Решение уравнений методом гаусса видеоурок

Видео:Решение системы линейных уравнений методом ГауссаСкачать

Решение системы линейных уравнений методом Гаусса

Метод Гаусса для решения СЛАУ

В данной публикации мы рассмотрим, что такое метод Гаусса, зачем он нужен, и в чем заключается его принцип. Также мы на практическом примере продемонстрируем, как метод можно применить для решения системы линейных уравнений.

Видео:Математика без Ху!ни. Метод Гаусса.Скачать

Математика без Ху!ни. Метод Гаусса.

Описание метода Гаусса

Метод Гаусса – классический способ последовательного исключения переменных, применяемый для решения системы линейных уравнений. Назван так в честь немецкого математика Карла Фридриха Гаусса (1777 – 1885).

Но для начала напомним, что СЛАУ может:

  • иметь одно единственное решение;
  • иметь бесконечное множество решений;
  • быть несовместной, т.е. не иметь решений.

Практическая польза

Метод Гаусса – отличный способ решить СЛАУ, которая включает более трех линейных уравнений, а также систем, не являющихся квадратными.

Видео:Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

Принцип метода Гаусса

Метод включает следующие этапы:

    прямой – расширенная матрица, соответствующая системе уравнений, путем элементарных преобразований над строками приводится к верхнему треугольному (ступенчатому) виду, т.е. под главной диагональю должны находиться только элементы, равные нулю.

Видео:Метод Гаусса и метод Жордана-Гаусса ➜ 2 метода за 7 минутСкачать

Метод Гаусса и метод Жордана-Гаусса ➜ 2 метода за 7 минут

Пример решения СЛАУ

Давайте решим систему линейных уравнение ниже, воспользовавшись методом Гаусса.

Решение уравнений методом гаусса видеоурок

Решение

1. Для начала представим СЛАУ в виде расширенной матрицы.

Решение уравнений методом гаусса видеоурок

2. Теперь наша задача – это обнулить все элементы под главной диагональю. Дальнейшие действия зависят от конкретной матрицы, ниже мы опишем те, что применимы к нашему случаю. Сначала поменяем строки местами, таким образом расположив их первые элементы в порядке возрастания.

Решение уравнений методом гаусса видеоурок

3. Вычтем из второй строки удвоенную первую, а из третьей – утроенную первую.

Решение уравнений методом гаусса видеоурок

4. Прибавим к третьей строке вторую.

Решение уравнений методом гаусса видеоурок

5. Отнимем из первой строки вторую, и одновременно с этим действием разделим третью строку на -10.

Решение уравнений методом гаусса видеоурок

6. Первый этап завершен. Теперь нам нужно получить нулевые элементы над главной диагональю. Для этого из первой строки вычтем третью, умноженную на 7, а ко второй прибавим третью, умноженную на 5.

Решение уравнений методом гаусса видеоурок

7. Финальная расширенная матрица выглядит следующим образом:

Решение уравнений методом гаусса видеоурок

8. Ей соответствует система уравнений:

Решение уравнений методом гаусса видеоурок

Ответ: корни СЛАУ: x = 2, y = 3, z = 1.

Видео:Линейная алгебра, 9 урок, Метод ГауссаСкачать

Линейная алгебра, 9 урок, Метод Гаусса

Метод гаусса примеры с решением. Метод гаусса онлайн

Решение уравнений методом гаусса видеоурок

  • Решение уравнений методом гаусса видеоурокLive Journal
  • Решение уравнений методом гаусса видеоурокFacebook
  • Решение уравнений методом гаусса видеоурокTwitter

В нашем калькуляторе вы бесплатно найдете решение системы линейных уравнений методом Гаусса онлайн с подробным решением и даже с комплексными числами . У нас вы можете решить как обычную определенную, так и неопределенную систему уравнений, которая имеет бесконечное множество решений. В этом случае в ответе вы получите зависимость одних переменных через другие — свободные. Также можно проверить систему на совместность, используя все тот же метод Гаусса.

Подробнее о том, как пользоваться нашим онлайн калькулятором, вы можете прочитать в инструкции .

О методе

При решении системы линейных уравнений методом Гаусса выполняются следующие шаги.

  1. Записываем расширенную матрицу.
  2. Фактически алгоритм разделяют на прямой и обратный ход. Прямым ходом называется приведение матрицы к ступенчатому виду. Обратным ходом называется приведение матрицы к специальному ступенчатому виду. Но на практике удобнее сразу занулять то, что находится и сверху и снизу рассматриваемого элемента. Наш калькулятор использует именно этот подход.
  3. Важно отметить, что при решении методом Гаусса, наличие в матрице хотя бы одной нулевой строки с НЕнулевой правой частью (столбец свободных членов) говорит о несовместности системы. Решение в таком случае не существует.

Чтобы лучше всего понять принцип работы алгоритма, введите любой пример, выберите «очень подробное решение» и изучите полученный ответ.

Пусть задана система линейных алгебраических уравнений, которую необходимо решить (найти такие значения неизвестных хi, что обращают каждое уравнение системы в равенство).

Мы знаем, что система линейных алгебраических уравнений может:

1) Не иметь решений (бытьнесовместной ).
2) Иметь бесконечно много решений.
3) Иметь единственное решение.

Как мы помним,правило Крамера и матричный методнепригодны в тех случаях, когда система имеет бесконечно много решений или несовместна. Метод Гауссанаиболее мощный и универсальный инструмент для нахождения решения любой системы линейных уравнений , который в каждом случае приведет нас к ответу! Сам алгоритм метода во всех трёх случаях работает одинаково. Если в методах Крамера и матричном необходимы знания определителей, то для применения метода Гаусса необходимо знание только арифметических действий, что делает его доступным даже для школьников начальных классов.

Преобразования расширенной матрицы (это матрица системы — матрица, составленная только из коэффициентов при неизвестных, плюс столбец свободных членов) системы линейных алгебраических уравнений в методе Гаусса:

1) с троки матрицыможно переставлять местами.

2) если в матрице появились (или есть) пропорциональные (как частный случай – одинаковые) строки, то следуетудалить из матрицы все эти строки кроме одной.

3) если в матрице в ходе преобразований появилась нулевая строка, то ее также следует удалить .

4) строку матрицы можноумножить (разделить) на любое число,отличное от нуля.

5) к строке матрицы можноприбавить другую строку, умноженную на число , отличное от нуля.

В методе Гаусса элементарные преобразования не меняют решение системы уравнений.

Метод Гаусса состоит из двух этапов:

  1. «Прямой ход» — с помощью элементарных преобразований привести расширенную матрицу системы линейных алгебраических уравнений к «треугольному» ступенчатому виду: элементы расширенной матрицы, расположенные ниже главной диагонали, равны нулю (ход «сверху-вниз»). Например, к такому виду:

Для этого выполним следующие действия:

1) Пусть мы рассматриваем первое уравнение системы линейных алгебраических уравнений и коэффициент при х 1 равен К. Второе, третье и т.д. уравнения преобразуем следующим образом: каждое уравнение (коэффициенты при неизвестных, включая свободные члены) делим на коэффициент при неизвестном х 1 , стоящий в каждом уравнении, и умножаем на К. После этого из второго уравнения (коэффициенты при неизвестных и свободные члены) вычитаем первое. Получаем при х 1 во втором уравнении коэффициент 0. Из третьего преобразованного уравнения вычитаем первое уравнение, так до тех пор, пока все уравнения, кроме первого, при неизвестном х 1 не будут иметь коэффициент 0.

2) Переходим к следующему уравнению. Пусть это будет второе уравнение и коэффициент при х 2 равен М. Со всеми «нижестоящими» уравнениями поступаем так, как описано выше. Таким образом, «под» неизвестной х 2 во всех уравнениях будут нули.

3) Переходим к следующему уравнению и так до тех пора, пока не останется одна последняя неизвестная и преобразованный свободный член.

  1. «Обратный ход» метода Гаусса – получение решения системы линейных алгебраических уравнений (ход «снизу-вверх»). Из последнего «нижнего» уравнения получаем одно первое решение – неизвестную х n . Для этого решаем элементарное уравнение А*х n = В. В примере, приведенном выше, х 3 = 4. Подставляем найденное значение в «верхнее» следующее уравнение и решаем его относительно следующей неизвестной. Например, х 2 – 4 = 1, т.е. х 2 = 5. И так до тех пор, пока не найдем все неизвестные.

Решим систему линейных уравнений методом Гаусса, как советуют некоторые авторы:

Решение уравнений методом гаусса видеоурок

Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

Решение уравнений методом гаусса видеоурок

Смотрим на левую верхнюю «ступеньку». Там у нас должна быть единица. Проблема состоит в том, что в первом столбце единиц нет вообще, поэтому перестановкой строк ничего не решить. В таких случаях единицу нужно организовать с помощью элементарного преобразования. Обычно это можно сделать несколькими способами. Поступим так:
1 шаг . К первой строке прибавляем вторую строку, умноженную на –1. То есть, мысленно умножили вторую строку на –1 и выполнили сложение первой и второй строки, при этом вторая строка у нас не изменилась.

Решение уравнений методом гаусса видеоурок

Теперь слева вверху «минус один», что нас вполне устроит. Кто хочет получить +1, может выполнить дополнительное действие: умножить первую строку на –1 (сменить у неё знак).

2 шаг . Ко второй строке прибавили первую строку, умноженную на 5. К третьей строке прибавили первую строку, умноженную на 3.

3 шаг . Первую строку умножили на –1, в принципе, это для красоты. У третьей строки также сменили знак и переставили её на второе место, таким образом, на второй «ступеньке у нас появилась нужная единица.

4 шаг . К третьей строке прибавили вторую строку, умноженную на 2.

5 шаг . Третью строку разделили на 3.

Признаком, который свидетельствует об ошибке в вычислениях (реже – об опечатке), является «плохая» нижняя строка. То есть, если бы у нас внизу получилось что-нибудь вроде (0 0 11 |23) , и, соответственно, 11x 3 = 23, x 3 = 23/11, то с большой долей вероятности можно утверждать, что допущена ошибка в ходе элементарных преобразований.

Выполняем обратный ход, в оформлении примеров часто не переписывают саму систему, а уравнения «берут прямо из приведенной матрицы». Обратный ход, напоминаю, работает «снизу вверх». В данном примере получился подарок:

x 3 = 1
x 2 = 3
x 1 + x 2 – x 3 = 1, следовательно x 1 + 3 – 1 = 1, x 1 = –1

Ответ 😡 1 = –1, x 2 = 3, x 3 = 1.

Решим эту же систему по предложенному алгоритму. Получаем

4 2 –1 1
5 3 –2 2
3 2 –3 0

Разделим второе уравнение на 5, а третье – на 3. Получим:

4 2 –1 1
1 0.6 –0.4 0.4
1 0.66 –1 0

Умножим второе и третье уравнения на 4, получим:

4 2 –1 1
4 2,4 –1.6 1.6
4 2.64 –4 0

Вычтем из второго и третьего уравнений первое уравнение, имеем:

4 2 –1 1
0 0.4 –0.6 0.6
0 0.64 –3 –1

Разделим третье уравнение на 0,64:

4 2 –1 1
0 0.4 –0.6 0.6
0 1 –4.6875 –1.5625

Умножим третье уравнение на 0,4

4 2 –1 1
0 0.4 –0.6 0.6
0 0.4 –1.875 –0.625

Вычтем из третьего уравнения второе, получим «ступенчатую» расширенную матрицу:

4 2 –1 1
0 0.4 –0.6 0.6
0 0 –1.275 –1.225

Таким образом, так как в процессе вычислений накапливалась погрешность, получаем х 3 = 0,96 или приблизительно 1.

х 2 = 3 и х 1 = –1.

Решая таким образом, Вы никогда не запутаетесь в вычислениях и не смотря на погрешности вычислений, получите результат.

Такой способ решения системы линейных алгебраических уравнений легко программируем и не учитывает специфические особенности коэффициентов при неизвестных, ведь на практике (в экономических и технических расчетах) приходиться иметь дело именно с нецелыми коэффициентами.

Желаю успехов! До встречи на занятиях! Репетитор .

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Сегодня разбираемся с методом Гаусса для решения систем линейных алгебраических уравнений. О том, что это за системы, можно почитать в предыдущей статье, посвященной решению тех же СЛАУ методом Крамера. Метод Гаусса не требует каких-то специфических знаний, нужна лишь внимательность и последовательность. Несмотря на то что с точки зрения математики для его применения хватит и школьной подготовки, у студентов освоение этого метода часто вызывает сложности. В этой статье попробуем свести их на нет!

Видео:Метод Жордана-Гаусса (метод прямоугольников). ВидеоурокСкачать

Метод Жордана-Гаусса (метод прямоугольников). Видеоурок

Метод Гаусса

Метод Гаусса – наиболее универсальный метод решения СЛАУ (за исключением ну уж очень больших систем). В отличие от рассмотренного ранее метода Крамера , он подходит не только для систем, имеющих единственное решение, но и для систем, у которых решений бесконечное множество. Здесь возможны три варианта.

  1. Система имеет единственное решение (определитель главной матрицы системы не равен нулю);
  2. Система имеет бесконечное множество решений;
  3. Решений нет, система несовместна.

Итак, у нас есть система (пусть у нее будет одно решение), и мы собираемся решать ее методом Гаусса. Как это работает?

Решение уравнений методом гаусса видеоурок

Метод Гаусса состоит из двух этапов – прямого и обратного.

Видео:Решение системы уравнений методом Гаусса 4x4Скачать

Решение системы уравнений методом Гаусса 4x4

Прямой ход метода Гаусса

Сначала запишем расширенную матрицу системы. Для этого в главную матрицу добавляем столбец свободных членов.

Решение уравнений методом гаусса видеоурок

Вся суть метода Гаусса заключается в том, чтобы путем элементарных преобразований привести данную матрицу к ступенчатому (или как еще говорят треугольному) виду. В таком виде под (или над) главной диагональю матрицы должны быть одни нули.

Решение уравнений методом гаусса видеоурок

Что можно делать:

  1. Можно переставлять строки матрицы местами;
  2. Если в матрице есть одинаковые (или пропорциональные) строки, можно удалить их все, кроме одной;
  3. Можно умножать или делить строку на любое число (кроме нуля);
  4. Нулевые строки удаляются;
  5. Можно прибавлять к строке строку, умноженную на число, отличное от нуля.

Видео:Линейная алгебра, Матрицы: Метод Гаусса. Высшая математикаСкачать

Линейная алгебра, Матрицы: Метод Гаусса. Высшая математика

Обратный ход метода Гаусса

После того как мы преобразуем систему таким образом, одна неизвестная Xn становится известна, и можно в обратном порядке найти все оставшиеся неизвестные, подставляя уже известные иксы в уравнения системы, вплоть до первого.

Когда интернет всегда под рукой, можно решить систему уравнений методом Гаусса онлайн . Достаточно лишь вбить в онлайн-калькулятор коэффициенты. Но согласитесь, гораздо приятнее осознавать, что пример решен не компьютерной программой, а Вашим собственным мозгом.

Видео:Метод Гаусса и метод Жордана-ГауссаСкачать

Метод Гаусса и метод Жордана-Гаусса

Пример решения системы уравнений методом Гаусс

А теперь — пример, чтобы все стало наглядно и понятно. Пусть дана система линейных уравнений, и нужно решить ее методом Гаусса:

Решение уравнений методом гаусса видеоурок

Сначала запишем расширенную матрицу:

Решение уравнений методом гаусса видеоурок

Теперь займемся преобразованиями. Помним, что нам нужно добиться треугольного вида матрицы. Умножим 1-ую строку на (3). Умножим 2-ую строку на (-1). Добавим 2-ую строку к 1-ой и получим:

Решение уравнений методом гаусса видеоурок

Затем умножим 3-ую строку на (-1). Добавим 3-ую строку к 2-ой:

Решение уравнений методом гаусса видеоурок

Умножим 1-ую строку на (6). Умножим 2-ую строку на (13). Добавим 2-ую строку к 1-ой:

Решение уравнений методом гаусса видеоурок

Вуаля — система приведена к соответствующему виду. Осталось найти неизвестные:

Решение уравнений методом гаусса видеоурок

Система в данном примере имеет единственное решение. Решение систем с бесконечным множеством решений мы рассмотрим в отдельной статье. Возможно, сначала Вы не будете знать, с чего начать преобразования матрицы, но после соответствующей практики набьете руку и будете щелкать СЛАУ методом Гаусса как орешки. А если Вы вдруг столкнетесь со СЛАУ, которая окажется слишком крепким орешком, обращайтесь к нашим авторам! Заказать недорого реферат вы можете, оставив заявку в Заочнике. Вместе мы решим любую задачу!

Две системы линейных уравнений называются равносильными, если множество всех их решений совпадает.

Элементарные преобразования системы уравнений — это:

  1. Вычеркивание из системы тривиальных уравнений, т.е. таких, у которых все коэффициенты равны нулю;
  2. Умножение любого уравнения на число, отличное от нуля;
  3. Прибавление к любому i -му уравнению любого j -то уравнения, умноженного на любое число.

Переменная x i называется свободной, если эта переменная не является разрешенной, а вся система уравнений — является разрешенной.

Теорема. Элементарные преобразования переводят систему уравнений в равносильную.

Смысл метода Гаусса заключается в том, чтобы преобразовать исходную систему уравнений и получить равносильную разрешенную или равносильную несовместную систему.

Итак, метод Гаусса состоит из следующих шагов:

  1. Рассмотрим первое уравнение. Выберем первый ненулевой коэффициент и разделим все уравнение на него. Получим уравнение, в которое некоторая переменная x i входит с коэффициентом 1;
  2. Вычтем это уравнение из всех остальных, умножая его на такие числа, чтобы коэффициенты при переменной x i в остальных уравнениях обнулились. Получим систему, разрешенную относительно переменной x i , и равносильную исходной;
  3. Если возникают тривиальные уравнения (редко, но бывает; например, 0 = 0), вычеркиваем их из системы. В результате уравнений становится на одно меньше;
  4. Повторяем предыдущие шаги не более n раз, где n — число уравнений в системе. Каждый раз выбираем для «обработки» новую переменную. Если возникают противоречивые уравнения (например, 0 = 8), система несовместна.

В результате через несколько шагов получим либо разрешенную систему (возможно, со свободными переменными), либо несовместную. Разрешенные системы распадаются на два случая:

  1. Число переменных равно числу уравнений. Значит, система определена;
  2. Число переменных больше числа уравнений. Собираем все свободные переменные справа — получаем формулы для разрешенных переменных. Эти формулы так и записываются в ответ.

Вот и все! Система линейных уравнений решена! Это довольно простой алгоритм, и для его освоения вам не обязательно обращаться к репетитору высшей по математике. Рассмотрим пример:

Задача. Решить систему уравнений:

Решение уравнений методом гаусса видеоурок

  1. Вычитаем первое уравнение из второго и третьего — получим разрешенную переменную x 1 ;
  2. Умножаем второе уравнение на (−1), а третье уравнение делим на (−3) — получим два уравнения, в которых переменная x 2 входит с коэффициентом 1;
  3. Прибавляем второе уравнение к первому, а из третьего — вычитаем. Получим разрешенную переменную x 2 ;
  4. Наконец, вычитаем третье уравнение из первого — получаем разрешенную переменную x 3 ;
  5. Получили разрешенную систему, записываем ответ.

Общее решение совместной системы линейных уравнений — это новая система, равносильная исходной, в которой все разрешенные переменные выражены через свободные.

Когда может понадобиться общее решение? Если приходится делать меньше шагов, чем k (k — это сколько всего уравнений). Однако причин, по которым процесс заканчивается на некотором шаге l

Видео:Метод Гаусса решения систем линейных уравненийСкачать

Метод Гаусса решения систем линейных уравнений

Метод Жордана — Гаусса

Этот метод заключается в следующем: расширенную матрицу системы путем элементарных преобразований нужно привести к ступенчатому виду.

К элементарным преобразованиям относятся следующий перечень действий:

    • Умножение (деление) любой строки на констанут, отличную от нуля.
    • Сложение (вычитание) любой строки к любой другой строки системы.

Видео:Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.Скачать

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.

Решение методом Жордана Гаусса

Рассмотрим данный метод на примере:

Решение уравнений методом гаусса видеоурок

Видео:Система линейных уравнений. Общее решение. Метод ГауссаСкачать

Система линейных уравнений.  Общее решение. Метод Гаусса

Видеоурок на тему метод Гаусса

🔥 Видео

метод Гаусса СИСТЕМА ЛИНЕЙНЫХ УРАВНЕНИЙ решение СЛАУСкачать

метод Гаусса СИСТЕМА ЛИНЕЙНЫХ УРАВНЕНИЙ решение СЛАУ

решение системы уравнений методом ГауссаСкачать

решение системы уравнений методом Гаусса

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

Метод Гаусса Пример РешенияСкачать

Метод Гаусса Пример Решения

12. Решение систем линейных уравнений методом ГауссаСкачать

12. Решение систем линейных уравнений методом Гаусса

Как решить систему уравнений методом Гаусса? Просто с лидеромСкачать

Как решить систему уравнений методом Гаусса? Просто с лидером

12. Метод Гаусса решения систем линейных уравнений. Часть 1.Скачать

12. Метод Гаусса решения систем линейных уравнений. Часть 1.

Решение системы уравнений методом Гаусса. Бесконечное множество решенийСкачать

Решение системы уравнений методом Гаусса. Бесконечное множество решений
Поделиться или сохранить к себе: