие для студентов
кандидат физико-математических наук, доцент
Комплексные числа и их приложение к решению уравнений 3-й и 4-й степени. Учебное пособие для студентов физико-математического факультета / сост.: – Воронежский госпедуниверситет, 2010. – 92 с.
Учебное пособие представляет собой курс лекций и практических занятий по теме «Комплексные числа». Пособие делится на четыре части: комплексные числа в алгебраической форме, геометрическая интерпретация комплексных чисел, комплексные числа в тригонометрической форме, приложение теории комплексных чисел к решению кубических уравнений и уравнений 4-й степени. В заключение приводится краткий исторический обзор формирования понятия комплексного числа и действий над комплексными числами.
Предназначено для студентов физико-математического факультета Воронежского госпедуниверситета.
Теория комплексных чисел является составной частью курса «Высшая алгебра» в педагогических вузах и предполагает глубокое знание ее основ, а также методов и приемов, применяемых при решении широкого класса задач как алгебраического, так и геометрического содержания. Будущие учителя должны грамотно и непринужденно оперировать с основными понятиями, действиями и интерпретациями комплексных чисел, поскольку азы теории комплексных чисел являются частью учебной программы по математике для профильных классов. Это объясняется тем, что, будучи непосредственным обобщением понятия действительного числа, комплексное число является завершающим элементом в стройной и строгой логической
конструкции понятия числа.
Алгебраическая природа комплексного числа состоит в том, что комплексное число есть элемент алгебраического расширения С поля действительных чисел R , получаемого присоединением к полю R корня i многочлена f(x) = x2 + 1 . Получающееся таким путем поле С называется полем комплексных чисел.
Наиболее важное свойство комплексных чисел состоит в том, что оно алгебраически замкнуто, т. е. любой многочлен с коэффициентами из С разлагается на линейные множители. Иначе это свойство алгебраической замкнутости выражается в том, что любой многочлен степени n ≥ 1 с коэффициентами из С имеет в поле комплексных чисел по крайней мере один корень (теорема Даламбера – Гаусса).
Изучение теории комплексных чисел выполняет следующие образовательные функции.
1) Расширение математического кругозора и повышение математической культуры учащихся.
Наличие у комплексных чисел более тесной, нежели у других числовых множеств, связи с геометрией (в частности, с векторным исчислением) представляет широкие возможности, с одной стороны, применения алгебраических методов к решению геометрических
задач (задачи на построение ГМТ), а с другой стороны, наглядных геометрических интерпретаций различных алгебраических операций (действий с комплексными числами в тригонометрической форме).
2) Логическое завершения развития понятия числа.
3) Выделение из множества всех алгебраических уравнении лишь тех, которые решаются в радикалах, т. е. для которых существуют формулы, выражающие корни уравнения через его коэффициенты.
Сюда относится решение уравнений 3-й степени (и сводящихся к ним уравнений 4-й степени), поскольку по теореме Абеля: «Ни для какого натурального числа нельзя указать формулу, которая выражала бы корни любого уравнения п-й степени через его коэффициенты при помощи радикалов».
В первой главе пособия сначала вводится понятие комплексного числа в алгебраической форме, определяются операции сложения, вычитания, умножения, деления, а также операция сопряжения для комплексных чисел в алгебраической форме; излагается правило извлечения квадратного корня из комплексного числа.
Во второй главе изучается геометрическая интерпретация комплексных чисел в виде точек или векторов комплексной плоскости.
В третьей главе рассмотрены действия над комплексными числами в тригонометрической форме.
Четвертая глава посвящена решению уравнений 3-й и 4-й степеней.
Завершает пособие краткая историческая справка о возникновении понятия комплексного числа.
Особенностью изложения материала является форма в виде лекционных и практических занятий. Эта форма выбрана для удобства использования представленного материала как преподавателями, так и студентами. В конце каждой из первых трех глав приведены примерные варианты контрольных работ.
Глава 1. КОМПЛЕКСНЫЕ ЧИСЛА В АЛГЕБРАИЧЕСКОЙ ФОРМЕ
Занятие 1. Введение понятия комплексного числа.
Сложение, вычитание, умножение и деление комплексных чисел. Степени мнимой единицы
Понятие числа прошло длинный исторический путь. В процессе развития математики числовая система расширялась не один раз. Уже на ранних этапах развития человечества в результате счета возникают натуральные числа. Постепенно складывается представление о бесконечности множества натуральных чисел и появляется понятие натурального ряда бесконечной последовательности чисел 1, 2, 3, 4, 5, . . Затем возникают дроби, нуль, отрицательные числа, необходимые для
решения линейных уравнений вида
Поскольку рациональных чисел было достаточно для того, чтобы с любой степенью точности выразить результат любого измерения, то долгое время считали, что результат измерения всегда выражается или натуральным числом, или отношением двух таких чисел, т. е. дробью.
Однако еще в школе Пифагора был обнаружен тот факт, что диагональ квадрата несоизмерима с его стороной и поэтому не может быть точно выражена рациональным числом. Это открытие привело в конце концов к тому, что в математику вошли иррациональные числа.
Рациональные числа вместе с иррациональными образуют множество действительных чисел, которое является расширением множества рациональных чисел, поскольку на нем также определены четыре арифметических действия: сложение, вычитание, умножение и деление (кроме деления на нуль).
Важное место в алгебре занимает решение алгебраических уравнений, т. е. уравнений вида
,
где а0, а1, . . . , аn — действительные числа. Однако оказалось, что для решения таких уравнений действительных чисел явно не достаточно. Например, действительных корней не имеет квадратное уравнение с отрицательным дискриминантом. Простейшим таким уравнением является уравнение
Для того чтобы это уравнение имело решение, необходимо расширить множество действительных чисел путем присоединения к нему корня уравнения
Обозначим этот корень через i. Таким образом, по определению
Символ i называется мнимой единицей. С его помощью и с помощью пары действительных чисел а и b составляется выражение вида
Полученные выражения назвали комплексными числами, поскольку они содержали как действительную, так и мнимую части (от французских слов rее1 – действительный и imaginaire – мнимый, воображаемый). Название комплексное переводится как составное — по виду выражения z = a+bi.
Итак, комплексными числами называются выражения вида
где а и b – действительные числа, а i – некоторый символ,
удовлетворяющий условию i= . Число а называется
действительной частью комплексного числа z=a+bi, а
число b его мнимой частью. Для их обозначения используются символы
Комплексные числа вида z=a+0∙i=а являются
действительными числами и, следовательно, множество комплексных чисел содержит в себе множество действительных чисел. Если потребовать, как мы сделаем это ниже, чтобы операции сложения и умножения комплексных чисел не выводили за пределы множества комплексных чисел и обладали всеми свойствами одноименных операций на множестве действительных чисел, то множество комплексных чисел будет расширением множества действительных чисел.
Комплексные числа вида z=0+bi называются чисто
мнимыми.
Два комплексных числа z1=a1+b1i и z2=a2+b2i
называются равными, если равны их действительные и мнимые части, т. е. если выполняются равенства
Определим операции сложения и умножения комплексных чисел.
Суммой двух комплексных чисел и называется комплексное число вида
.
Произведение двух комплексных чисел z1=a1+b1i и z2=a2+b2i можно найти, почленно умножая числа z1 и z2:
.
Таким образом, произведением двух комплексных чисел z1=a1+b1i и z2=a2+b2i называется комплексное число z1 ∙ z2 вида
.
Пример. Найдите сумму комплексных чисел z1= 2 + 3i и z2= –3 – i.
Пример. Найдите произведение комплексных чисел z1= 2 + 3i и z2= –1 – i .
Свойства операций сложения и умножения комплексных чисел
Каковы бы ни были комплексные числа , справедливы следующие равенства.
1. Коммутативный (переместительный) закон сложения:
.
2. Ассоциативный (сочетательный) закон сложения:
.
3. Коммутативный закон умножения:
.
4. Ассоциативный закон умножения:
.
5. Дистрибутивный (распределительный) закон умножения относительно сложения:
.
Проведем доказательство свойства 3 (остальные свойства доказываются аналогично).
Доказательство. Пусть , . Тогда поскольку а1 , b1 , a2 и b2 – действительные числа, для которых умножение коммутативно, получаем:
Кроме того, в множестве комплексных чисел есть «особые» элементы
0 = 0 + 0i и 1= l + 0i ,
которые обладают такими же свойствами, что и на множестве действительных чисел, а именно, для любого комплексного числа z = а + bi имеют место равенства:
8. Произведение двух комплексных чисел равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю.
Доказательство. Пусть , и . Тогда по определению равенства и произведения двух комплексных чисел получаем систему уравнений :
Умножив уравнение (1) на а2 , а уравнение (2) на b2 и сложив полученные уравнения, приходим к системе :
Возможны два случая.
Тогда из уравнения (1)* следует, что b1b2 = 0.
a) Если b1 = 0 , а b2 ≠ 0, то z1 = a1 + b1i = 0.
б) Если b2 = 0 , а b1 ≠ 0 то из уравнения (2) следует, что a2b1 = 0 , значит, а2 = 0 , т. е. z2 = a2 + b2i = 0.
в) Если b1 = b2 = 0 , то z1 = 0 .
Тогда из уравнения (2)* следует, что, a22 + b22 = 0 , т. е. а2 = b2 = 0 , значит, z2 = 0.
10. Любому комплексному числу z=а+bi соответствует противоположное комплексное число (–z) такое, что z + (–z) = 0 .
11. Всякому комплексному числу z=а+bi, отличному от нуля, соответствует обратное комплексное число z–1 такое, что z ∙ z–1 = 1 .
Доказательство. Условие z ≠ 0 равносильно условию а2 + b2 > 0 . Вычислим z–1.
.
Пользуясь понятиями противоположного и обратного комплексного числа, определим операции вычитания и деления комплексных чисел.
Для того чтобы найти разность двух комплексных чисел и , достаточно сложить число z1 с числом, противоположным числу z2 , т. е.
.
Пример. Вычислите z1 – z2 , если z1 = 5 – 2i ,
Для того чтобы разделить комплексное число на комплексное число , не равное нулю, достаточно умножить число z1 на число, обратное числу z2 , т. е.
Пример. Вычислите .
.
Видео:Комплексные корни квадратного уравненияСкачать
Степени мнимой единицы
Вычислим степени мнимой единицы i. Прежде всего, как и для действительных чисел, положим i0 = 1 . Тогда
i2 = –1 (по определению мнимой единицы);
Вообще, если натуральный показатель степени mпри делении на 4 дает в остатке r , т. е. если m = 4n+r , где n – натуральное число, то
;
Пример. Вычислите а) i233 ; b) i102; с) i67 ; d) i516.
Решение. а) i233 = i232 + 1 = i ;
Занятие 2. Операция сопряжения и ее свойства.
Видео:✓ Задача про комплексное число | Ботай со мной #101 | Борис ТрушинСкачать
Модуль комплексного числа.
Извлечение корня квадратного из комплексного числа
Комплексное число называется сопряженным комплексному числу, если
.
Пример. .
Видео:КОМПЛЕКСНЫЕ ЧИСЛА ДЛЯ ЧАЙНИКОВ ЗА 7 МИНУТСкачать
Свойства операции сопряжения
2. Для любого действительного числа а справедливо равенство .
3. Для любого действительного числа b справедливо равенство .
Справедливость свойств 1-3 следует непосредственно из определения операции сопряжения.
4. .
Доказательство. Пусть , . Тогда , . Поэтому
.
Доказательство. Пусть , . Тогда
С другой стороны,
.
Полученные одинаковые результаты доказывают справедливость свойства 5 .
Следствие из свойства 5. Для любого натурального числа n справедливо равенство
.
6. .
Справедливость данного равенства следует из равенства и свойства 5: .
7. Сумма и произведение двух комплексно сопряженных чисел являются действительными числами.
.
Модулем комплексного числа z = а + bi называется действительное число вида
.
Непосредственно из свойства 7 следует, что
.
8. Теорема о сопряженном корне.
Если число является корнем уравнения
(1)
с действительными коэффициентами а0, a1 , . . . , аn , то число также является корнем уравнения (1) .
Доказательство. По определению корня имеем :
;
(2)
Применим к обеим частям равенства (2) операцию сопряжения. Из свойств операции сопряжения следует, что
так как все коэффициенты ai — действительные числа (по условию). Кроме того,
; .
.
Последнее равенство означает, что число z = а – bi является корнем уравнения (1) .
Пример. Зная, что корнем уравнения
является число z1 = 2 + i , найти все корни данного уравнения.
Решение. Поскольку все коэффициенты уравнения (3) – действительные числа, то на основании теоремы 8 делаем вывод, что число z2 = 2 – i также является корнем уравнения (3).
Пусть z3 – неизвестный корень уравнения (3), тогда
Разделив обе части последнего равенства на х2 – 4х + 5 , получим
Следовательно, z3 = 3 .
Найдем значение корня квадратного из числа z=а+bi . Пусть
,
где х и у — неизвестные действительные числа. Возводя обе части этого равенства в квадрат, получаем:
.
Последнее уравнение равносильно системе уравнений
Возведем каждое уравнение системы в квадрат и сложим полученные равенства. Решим систему:
Из второго уравнения последней системы находим
,
где в правой части равенства следует иметь в виду арифметический корень, так как сумма х2+у2 неотрицательна. Учитывая, кроме того, что х2 – у2 = а , получаем:
.
Так как , то оба полученные числа положительны. Извлекая из них квадратные корни, получим действительные значения для х и у :
.
📸 Видео
комплЕксные ЧИСЛА решение примеров МАТЕМАТИКАСкачать
Комплексные числа в уравненияхСкачать
Формула Муавра ➜ Вычислить ➜ (5+5i)⁷Скачать
Решение квадратных уравнений на множестве комплексных чиселСкачать
Математика без Ху!ни. Комплексные числа, часть 4. Извлечение корня n-й степени.Скачать
Математика без Ху!ни. Комплексные числа, часть 3. Формы записи. Возведение в степень.Скачать
Решение квадратных уравнений в поле комплексных чиселСкачать
Математика без Ху!ни. Комплексные числа, часть 1. Введение.Скачать
Математика без Ху!ни. Комплексные числа, часть 2. Простейшие действия.Скачать
Матан за час. Шпаргалка для первокурсника. Высшая математикаСкачать
Изображение комплексных чисел. Модуль комплексного числа. 11 класс.Скачать
Математика это не ИсламСкачать
Комплексные числа: начало. Высшая математика или школа?Скачать
Тригонометрическая форма комплексного числаСкачать
Высшая математика. Комплексные числаСкачать