Решение тригонометрических уравнений по графику

Содержание
  1. Решение тригонометрических уравнений графически
  2. Тригонометрические функции с примерами решения и образцами выполнения
  3. Область определения и множество значений тригонометрических функций
  4. Четность, нечетность, периодичность тригонометрических функций
  5. Функция у = cos x, ее свойства и график
  6. Функция y=sin x, ее свойства и график
  7. Функция y=tg x, ее свойства и график
  8. Углы и их измерение
  9. Вращательное движение и его свойства
  10. Определение тригонометрических функций
  11. Периодичность
  12. Знаки тригонометрических функций
  13. Четность
  14. Формулы приведения
  15. Значения тригонометрических функций
  16. Решение простейших тригонометрических уравнений
  17. Исследование тригонометрических функций
  18. Основные свойства синуса и косинуса
  19. Графики синуса и косинуса
  20. Исследование тангенса и котангенса
  21. Производные тригонометрических функций
  22. Приближенные формулы
  23. Тождественные преобразования
  24. Формулы сложения
  25. Формулы удвоения
  26. Тригонометрические функции половинного угла
  27. Преобразование суммы тригонометрических функций в произведение и обратные преобразования
  28. Тригонометрические уравнения
  29. Арксинус
  30. Арккосинус
  31. Арктангенс
  32. Решение тригонометрических уравнений
  33. Гармонические колебания
  34. Периодические функции
  35. Разложение на гармоники
  36. Тригонометрические и обратные тригонометрические функции
  37. 🎥 Видео

Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Решение тригонометрических уравнений графически

Уравнения, с которыми приходится сталкиваться при решении практических задач, как правило, значительно отличаются от тех, которые мы рассматривали. Для таких уравнений иногда вообще нельзя указать никакого способа, который позволял бы найти корни абсолютно точно. В таком случае приходится ограничиваться нахождением лишь приближенных значений корней. Современная математика располагает эффективными методами приближенного решения уравнений. Рассмотрим графический способ решения.

Пусть, например, нужно решить уравнение

На одном и том же рисунке начертим два графика: график функции y = sin х и график функции у = 1 — х

Решение тригонометрических уравнений по графику

Эти графики пересекаются в одной точке М. Абсцисса этой точки и дает нам единственный корень нашего уравнения:

Для уточнения полученного результата полезно использовать тригонометрические таблицы или компьютерные программы. При х = 0,5

следовательно, sin х 1 — х. Но тогда, как легко понять из того же рисунка, искомый корень x0 должен быть меньше, чем 0,6. Теперь уже мы знаем, что x0 находится в интервале [0,5; 0,6]. Поэтому с точностью до 0,1

С помощью таблиц можно найти приближенное значение x0 и с точностью до 0,01. Разделим интервал [0,5; 0,6] пополам. В средней точке (x = 0,55) этого интервала

Решение тригонометрических уравнений по графику

Графики функций у = tg x /2 и у = 2 — х пересекаются в бесконечном числе точек. Значит, данное уравнение имеет бесконечное множество корней. Найдем, например, наименьший положительный корень х0. Этот корень является абсциссой точки пересечения графиков. Примерно он равен 1,2.

Чтобы найти этот корень точнее, воспользуемся таблицами тангенсов В. М. Брадиса (или рассчитаем соответствующие значения в программе «Kалькулятор» или «Excel»). Выпишем значения функций у = tg x /2 и у = 2 — х в окрестности точки х = 1,2.

x1,21,3
y=tg x/20,68410,7602
y=2-x0,80000,7000
tg x/2-(2-x)-0,11590,0602

Как видно из этой таблицы, при переходе от значения х = 1,2 к значению х = 1,3 разность tg x /2 — (2 — х) меняет свой знак на противоположный (с — на +). Значит, в нуль эта разность обращается где-то между значениями 1,2 и 1,3. Следовательно, с точностью до 0,1 х0 ≈ 1,2 (с недостатком) или х0 ≈ 1,3 (с избытком). Используя таблицу тангенсов, можно найти и приближенное значение этого корня
с точностью до 0,01. Для этого рассмотрим значение х = 1,25, являющееся средним значением чисел 1,2 и 1,3. При х = 1,25

Видео:РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэСкачать

РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэ

РЕШЕНИЕ ПРОСТЕЙШИХ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ

Простейшими тригонометрическими уравнениями называют уравнения

Чтобы рассуждения по нахождению корней этих уравнений были более наглядными, воспользуемся графиками соответствующих функций.

19.1. Уравнение cos x = a

Решение тригонометрических уравнений по графику

Объяснение и обоснование

  1. Корни уравненияcosx=a.

При |a| > 1 уравнение не имеет корней, поскольку |cos x| ≤ 1 для любого x (прямая y = a на рисунке из пункта 1 таблицы 1 при a > 1 или при a 1 уравнение не имеет корней, поскольку |sin x| ≤ 1 для любого x (прямая y = a на рисунке 1 при a > 1 или при a n arcsin a + 2πn, n Z (3)

2.Частые случаи решения уравнения sin x = a.

Решение тригонометрических уравнений по графику

Полезно помнить специальные записи корней уравнения при a = 0, a = -1, a = 1, которые можно легко получить, используя как ориентир единичную окружность (рис 2).

Учитывая, что синус равен ординате соответствующей точки единичной окружности, получаем, что sin x = 0 тогда и только тогда, когда соответствующей точкой единичной окружности является точка C или тока D. Тогда

Решение тригонометрических уравнений по графику

Аналогично sin x = 1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка A, следовательно,

Решение тригонометрических уравнений по графику

Также sin x = -1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка B, таким образом,

Решение тригонометрических уравнений по графику

Примеры решения задач

Решение тригонометрических уравнений по графику

Замечание. Ответ к задаче 1 часто записывают в виде:

Решение тригонометрических уравнений по графику

Решение тригонометрических уравнений по графику

Решение тригонометрических уравнений по графику

19.3. Уравнения tg x = a и ctg x = a

Решение тригонометрических уравнений по графику

Объяснение и обоснование

1.Корни уравнений tg x = a и ctg x = a

Рассмотрим уравнение tg x = a. На промежутке Решение тригонометрических уравнений по графикуфункция y = tg x возрастает (от -∞ до +∞). Но возрастающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение tg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арктангенса равен: x1 = arctg a и для этого корня tg x = a.

Функция y = tg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n Z). Получаем следующую формулу корней уравнения tg x = a:

Решение тригонометрических уравнений по графику

При a=0 arctg 0 = 0, таким образом, уравнение tg x = 0 имеет корни x = πn (n Z).

Рассмотрим уравнение ctg x = a. На промежутке (0; π) функция y = ctg x убывает (от +∞ до -∞). Но убывающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение ctg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арккотангенса равен: x1=arсctg a.

Функция y = ctg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n Z). Получаем следующую формулу корней уравнения ctg x = a:

Решение тригонометрических уравнений по графику

Решение тригонометрических уравнений по графику

таким образом, уравнение ctg x = 0 имеет корни

Решение тригонометрических уравнений по графику

Примеры решения задач

Решение тригонометрических уравнений по графику

Решение тригонометрических уравнений по графику

Решение тригонометрических уравнений по графику

Решение тригонометрических уравнений по графику

Вопросы для контроля

  1. Какие уравнения называют простейшими тригонометрическими?
  2. Запишите формулы решения простейших тригонометрических уравнений. В каких случаях нельзя найти корни простейшего тригонометрического уравнения по этим формулам?
  3. Выведите формулы решения простейших тригонометрических уравнений.
  4. Обоснуйте формулы решения простейших тригонометрических уравнений для частных случаев.

Упражнения

Решите уравнение (1-11)

Решение тригонометрических уравнений по графику

Решение тригонометрических уравнений по графику

Найдите корни уравнения на заданном промежутке (12-13)

Видео:Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.Скачать

Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.

Тригонометрические функции с примерами решения и образцами выполнения

Тригонометрические функции — служат прежде всего для описания разнообразных периодических процессов. С периодически повторяющимися ситуациями человек сталкивается повсюду. Его жизнь сопровождают различные астрономические явления — восход и заход Солнца, изменение фаз Луны, чередование времен года, положение звезд на небе, затмения и движения планет. Человек давно заметил, что все эти явления возобновляются периодически. Жизнь на Земле тесно связана с ними, и поэтому неудивительно, что астрономические наблюдения явились источником многих математических открытий.

Биение сердца, цикл в жизнедеятельности организма, вращение колеса, морские приливы и отливы, заполненность городского транспорта, эпидемии гриппа — в этих многообразных примерах можно найти общее: эти процессы периодичны.

Открывая утром газету, мы часто читаем сообщение об очередном запуске искусственного спутника Земли. Обычно в сообщении указываются наименьшее и наибольшее расстояния спутника от поверхности Земли и период его обращения. Если сказано, что период обращения спутника составляет 92 мин, то мы понимаем, что его положение относительно Земли в какой-то момент времени и через каждые 92 мин с этого момента будет одинаковым. Так мы приходим к понятию периодической функции как функции, обладающей периодом, т. е. таким числом Т, что значения функции при значениях аргумента, отличающихся на Т, 2Т, ЗТ и т. д., будут одинаковыми.

Астрономия, которая дает нам наиболее наглядное представление о периодических процессах, определяет положение объектов в небесной сфере с помощью углов. Можно сказать так: в качестве аргумента периодических функций очень часто выступает угол. Поэтому в нашей беседе мы обсудим вопрос об измерении углов.

Решение тригонометрических уравнений по графику

Видео:Построение графиков тригонометрических функций с помощью преобразований. Практ. часть. 10 класс.Скачать

Построение графиков тригонометрических функций с помощью преобразований. Практ. часть. 10 класс.

Область определения и множество значений тригонометрических функций

Вы знаете, что каждому действительному числу х соответ­ствует единственная точка единичной окружности, получаемая
поворотом точки (1; 0) на угол х радиан. Для этого угла
опре­делены sin х и cos х. Тем самым каждому действительному чис­лу х поставлены в соответствие числа sin х и cos х, т. е. на мно­жестве R всех действительных чисел определены функции

y = sin x и у = cos x.

Таким образом, областью определения функций y = sin x и
у = cos x является множество R всех действительных чисел.
Чтобы найти множество значений функции y = sin х, нужно
вы­яснить, какие значения может принимать у при различных зна­чениях х, т. е. установить, для каких значений у есть такие зна­чения х, при которых sin x = y. Известно, что уравнение
sin x = a имеет корни, если Решение тригонометрических уравнений по графику, и не имеет корней, если
|а |> 1 .

Томсон Уильям, лорд Кельвин (1824— 1907) — английский физик, прези­дент Лондонского королевского общества. Дал одну из формулировок второго начала термодинамики, предложил абсолютную шкалу температур (шкалу Кельвина).

Следовательно, множеством значений функции у = sin x
является отрезок Решение тригонометрических уравнений по графику

Аналогично множеством значений функции у = сos x также
является отрезок Решение тригонометрических уравнений по графику

Задача:

Найти область определения функции

Решение тригонометрических уравнений по графику

Найдем значения х, при которых выражение — Решение тригонометрических уравнений по графику
не имеет смысла, т. е. значения х, при которых знаменатель равен
нулю. Решая уравнение sin x + cos х = 0, находим tg x = — 1, Решение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графику
Следовательно, областью определения дан­ной функции являются все значения Решение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графику

Задача:

Найти множество значений функции y = 3 + sin х cos х.

Нужно выяснить, какие значения может принимать у при
различных значениях х, т. е. установить, для каких значений а
уравнение 3 + sin х cos х = а имеет корни. Применяя формулу
синуса двойного угла, запишем уравнение так: Решение тригонометрических уравнений по графику

откуда sin2x = 2a — 6. Это уравнение имеет корни, если
|2а — 6| = 1, т. е. если Решение тригонометрических уравнений по графику, откуда Решение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графику

Следовательно, множеством значений данной функции яв­ляется промежуток Решение тригонометрических уравнений по графику

Функция y = tg x определяется формулой Решение тригонометрических уравнений по графику

Эта функция определена при тех значениях х, для которых Решение тригонометрических уравнений по графику
Известно, что cos x = 0 при Решение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графику

Следовательно, областью определения функции y = tg х яв­ляется множество чисел Решение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графику

Так как уравнение tg x = a имеет корни при любом
дейст­вительном значении а, то множеством значений функции
y = tg х является множество R всех действительных чисел.

Функции y = sin x, у = cos x, y = tg x называются
тригономет­рическими функциями.

Задача:

Найти область определения функции y = sin Зх + tg 2х.

Нужно выяснить, при каких значениях х выражение
sin 3x + tg 2х имеет смысл. Выражение sin Зх имеет смысл при
любом значении х, а выражение tg 2х — при Решение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графикут. е. при Решение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графику

Следовательно, областью опреде­ления данной функции является множество действительных чисел Решение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графику

Задача:

Найти множество значений функции
у = 3 sin x + 4 cos х.

Выясним, при каких значениях а уравнение 3 sin x + 4 cos x = a имеет корни. Поделим уравнение на Решение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графику

Так как Решение тригонометрических уравнений по графикуто очевидно найдется такой угол Решение тригонометрических уравнений по графикупервой четверти Решение тригонометрических уравнений по графику, что Решение тригонометрических уравнений по графику(этот угол Решение тригонометрических уравнений по графику)

Тогда Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графикуоткуда Решение тригонометрических уравнений по графику
так как Решение тригонометрических уравнений по графику. Уравнение примет вид Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графикут. e. Решение тригонометрических уравнений по графикуЭто уравнение имеет корни, если Решение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графику

Ответ. Решение тригонометрических уравнений по графику

Четность, нечетность, периодичность тригонометрических функций

Вы знаете, что для любого значения х верны равенства
sin ( — x ) = — sin x, cos ( — x) = — cos x.

Следовательно, y = sin х — нечетная функция, а у = cos х —
четная функция. Так как для любого значения х из области
определения функции y — tg x верно равенство tg (— х)= — tg х,
то y = tg хнечетная функция.

Задача:

Выяснить, является ли функция

Решение тригонометрических уравнений по графику

четной или нечетной.

Используя формулу приведения, запишем данную функцию
так: Решение тригонометрических уравнений по графику

Имеем Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графику, т. е. данная функция является четной. ▲

Известно, что для любого значения х верны равенства

Решение тригонометрических уравнений по графику

Из этих равенств следует, что значения синуса и косинуса
периодически повторяются при изменении аргумента на Решение тригонометрических уравнений по графику
Та­кие функции называются периодическими с периодом Решение тригонометрических уравнений по графику

Функция f (x) называется периодической, если существует такое число Решение тригонометрических уравнений по графикучто для любого х из области определения этой функции выполняется равенство f (х — T) = f (x) = f( x+ T ).

Число 7 называется периодом функции f (х).

Из этого определения следует, что если х принадлежит об­ласти определения функции f (х), то числа х + T , х — Т и вообще
числа х + Tn , Решение тригонометрических уравнений по графикутакже принадлежат области определения
этой периодической функции и f (х + Tn ) = f (х), Решение тригонометрических уравнений по графику

Покажем, что число Решение тригонометрических уравнений по графикуявляется наименьшим положи­тельным периодом функции у = cos х.
Пусть T > 0 — период косинуса, т. е. для любого х выпол­няется равенство cos (х + T) = cos х. Положив х = 0, получим
cos T = 1 . Отсюда Решение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графику

Так как T > 0 , то T может при­нимать значения Решение тригонометрических уравнений по графику… и поэтому период не может быть меньше Решение тригонометрических уравнений по графику

Можно доказать, что наименьший положительный период функции у = sin х также равен Решение тригонометрических уравнений по графику

Задача:

Доказать, что f (x) = sin 3 x — периодическая
функция с периодом Решение тригонометрических уравнений по графику

Если функция f (х) определена на всей числовой оси, то для
того, чтобы убедиться в том, что она является периодической
с периодом T, достаточно показать, что для любого х верно
ра­венство f (х + T ) = f (х). Данная функция определена для всех Решение тригонометрических уравнений по графикуи

Решение тригонометрических уравнений по графику

Покажем, что функция tg х является периодической с пери­одом Решение тригонометрических уравнений по графику

Если х принадлежит области определения этой функ­ции, т. е. Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графикуто по формулам приведения полу­чаем:

Решение тригонометрических уравнений по графику

Решение тригонометрических уравнений по графику

Следовательно, Решение тригонометрических уравнений по графику— период функции tg х.

Покажем, что Решение тригонометрических уравнений по графику— наименьший положительный период функции tg х.

Пусть T — период тангенса, тогда tg ( x + T ) = tg x , откуда
при х = 0 получаем:

Решение тригонометрических уравнений по графику

Так как наименьшее целое положительное k равно 1, то Решение тригонометрических уравнений по графику
наименьший положительный период функции tg х.

Решение тригонометрических уравнений по графику

Задача:

Доказать, что Решение тригонометрических уравнений по графикупериодическая функция
с периодом Решение тригонометрических уравнений по графику

Так как Решение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графикуто Решение тригонометрических уравнений по графику— периодическая функция с периодом Решение тригонометрических уравнений по графику

Периодическими функциями описываются многие физические
процессы (колебания маятника, вращение планет, переменный
ток и т. д.).
На рисунке 34 изображены графики некоторых периодичес­ких функций.
Отметим, что на всех последовательных отрезках числовой
прямой, длина которых равна периоду, график периодической
функции имеет один и тот же вид.

Функция у = cos x, ее свойства и график

Напомним, что функция у = cos х определена на всей число­вой прямой и множеством ее значений является отрезок [— 1; 1].
Следовательно, график этой функции расположен в полосе между прямыми у = — 1 и у = 1.
Так как функция у = cos х периодическая с периодом Решение тригонометрических уравнений по графику, то
достаточно построить ее график на каком-нибудь промежутке длиной Решение тригонометрических уравнений по графику, например на отрезке Решение тригонометрических уравнений по графикутогда на
проме­жутках, получаемых сдвигами выбранного отрезка на Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графикуграфик будет таким же.

Функция у = cos х является четной. Поэтому ее график симмет­ричен относительно оси Оу. Для построения графика на отрезке Решение тригонометрических уравнений по графикудостаточно построить его для Решение тригонометрических уравнений по графикуа затем сим­метрично отразить относительно оси Оу.

Прежде чем перейти к построению графика, покажем, что
функция у = cos х убывает на отрезке Решение тригонометрических уравнений по графику

В самом деле, при повороте точки Р (1; 0) вокруг начала ко­ординат против часовой стрелки на угол от 0 до Решение тригонометрических уравнений по графикуабсцисса точки,
т. е. cos х, уменьшается от 1 до — 1. Поэтому если Решение тригонометрических уравнений по графикуто Решение тригонометрических уравнений по графику(рис. 35). Это и означает, что функция у = cos х убывает на отрезке Решение тригонометрических уравнений по графику.

Используя свойство убывания функции y = cos x на отрезке Решение тригонометрических уравнений по графикуи найдя несколько точек, принадлежащих графику,
построим его на этом отрезке (рис. 36).
Пользуясь свойством четности функции у = cos х, отразим
по­строенный на отрезке Решение тригонометрических уравнений по графикуграфик симметрично относительно оси Оу, получим график этой функции на отрезке Решение тригонометрических уравнений по графику(рис. 37).

Так как у = cos х — периодическая функция с периодом Решение тригонометрических уравнений по графику
и ее график построен на отрезке Решение тригонометрических уравнений по графикудлиной, равной периоду, распространим его по всей числовой прямой с помощью сдвигов на Решение тригонометрических уравнений по графикуи т. д. вправо, на Решение тригонометрических уравнений по графикуи т. д. влево, т. е. вообще на Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику(рис. 38).

Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику

Итак, график функции у = cos x: построен геометрически на
всей числовой прямой, начиная с построения его части на отрезке
Решение тригонометрических уравнений по графику. Поэтому свойства функции у = cos х можно получить,
опи­раясь на свойства этой функции на отрезке Решение тригонометрических уравнений по графику. Например, функ­ция y = cosx возрастает на отрезке Решение тригонометрических уравнений по графикутак как она убы­вает на отрезке Решение тригонометрических уравнений по графикуи является четной.

Перечислим основные свойства функции у = cos х;
1) Область определения — множество R всех действительных
чисел.
2) Множество значений — отрезок [— 1; 1].
3) Функция у = cos х периодическая с периодом Решение тригонометрических уравнений по графику.
4) Функция у = cos х четная.
5) Функция у = cos х принимает:
значение, равное 0, при Решение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графику
наибольшее значение, равное 1, при Решение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графику
наименьшее значение, равное — 1, при Решение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графику
положительные значения на интервале Решение тригонометрических уравнений по графикуи на
интервалах, получаемых сдвигами этого интервала на Решение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графику…;
отрицательные значения на интервале Решение тригонометрических уравнений по графикуи на
ин­тервалах, получаемых сдвигами этого интервала на Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику…;
6) Функция у = cos х:
возрастает на отрезке Решение тригонометрических уравнений по графикуи на отрезках, получаемых
сдвигами этого отрезка на Решение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графику, … ;
убывает на отрезке Решение тригонометрических уравнений по графикуи на отрезках, получаемых
сдвигами этого отрезка на Решение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графику, … .

Задача:

Найти все корни уравнения Решение тригонометрических уравнений по графику

при­надлежащие отрезку Решение тригонометрических уравнений по графику

Построим графики функций у = сos х и Решение тригонометрических уравнений по графику— на данном
отрезке (рис. 39). Эти графики пересекаются в трех точках,
аб­сциссы которых Решение тригонометрических уравнений по графикуявляются корнями уравнения Решение тригонометрических уравнений по графику

Решение тригонометрических уравнений по графику

На отрезке Решение тригонометрических уравнений по графикукорнем уравнения Решение тригонометрических уравнений по графикуявляется число Решение тригонометрических уравнений по графику. Из рисунка видно, что точки Решение тригонометрических уравнений по графикуи Решение тригонометрических уравнений по графикусимметричны относительно оси Оу, т. е. Решение тригонометрических уравнений по графикуа
Решение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графику.

Ответ. Решение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графику

Задача:

Найти все решения неравенства Решение тригонометрических уравнений по графикупринадлежащие отрезку Решение тригонометрических уравнений по графику

Из рисунка 39 видно, что график функции у = cos x лежит
выше графика функции Решение тригонометрических уравнений по графикуна промежутках Решение тригонометрических уравнений по графикуи Решение тригонометрических уравнений по графику

Ответ. Решение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графику

Функция y=sin x, ее свойства и график

Функция y = sin x определена на всей числовой прямой, яв­ляется нечетной и периодической с периодом Решение тригонометрических уравнений по графику. Ее график можно
построить таким же способом, как и график функции у = cos x,
начиная с построения, например, на отрезке Решение тригонометрических уравнений по графику. Однако проще воспользоваться следующей формулой:

Решение тригонометрических уравнений по графику

Эта формула показывает, что график функции у = sin х можно
получить сдвигом графика функции у = соs х вдоль оси абсцисс
вправо на Решение тригонометрических уравнений по графику(рис. 40).

График функции у = sin х изображен на рисунке 41.
Кривая, являющаяся графиком функции у = sin х, называется
синусоидой.

Так как график функции у = sin х получается сдвигом гра­фика функции у = соs х, то свойства функции у = sin х можно по­лучить из свойств функции у = соs x.

Перечислим основные свойства функции у = sin х :
1) Область определения — множество Я всех действитель­ных чисел.
2) Множество значений — отрезок [— 1; 1].
3) Функция у = sin x периодическая с периодом Решение тригонометрических уравнений по графику.
4) Функция у = sin х нечетная.

Решение тригонометрических уравнений по графику

5) Функция y = sin x принимает:
значение, равное 0 , при Решение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графику
наибольшее значение, равное 1, при Решение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графику
наименьшее значение, равное — 1, при Решение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графику
положительные значения на интервале Решение тригонометрических уравнений по графикуи на
интервалах, получаемых сдвигами этого интервала на Решение тригонометрических уравнений по графику, Решение тригонометрических уравнений по графику… ;
отрицательные значения на интервале Решение тригонометрических уравнений по графикуи на
интервалах, получаемых сдвигами этого интервала
на Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику, … .

6) Функция у = sin х:
— возрастает на отрезке Решение тригонометрических уравнений по графикуи на отрезках, по­лучаемых сдвигами этого отрезка на Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графикуи на отрезках, получае­мых сдвигами этого отрезка на Решение тригонометрических уравнений по графику, Решение тригонометрических уравнений по графику

Задача:

Найти все корни уравнения Решение тригонометрических уравнений по графику
принад­лежащие отрезку Решение тригонометрических уравнений по графику

Построим графики функций у = sin х и Решение тригонометрических уравнений по графику— на данном
отрезке (рис. 42). Эти графики пересекаются в двух точках,
абс­циссы которых являются корнями уравнения Решение тригонометрических уравнений по графику

На от­резке Решение тригонометрических уравнений по графикууравнение имеет корень Решение тригонометрических уравнений по графику

Второй корень Решение тригонометрических уравнений по графикутак как Решение тригонометрических уравнений по графику

Ответ . Решение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графику

Решение тригонометрических уравнений по графику

Задача:

Найти все решения неравенства Решение тригонометрических уравнений по графику
при­надлежащие отрезку Решение тригонометрических уравнений по графику

Из рисунка 42 видно, что график функции y = sin x лежит
ниже графика функции Решение тригонометрических уравнений по графикуна промежутках Решение тригонометрических уравнений по графикуи Решение тригонометрических уравнений по графику

Ответ. Решение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графику

Функция y=tg x, ее свойства и график

Напомним, что функция y = tg x определена при Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графикуявляется нечетной и периодической с периодом Решение тригонометрических уравнений по графику. Поэтому достаточно построить ее график на промежутке Решение тригонометрических уравнений по графику . Затем, отразив его симметрично относительно начала координат, полу­чить график на интервале Решение тригонометрических уравнений по графику.

Наконец, используя пе­риодичность, построить график функции
y = tgx на всей области определения.

Прежде чем строить график функции на промежутке Решение тригонометрических уравнений по графику,
покажем, что на этом промежутке функция y = tg x воз­растает.

Пусть Решение тригонометрических уравнений по графикуПокажем, что Решение тригонометрических уравнений по графикут. е. Решение тригонометрических уравнений по графику

По условию Решение тригонометрических уравнений по графикуоткуда по свойствам функции
у = sin х, имеем Решение тригонометрических уравнений по графикуа по свойствам функции
y = cos x имеем Решение тригонометрических уравнений по графикуоткуда Решение тригонометрических уравнений по графику

Перемножив неравенства Решение тригонометрических уравнений по графикуи Решение тригонометрических уравнений по графикуполучим Решение тригонометрических уравнений по графику

Используя свойство возрастания функции y = tg x на про­межутке Решение тригонометрических уравнений по графикуи найдя несколько точек, принадлежащих графику, построим его на этом промежутке (рис. 43).

Пользуясь свойством нечетности функции y = tg x, отразим
построенный на промежутке Решение тригонометрических уравнений по графикуграфик симметрично относи­тельно начала координат; получим график этой функции на интервале Решение тригонометрических уравнений по графику

Напомним, что при Решение тригонометрических уравнений по графикуфункция y = tg x не определена.
Если Решение тригонометрических уравнений по графикуи х приближается к Решение тригонометрических уравнений по графику, то sin х приближается к 1,
a cos х, оставаясь положительным, стремится к 0. При этом дробь Решение тригонометрических уравнений по графикунеограниченно возрастает, и поэтому график функции

Решение тригонометрических уравнений по графику

у = tg х приближается к вертикальной прямой Решение тригонометрических уравнений по графику. Анало­гично при отрицательных значениях х, больших Решение тригонометрических уравнений по графикуи приближающихся к Решение тригонометрических уравнений по графику, график функции y = tg x приближается к вер­тикальной прямой Решение тригонометрических уравнений по графику.

Перейдем к построению графика функции у = tg х на всей об­ласти определения. Функция y = tg х периодическая с периодом Решение тригонометрических уравнений по графику.
Следовательно, график этой функции получается из ее графика
на интервале Решение тригонометрических уравнений по графику(рис. 44) сдвигами вдоль оси абсцисс
на Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику(рис. 45).

Решение тригонометрических уравнений по графику

Итак, весь график функции у = tg х строится с помощью
гео­метрических преобразований его части, построенной на
проме­жутке Решение тригонометрических уравнений по графику.

Поэтому свойства функции y = tg x можно получить, опираясь
на свойства этой функции на промежутке Решение тригонометрических уравнений по графику. Например,
функция y = tg x возрастает на интервале Решение тригонометрических уравнений по графику, так как
эта функция возрастает на промежутке Решение тригонометрических уравнений по графикуи является
не­четной.

Перечислим основные свойства функции y = tg x:
1) Область определения — множество всех действительных
чисел Решение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графику

2) Множество значений — множество R всех действительных
чисел.
3) Функция у = tg х периодическая с периодом Решение тригонометрических уравнений по графику
4) Функция y = tg x нечетная.
5) Функция у = tg x принимает:
значение, равное 0, при Решение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графику
положительные значения на интервалах Решение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графикуотрицательные значения на интервалах Решение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графику
6) Функция у = tg х возрастает на интервалах

Решение тригонометрических уравнений по графику

Задача:

Найти все корни уравнения tg х = 2, принадлежащие отрезку Решение тригонометрических уравнений по графику

Построим графики функций y = tg х и у = 2 на данном от­резке (рис. 46, а) . Эти графики пересекаются в трех точках, абс­циссы которых Решение тригонометрических уравнений по графикуявляются корнями уравнения tg x = 2.
На интервале Решение тригонометрических уравнений по графикууравнение имеет корень Решение тригонометрических уравнений по графику
Так как функция у = tg х периодическая с периодом Решение тригонометрических уравнений по графику, то Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графику

Ответ. Решение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графику

Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику

Задача:

Найти все решения неравенства Решение тригонометрических уравнений по графику
принадлежащие отрезку Решение тригонометрических уравнений по графику

Из рисунка 46, а видно, что график функции y = tg х лежит
не выше прямой у = 2 на промежутках Решение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графику

и Решение тригонометрических уравнений по графику.

Ответ. Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графику

Задача:

Решить неравенство tg х > 1.
Построим графики функций y = tg x и у = 1 (рис. 46, б).
Рисунок показывает, что график функции y = tgx лежит выше
прямой у = 1 на промежутке Решение тригонометрических уравнений по графику, а также на промежутках,
полученных сдвигами его на и т. д.

Ответ. Решение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графику

Тригонометрические функции широко применяются в мате­матике, физике и технике. Например, многие процессы, такие, как колебание струны, колебание маятника, напряжение в цепи
переменного тока и т. д., описываются функцией, которая задает­ся формулой Решение тригонометрических уравнений по графикуТакие процессы называют
гар­моническими колебаниями, а описывающие их функции —
гар­мониками (от греческого harmonikos — соразмерный). График
функции Решение тригонометрических уравнений по графикуполучается из синусоиды y = sin x
сжатием или растяжением ее вдоль координатных осей и
сдви­гом вдоль оси Ох. Обычно гармоническое колебание является
функцией времени: Решение тригонометрических уравнений по графикугде А — амплитуда
коле­бания, Решение тригонометрических уравнений по графику— частота, Решение тригонометрических уравнений по графику— начальная фаза, Решение тригонометрических уравнений по графику— период колебания.

Видео:10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать

10 класс, 23 урок, Методы решения тригонометрических уравнений

Углы и их измерение

Геометрический угол — это часть плоскости, ограниченная двумя лучами, выходящими из одной точки, вершины угла. Чтобы сравнивать углы, удобно закрепить их вершины в одной точке и вращать стороны.

Как измеряют углы? В качестве единицы измерения геометрических углов принят градус Решение тригонометрических уравнений по графикучасть развернутого угла.

Конкретные углы удобно измерять в градусах с помощью транспортира. Многие оптические приборы также используют градусную меру угла. Углы, получающиеся при непрерывном вращении, удобно измерять не в градусах, а с помощью таких чисел, которые отражали бы сам процесс построения угла, т. е. вращение. На практике углы поворота зависят от времени, и поэтому удобно связать измерение углов со временем.

Представим себе, что зафиксирована не только вершина угла, но и один из образующих его лучей. Заставим второй луч вращаться вокруг вершины. Ясно, что получающиеся углы будут зависеть от скорости вращения и времени. Можно считать, что вращение происходит равномерно (с постоянной угловой скоростью). Тогда поворот будет определяться путем, который пройдет какая-либо фиксированная точка подвижного луча.

Если расстояние точки от вершины равно /?, то при вращении точка движется по окружности радиуса R. Отношение пройденного пути к радиусу R не зависит от радиуса и может быть взято за меру угла. Численно она равна пути, пройденному точкой по окружности единичного радиуса.

Итак, пусть угол получен вращением подвижного луча от некоторого начального положения. Его величина численно равна пути, который пройдет точка этого луча, находящаяся на единичном расстоянии от вершины.

Развернутый угол измеряется половиной длины единичной окружности. Это число обозначается буквой л. Число я было известно людям с глубокой древности и с довольно большой точностью. Первые десятичные знаки этого числа таковы:

π = 3,14159265358….

Угол величиной π часто используется как самостоятельная единица измерения углов — прямой угол равен Решение тригонометрических уравнений по графикуугол в равностороннем треугольнике равен Решение тригонометрических уравнений по графику.

Часто встречаются записи меры углов в виде Решение тригонометрических уравнений по графикуи т. д. Угол, мера которого равна числу 1, называют радианом. Он соответствует некоторому углу, чуть меньшему, чем Решение тригонометрических уравнений по графику, ведь Решение тригонометрических уравнений по графику≈ 1,047.

АННА ВОВК u715078663 ДЕЛАЕТ АЛГЕБРУ №2 (дополнительная)

Решение тригонометрических уравнений по графику

Гаусс Карл Фридрих

(1777—1855) — немецкий математик, астроном и физик. Еще студентом написал «Арифметические исследования», определившие развитие теории чисел до нашего времени. В 19 лет определил, какие правильные многоугольники можно построить циркулем и линейкой. Занимался геодезией и вычислительной астрономией. Создал теорию кривых поверхностей. Один из создателей неевклидовой геометрии.

Так как на практике приходится иметь дело как с градусной, так и с радианной мерой, то на микрокалькуляторе обычно есть рычажок, регулирующий способ измерения используемого в вычислениях угла. Фактически микрокалькулятор умеет переводить градусы в радианы и обратно.

Выведем формулы для этого перевода. Достаточно сравнить меры одного и того же угла, например прямого:

Решение тригонометрических уравнений по графику

Откуда Решение тригонометрических уравнений по графику

Обратно можно выразить единицу (т. е. один радиан) в градусной мере:

Решение тригонометрических уравнений по графику

В географии, астрономии и других прикладных науках используют доли градуса — минуту и секунду. Минута — это Решение тригонометрических уравнений по графикуградуса, а секунда — Решение тригонометрических уравнений по графикуминуты. Запишем соотношения между различными единицами измерения углов:

Решение тригонометрических уравнений по графику

Заметим еще, что обозначение градуса (минуты, секунды) нельзя пропускать в записи, а обозначение радиана опускают. С физической точки зрения угол — безразмерная величина, поэтому имеют смысл записи: а = 0,23, а = 3,14, а=0,01. Во всех этих записях подразумевается, что угол а измерен в радианах. Подведем некоторые итоги. Угол мы можем получить вращением подвижного луча. Радианная мера угла численно равна пути, который проходит точка этого луча, отстоящая от вершины на расстояние 1.

Движение точки по окружности во многом аналогично движению точки по прямой. Чтобы определить положение точки на прямой, недостаточно знать путь, пройденный ею от начальной точки, нужно указать еще направление движения. Обычно на прямой фиксируют положительное направление, а положение точки определяют одним числом, которое может быть не только положительным (как путь), но и отрицательным.

Аналогично поступают и с вращательным движением. В качестве положительного направления движения по окружности выбирается движение против часовой стрелки. Угол задают числом t (которое может принимать произвольное значение). Чтобы построить угол t, на единичной окружности от неподвижной точки откладывают путь, равный|t|, в направлении, определяемом знаком числа t. Таким образом, для произвольного числа t мы построили угол t, определяемый двумя лучами — неподвижным и тем, который проходит через построенную точку (рис. 84).

Решение тригонометрических уравнений по графику

При таком обобщении понятия угла постепенно отходят от его геометрического образа как части плоскости, лежащей между двумя лучами. Фактически слово «угол» становится для нас синонимом слова «число». Угол t (т. е. произвольное число t) может выступать у нас в качестве аргумента тригонометрических функций. Изображать угол t нам будет удобно не в виде пары лучей, а в виде точки единичной окружности. Для этого мы подробно рассмотрим вращательное движение.

Вращательное движение и его свойства

Представим себе маленький шарик, который равномерно вращается по единичной окружности в положительном направлении (т. е. против часовой стрелки). Будем считать, что в момент времени t = О шарик находился в положении А и что за время t = 1 он проходит по окружности расстояние, равное 1. Половину окружности шарик проходит за время, равное π, а всю окружность — за время 2 π.

Обозначим через Pt точку на окружности, в которой шарик находится в момент времени t. Для того чтобы найти на окружности точку Рt надо отложить от точки Р0—А по окружности дугу длиной |t| в положительном направлении, если t>0, и в отрицательном направлении (т. е. по часовой стрелке), если t Решение тригонометрических уравнений по графику

2. Пусть Решение тригонометрических уравнений по графику. Отложим от точки Р0 путь длиной Решение тригонометрических уравнений по графику

Заметим, что Решение тригонометрических уравнений по графикуПройдя путь длиной 2 π, мы опять попадаем в точку А. Пройдя оставшийся путь, мы попадаем в середину дуги АВ. Таким образом, точка Решение тригонометрических уравнений по графикусовпадает с точкой Решение тригонометрических уравнений по графику.

3. Найдем теперь точку Решение тригонометрических уравнений по графикуДля этого нам необходимо пройти в отрицательном направлении путь длиной Решение тригонометрических уравнений по графику

Таким образом, мы для каждого значения t можем построить точку Рt. На языке механики аргумент t — это время, на языке геометрии t — это угол.

Оси координат делят плоскость на четыре части. В зависимости от того, в какую часть плоскости попадает точка Рt, говорят о том, в какую четверть попадает угол t. При этом полезно помнить, что 1 радиан чуть меньше 60°, т. е. трети развернутого угла. Перечислим некоторые свойства вращательного движения.

Свойство 1. Для всякого целого числа k точка Рt совпадает с точкой Решение тригонометрических уравнений по графикуЭто свойство выражает периодичность вращательного движения: если моменты времени отличаются на число, кратное 2 π, то шарик в эти моменты времени занимает одно и то же положение.

Свойство 2. Если Решение тригонометрических уравнений по графику, то найдется такое целое число k, что

Решение тригонометрических уравнений по графику

Свойство 3. Для всякого значения t точки Рt и Рt+π диаметрально противоположны.

Свойство 4. Для всякого значения t точки Рt и Р_t симметричны друг другу относительно оси абсцисс.

Свойство 5. Для всякого значения t точки Рt и Р_t+π симметричны относительно оси ординат.

Свойство 6. Для всякого значения t точки Рt и Решение тригонометрических уравнений по графикусимметричны друг другу относительно биссектрисы первого и третьего координатных углов.

Решение тригонометрических уравнений по графику

Эти свойства легко объяснить с помощью рисунка 86. Сделаем лишь пояснение к свойству 6. Возьмем две точки Р0 и Решение тригонометрических уравнений по графику

Они симметричны друг другу относительно биссектрисы первого и третьего координатных углов. Чтобы построить точку Рt, надо от точки Р0 двигаться в одном каком-то направлении на расстояние |t|, а чтобы построить точку Решение тригонометрических уравнений по графику, надо на такое же

расстояние двигаться от точки Решение тригонометрических уравнений по графику, но в противоположном направлении. Ясно, что при этом точки Рt и Решение тригонометрических уравнений по графикупри всяком t будут

оставаться симметричными друг другу относительно указанной прямой.

Видео:ГРАФИЧЕСКИЙ СПОСОБ РЕШЕНИЯ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙСкачать

ГРАФИЧЕСКИЙ СПОСОБ РЕШЕНИЯ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ

Определение тригонометрических функций

Тригонометрические функции определяются с помощью координат вращающейся точки. Рассмотрим на координатной плоскости ху единичную окружность, т. е. окружность единичного радиуса с центром в начале координат. Обозначим через Ро точку единичной окружности с координатами (1; 0) (рис. 87). Точку Ро будем называть начальной точкой. Возьмем произвольное число t. Повернем начальную точку на угол t. Получим точку на единичной окружности, которую обозначим через Рt.

Определение. Синусом числа t называется ордината точки Pt, косинусом числа t называется абсцисса точки Pt, где Р, получается поворотом начальной точки единичной окружности на угол t.

Если обозначить координаты точки Р, через х и у, то мы получим x = cost y = sint или можно записать, что точка Рt имеет координаты (cos t; sin t).

Решение тригонометрических уравнений по графику

Так как координаты точки Р, (х; у), лежащей на единичной окружности, связаны соотношением х2 + у2 = 1, то sin t и cos t связаны соотношением

Решение тригонометрических уравнений по графику

которое называют основным тригонометрическим тождеством.

Определение. Тангенсом числа t называется отношение синуса числа t к его косинусу, т. е. по определению

Решение тригонометрических уравнений по графику

Котангенсом числа t называется отношение косинуса числа t к его синусу, т. е. по определению

Решение тригонометрических уравнений по графику

Тангенс числа t определен для тех значений t, для которых cos t ≠ 0. Котангенс числа t определен для тех значений t, для которых sin t ≠ 0.

Периодичность

Тригонометрические функции являются периодическими функциями.

Число 2π является периодом синуса и косинуса.

Доказательство. Необходимо доказать тождества

Решение тригонометрических уравнений по графику

Значения тригонометрических функций определяются с помощью координат вращающейся точки. Так как точки Pt и Рt+2π совпадают, то совпадают и их координаты, т. е. cos t = cos (t + 2π) и sin t = sin (t + 2π), что и требовалось доказать.

Решение тригонометрических уравнений по графику

Действительно, Решение тригонометрических уравнений по графикуАналогично доказывается и второе тождество. Это означает, что 2π является одним из периодов тангенса и котангенса.

Равенство sin (t + 2π) = sin t верно при всех значениях t. Подставляем в это равенство вместо t число t+2π, получаем цепочку равенств sin(t+ 2 π +2 π ) = sin (t + 2 π ) = sin t, т. е. равенство sin (t + 4 π ) = sin t также верно при всех значениях t. Аналогично, подставляя вместо t число t— 2 π , получим тождество sin (t —2 π ) = sin t. Можно сказать так, что раз 2 π является периодом синуса, то и 2-2 π , —2 π также являются его периодами. Получаем, что всякое число вида 2πk <k ∈ Z) является периодом синуса.

Число 2π выделяется тем, что это наименьший положительный период синуса. Аналогично 2π — наименьший положительный период косинуса. У тангенса и котангенса наименьшим положительным периодом будет число π. Эти утверждения мы докажем позже.

Знаки тригонометрических функций

Знаки тригонометрических функций определяются в зависимости от того, в какой четверти лежит рассматриваемый угол.
Синус числа t есть ордината точки Рt. Поэтому синус положителен в первой и второй четвертях и отрицателен в третьей и четвертой.
Косинус числа t как абсцисса точки Рt положителен в первой и четвертой четвертях и отрицателен во второй и третьей.

Решение тригонометрических уравнений по графику

Тангенс и котангенс являются отношением координат. Поэтому они положительны тогда, когда эти координаты имеют одинаковые
знаки (первая и третья четверти), и отрицательны, когда разные (вторая и четвертая четверти). Знаки тригонометрических функций по четвертям приведены на рисунке 88.

Четность

Синус — нечетная функция, т. е. при всех t выполнено равенство sin (— t) = — sin t.

Косинус — четная функция, т. е. при всех t выполнено равенство cos ( — t) =cos t.

Действительно, мы знаем, что для всякого значения t точки Р, и Р_( симметричны друг другу относительно оси абсциссы (т. е. cos t = cos ( — t)), а ординаты противоположны (т. е. sin t=— sin ( — t)), что и требовалось доказать.

Следствие. Тангенс и котангенс — нечетные функции.

Действительно, Решение тригонометрических уравнений по графику. Аналогично доказывается нечетность котангенса.

Формулы приведения

Значения тригонометрических функций острых углов можно вычислить по таблицам или с помощью прямоугольного треугольника. Их вычисление для любого значения аргумента можно привести к вычислению значений для аргумента Решение тригонометрических уравнений по графику

Соответствующие формулы так и называются — формулы приведения. Они основаны на симметрии вращательного движения.

Решение тригонометрических уравнений по графику

Формула (1) —это запись в координатной форме свойства 3 вращательного движения, формула (2) — это запись свойства 5, а формула (3) — запись свойства 6.

С помощью периодичности и формул (1) — (3) можно привести вычисление синуса и косинуса любого числа t к их вычислению для t, лежащего между 0 и Решение тригонометрических уравнений по графику.

Из основных формул (1) — (3) можно вывести и другие формулы приведения:

Решение тригонометрических уравнений по графику

Решение тригонометрических уравнений по графику

Аналогично выводятся формулы

Решение тригонометрических уравнений по графику

Формулы приведения для тангенса и котангенса получаются как следствие аналогичных формул для синуса и косинуса. Например:

Решение тригонометрических уравнений по графику

Мнемоническое правило для запоминания формул приведения следующее:

1) Название функции не меняется, если к аргументу левой части добавляется — π или + π, и меняется, если добавляется число ± Решение тригонометрических уравнений по графикуили

Решение тригонометрических уравнений по графику

2) Знак правой части определяется знаком левой, считая, что

Решение тригонометрических уравнений по графику

1.Вычислить sin Решение тригонометрических уравнений по графику. Представим так: Решение тригонометрических уравнений по графику

Решение тригонометрических уравнений по графику
Решение тригонометрических уравнений по графику

Значения тригонометрических функций

Вычисление значений тригонометрических функций имеет длинную историю. Потребности точных астрономических наблюдений вызвали к жизни появление огромных таблиц, позволявших производить вычисления с четырьмя, пятью и даже семью и более знаками. На составление этих таблиц было затрачено много усилий. Сейчас, нажав кнопку микрокалькулятора, мы можем моментально получить требуемое значение с очень высокой точностью. С помощью большой вычислительной машины нетрудно найти, если нужно, значения тригонометрических функций с любой степенью точности.

Некоторые соображения о значениях тригонометрических функций надо помнить всегда, так как они облегчают вычисления.

1) С помощью формул приведения вычисление значения тригонометрической функции любого числа можно свести к вычислению функции угла, лежащего в первой четверти.

2) Достаточно знать значение лишь одной из тригонометрических функций. С помощью основных тождеств и зная четверть, в которой лежит значение аргумента, легко найти значения остальных функций.

Примеры:

Решение тригонометрических уравнений по графику

3) Полезно помнить значения тригонометрических функций для углов двух «знаменитых» прямоугольных треугольников —для равнобедренного и для треугольника с углами 30° (Решение тригонометрических уравнений по графику) и 60° (Решение тригонометрических уравнений по графику). Эти значения обычно записывают с помощью радикалов и при необходимости эти радикалы заменяют их приближенными значениями Решение тригонометрических уравнений по графику

Сведем их в таблицу, дополнив ее значениями t = 0 и t=Решение тригонометрических уравнений по графику.

Решение тригонометрических уравнений по графику

Решение простейших тригонометрических уравнений

Для решения некоторых,особенно простых, но важных уравнений достаточно вспомнить определение тригонометрической функции.

  1. sin t = 0. Вращающаяся точка Рt имеет нулевую ординату в моменты времени t—0, π, 2 π, …, а также t— π, —2 π…..В общем виде множество этих значений можно записать в виде t=πk, k ∈ Z. Таким образом, решением уравнения sin t = 0 будут числа t = πk, k ∈ Z.

Запишем кратко решения еще нескольких уравнений, правильность которых предлагается проверить самостоятельно.

Решение тригонометрических уравнений по графику

Решение тригонометрических уравнений по графику

Все рассмотренные уравнения имеют бесчисленное множество решений. Эти решения записываются в виде бесконечных серий с помощью переменной (в наших примерах к), которая может принимать любые целые значения.

Теперь легко доказать, что 2π является наименьшим положительным периодом синуса и косинуса. Действительно, формула 3 показывает, что значение 1 синус принимает только в точках

Решение тригонометрических уравнений по графику

Расстояние между соседними точками этой последовательности равно 2 π, поэтому синус не может иметь положительный период, меньший 2 π. Рассуждения для косинуса аналогичны.

Видео:ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ 11 класс графики тригонометрических функцийСкачать

ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ 11 класс графики тригонометрических функций

Исследование тригонометрических функций

Основные свойства синуса и косинуса

При введении тригонометрических функций мы обозначали аргумент буквой t, так как буквы х и у были заняты — они обозначали координаты вращающейся точки Рt. Сейчас при исследовании мы вернемся к обычным обозначениям: х — аргумент, у — функция.

Рассмотрим функции y = sinx и y = cosx.

1) Область определения. Синус и косинус числа х задаются как координаты точки Рх, получающейся из точки Ро (1; 0) поворотом на угол х. Так как поворот возможен на любой угол, то областью определения синуса и косинуса является множество R всех вещественных чисел.

2) Промежутки монотонности. Проследим за характером изменения координат точки Рх, движущейся по окружности. При х = 0 точка занимает положение Ро (1; 0). Пока она движется по окружности, оставаясь в первой четверти, ее абсцисса уменьшается, а ордината увеличивается. При x= Решение тригонометрических уравнений по графикуточка займет положение Р Решение тригонометрических уравнений по графику(0; 1). Итак, в первой четверти синус (ордината) возрастает от 0 до 1, а косинус (абсцисса) убывает от 1 до 0.

Когда точка переходит во вторую четверть, ордината начинает убывать от 1 до 0. Абсцисса становится отрицательной и растет по абсолютной величине, значит, косинус продолжает убывать от 0 до — 1. В третьей четверти синус становится отрицательным и убывает от 0 до —1, а косинус начинает возрастать от — 1 до 0.

Наконец, в четвертой четверти синус возрастает от — 1 до 0 и косинус возрастает от 0 до 1. Монотонность синуса и косинуса по четвертям показана на схеме VIII.

3) Точки экстремума. Координаты вращающейся точки меняются между —1 и +1. Эти числа являются наименьшими и наибольшими значениями синуса и косинуса. Если требуется указать абсциссы точек экстремума, то надо решить уравнения sin х = ±1 и cos х= ± 1.

4) Промежутки постоянного знака и корни функции. Мы повторим их еще раз при построении графика.

5) Множество значений. Синус и косинус принимают любые значения от —1 до +1, так как являются координатами точки, движущейся по единичной окружности.

Графики синуса и косинуса

Для приближенного построения синусоиды можно поступить так. Разделим первую четверть на 8 равных частей и на столько же частей разделим отрезок [0; Решение тригонометрических уравнений по графику]оси абсцисс. Удобно при этом начертить окружность слева, как на рисунке 89. Перенесем значения синуса (проекции на ось у точек деления окружности) к соответствующим точкам оси х. Получим точки, лежащие на синусоиде, которые нужно плавно соединить и продолжить кривую дальше, пользуясь симметрией.

Решение тригонометрических уравнений по графику

Так мы получим график синуса на промежутке [0;Решение тригонометрических уравнений по графику]. Так

как sin (Решение тригонометрических уравнений по графику—х = sin Решение тригонометрических уравнений по графику+x). то график синуса должен быть

симметричен относительно прямой x=Решение тригонометрических уравнений по графику. Это позволяет построить

график синуса на отрезке [Решение тригонометрических уравнений по графику-; π]. Воспользовавшись нечетностью

синуса, получим график синуса на отрезке [ — π; 0] симметричным отражением построенной части синусоиды относительно начала координат. Так как отрезок [— π; π] имеет длину, равную периоду синуса, то график синуса на всей числовой оси можно получить параллельными переносами построенной кривой.

График синуса мы построили, воспользовавшись его свойствами. При этом к определению синуса мы обращались только при построении графика на отрезке [0; Решение тригонометрических уравнений по графику].

Построение графика на всей оси потребовало знания симметрии вращательного движения (формулы приведения, нечетность, периодичность). После того как график построен, полезно вернуться к свойствам синуса и посмотреть, как они проявляются на графике.

Функция y = sin х имеет период 2 π. На графике это свойство отражается следующим образом: если мы разобъем ось х на отрезки длиной 2 π, например, точками… —4 π, —2 π, 0, 2 π, 4 π, …, то весь график разобьется на «одинаковые» части, получающиеся друг из друга параллельным переносом вдоль-оси х. При этом видно, что 2 π — наименьший положительный период синуса.

Функция y = sin x: нечетна. На графике это свойство проявляется так: синусоида симметрична относительно начала координат.

Функция y = sin x обращается в нуль при х = πk, k ∈ Z. На графике это точки пересечения синусоиды с осью абсцисс.

Функция y = sin x положительна при Решение тригонометрических уравнений по графикуи отрицательна при Решение тригонометрических уравнений по графикуили третьей-четвертой четвертям (sin х Решение тригонометрических уравнений по графику

Указанные отрезки соответствуют четвертой-первой и второй-третьей четвертям.

Множеством значений функции y = sinx является отрезок [— 1; 1]. Действительно, проекции вращающейся точки на ось заполняют отрезок [—1; 1]. На графике это свойство проявляется так: синусоида расположена в полосе Решение тригонометрических уравнений по графикуи при этом проекции точек графика на ось у целиком заполняют отрезок [— 1; 1].

График косинуса можно построить так же, как и график синуса. Возможен и другой путь. Формулы приведения показывают, что синус и косинус связаны между собой простыми соотношения-
ми. Воспользуемся, например, формулой cosx = sin (x+Решение тригонометрических уравнений по графику)
Эта формула показывает, что график косинуса получается сдвигом синусоиды на Решение тригонометрических уравнений по графикувлево по оси х (схема VIII).

Если изображать графики синуса и-косинуса в системе координат с одинаковым масштабом по осям, то синусоида получается очень растянутой. Однако на практике величины х и у, связанные с помощью тригонометрических функций, имеют различные единицы измерения и необязательно изображать их в одном масштабе.

Если аргумент умножить на некоторое число, то синусоида будет, как гармоника, сжиматься и растягиваться по оси х. Примеры такого преобразования приведены на рисунке 90.

Решение тригонометрических уравнений по графику

Если значение синуса умножить на число, то будет происходить растяжение (сжатие) по оси у.

Графики функций вида у = А sin ( ω х + а) при различных А, ω, а являются синусоидами. Эти функции описывают так называемые гармонические колебания — движение проекции вращающегося шарика на ось или колебания конца упругой пружины.

Постоянные величины А, ω, а, задающие колебания, имеют наглядный физический смысл: А — амплитуда колебания, ω — его частота, а — начальная фаза.

Исследование тангенса и котангенса

Если свойства синуса и косинуса мы получили, рассматривая свойства движения точки по окружности, то для исследования тангенса и котангенса нам нет необходимости возвращаться к механической модели.

По определению тангенс числа х задается как отношение sin х и cos х. Изучим свойства тангенса.

1.Областью определения функции Решение тригонометрических уравнений по графикуявляется

множество всех вещественных чисел, за исключением тех, в которых косинус обращается в нуль. Мы запишем это множество следующим образом:

Решение тригонометрических уравнений по графику

2. Тангенс — периодическая функция с периодом π:

Решение тригонометрических уравнений по графику

3. Тангенс — нечетная функция, т. е. tg ( — х)= — tg х.

4. Функция y = tg x обращается в нуль одновременно с синусом, т. е. при x=πk, k ∈ Z.

5. Функция у= tg x: положительна в первой и третьей четвертях и отрицательна во второй и четвертой.

Выберем для дальнейшего изучения тангенса какой-либо промежуток числовой оси длиной, равной периоду, т. е. числу π. Можно было бы выбрать отрезок от 0 до π, но это неудобно, так как внутри этого отрезка есть точка x= Решение тригонометрических уравнений по графикув которой тангенс не определен. Лучше выбрать промежуток ( —Решение тригонометрических уравнений по графику; Решение тригонометрических уравнений по графику).

6. Тангенс возрастает в первой четверти. Действительно, пусть Решение тригонометрических уравнений по графику

Тогда Решение тригонометрических уравнений по графику(возрастание синуса) и Решение тригонометрических уравнений по графику(убывание косинуса). Так как значения косинуса положительны, то по свойству неравенств имеем Решение тригонометрических уравнений по графику

Умножим это неравенство на неравенство с положительными членами: sin х1 Решение тригонометрических уравнений по графику

На промежутке (—Решение тригонометрических уравнений по графику; 0 ] тангенс отрицателен и возрастает. На тангенс становится положительным и возрастает.

В итоге тангенс возрастает на промежутке (-Решение тригонометрических уравнений по графику; Решение тригонометрических уравнений по графику).

7. Какие же значения принимает тангенс? Когда х возрастает от 0 до Решение тригонометрических уравнений по графикутангенс возрастает. При этом когда х приближается к Решение тригонометрических уравнений по графикусинус х близок к единице, а косинус близок к нулю. Поэтому отношение Решение тригонометрических уравнений по графикустановится сколь угодно большим. То, что любое вещественное число может быть значением тангенса, видно из рисунка 91. Построим ось, параллельную оси ординат с началом в точке Ро. Возьмем на этой оси точку, соответствующую произвольно выбранному числу а. Соединим 0 с а. Получим точку Р на окружности. Пусть х — число, принадлежащее Решение тригонометрических уравнений по графикуи такое, что (cos х; sin х) — координаты Р. ТогдаРешение тригонометрических уравнений по графикуРешение тригонометрических уравнений по графику

Мы показали, что областью значений тангенса является вся числовая ось R.

Вообще на этой оси, которую часто называют осью тангенсов, можно проследить все свойства тангенса.

Решение тригонометрических уравнений по графику

8. Построим график тангенса. На промежутке Решение тригонометрических уравнений по графикуграфик
тангенса можно построить по точкам, учтя, что тангенс строго возрастает, в нуле обращаясь в нуль, а при приближении к Решение тригонометрических уравнений по графикустановится сколь угодно большим (рис. 92).

Отразив построенную часть графика относительно начала координат (тангенс — нечетная функция), получим график тангенса на промежутке Решение тригонометрических уравнений по графику. Для построения полного графика
разобьем числовую ось на отрезки, перенося Решение тригонометрических уравнений по графикувправо
и влево на π, 2 π, З π и т. д.

График тангенса распадается на отдельные, не связанные между собой части. Это вызвано тем, что в точках Решение тригонометрических уравнений по графикутангенс не определен.

Замечание (о монотонности тангенса).
Мы доказали, что функция тангенс возрастает на Решение тригонометрических уравнений по графику.

Можно ли сказать, что тангенс возрастает на всей области определения? Нет. Достаточно посмотреть на график. Если взять

Решение тригонометрических уравнений по графику

Нарушение монотонности связано с тем, что между точками х1 и х2 лежала точка х = Решение тригонометрических уравнений по графикув которой тангенс не определен.

Однако можно сказать, что тангенс возрастает на каждом промежутке, который целиком попадает в его область определения.

Свойства котангенса получаются так же, как и свойства тангенса. Перечислим кратко эти свойства, оставляя их доказательство для самостоятельной работы.

1.Функция Решение тригонометрических уравнений по графикуопределена при Решение тригонометрических уравнений по графику

2. Функция у = ctg х периодична. Ее периодом является число π:

Решение тригонометрических уравнений по графику

3. Функция у = ctg x нечетна: ctg ( — х)= — ctg х.

4. Функция у = ctg х обращается в нуль одновременно с косинусом, т. е. при х = Решение тригонометрических уравнений по графику+ лk, k ∈ Z.

5. Функция у = ctgx: положительна в первой и третьей четвертях и отрицательна во второй и четвертой.

6. Функция y=ctgx убывает на промежутке (0; π). Перенося его на kπ, получаем, что котангенс убывает на каждом промежутке ( πk; π + πk).

7. Область значений котангенса — множество R всех вещественных чисел.

8. График котангенса изображен на рисунке 93.

Производные тригонометрических функций

Пусть точка А движется с единичной скоростью . по окружности радиуса 1 с центром в начале координат О в положительном направлении. Координаты точки А в момент времени t равны cos t и sin t. Вектор мгновенной скорости точки А в момент времени t направлен по касательной к окружности в точке А (рис. 94), и в силу теоремы о перпендикулярности касательной к радиусу, проведенному в точку касания, вектор Решение тригонометрических уравнений по графикуперпендикулярен вектору Решение тригонометрических уравнений по графику.

Вычислим координаты вектора Решение тригонометрических уравнений по графику. Отложив от точки О вектор Решение тригонометрических уравнений по графику, мы получим вектор Решение тригонометрических уравнений по графику, координаты которого равны координатам вектора Решение тригонометрических уравнений по графику. Далее, так как движение точки А по окружности происходит с единичной скоростью, то длина вектора и равна 1, поэтому длина вектора Решение тригонометрических уравнений по графикутакже равна 1. Следовательно, точка В лежит на окружности.

Вектор Решение тригонометрических уравнений по графикуперпендикулярен векторуРешение тригонометрических уравнений по графику, поэтому если A = Pt,

то Решение тригонометрических уравнений по графику. Таким образом, координаты вектора Решение тригонометрических уравнений по графику= Решение тригонометрических уравнений по графикуравны

Решение тригонометрических уравнений по графику

С другой стороны, координаты скорости Решение тригонометрических уравнений по графикуявляются производными от координат точки А, следовательно,

Решение тригонометрических уравнений по графику

Найдем производную функции y = A sin ( ωt + а):

Решение тригонометрических уравнений по графику

Решение тригонометрических уравнений по графику

Решение тригонометрических уравнений по графику

Вычислим теперь производную функции y = tgx. Так как Решение тригонометрических уравнений по графикуто по теореме о производной частного получаем:

Решение тригонометрических уравнений по графику

Решение тригонометрических уравнений по графику

Решение тригонометрических уравнений по графику

Решение тригонометрических уравнений по графику

Решение тригонометрических уравнений по графику

Примеры:

Решение тригонометрических уравнений по графику

Приближенные формулы

Главная приближенная формула: вблизи нуля sin tt.

Доказательство. Дифференциал функции y = sin х равен dy = cos х dx. Найдем dy при х = 0. Так как cos 0=1, то при х = 0 dy = dx. Найдем приращение функции:

∆y = sin ∆х — sin 0 = sin ∆х.

Так как ∆y ≈ dy, то получим ∆y = sin ∆х ≈ dy=dx = ∆х. Вместо ∆х можно написать t и получить sin t ≈ t.

Эта формула дает тем точнее значение синуса, чем ближе t к нулю. Возможность заменять sin t на t при маленьких значениях угла t широко употребляется в приближенных вычислениях. Можно дать различные интерпретации этой приближенной формулы.

1. Решение тригонометрических уравнений по графику— это запись того, что отношение приращения

функции к его главной части стремится к единице при стремлении к нулю приращения аргумента.

2. Рассмотрим единичный круг. Пусть для простоты t>0. Тогда длина дуги АВ равна t, а длина отрезка ВС равна sin t. Удвоим дугу АВ и отрезок ВС — дуга BD имеет длину 2t, а хорда BD — длину 2 sin t. Соотношение sin t ≈ t означает, что отношение длины хорды к длине стягиваемой ею дуги стремится к единице, когда дуга стягивается в точку (рис. 95).

3. Рассмотрим касательную к синусоиде в начале координат. Так как (sin x)’=cos х, a cos 0= 1, то уравнение этой касательной у — х. Таким образом, заменяя вблизи начала координат график синуса отрезком касательной, мы вычисляем приближенное значение синуса по формуле sin tt.

Решение тригонометрических уравнений по графику

Для получения других приближенных формул выпишем дифференциалы тангенса и косинуса:

Решение тригонометрических уравнений по графику

При x = 0 получим приближенное значение тангенса:

Решение тригонометрических уравнений по графику

Применяя этот же прием к косинусу, мы получим, что дифференциал косинуса при x=0 равен —sin0 • dx т. е. равен 0. Это означает, что главная часть приращения косинуса равна нулю и в первом приближении cos x ≈ cos 0 = 1. Можно получить более точную формулу таким путем. Запишем cos х так:

Решение тригонометрических уравнений по графику

Заменим в этой формуле sin х на х и воспользуемся приближенной формулой для квадратного корня:

Решение тригонометрических уравнений по графику

Полученная приближенная формула для косинуса вблизи точки x = 0 весьма точна.

Более точные приближения можно получить с помощью формул

Решение тригонометрических уравнений по графику

Примеры:

  1. Вычислить приближенно sin 0,03 • tg 0,12. sin 0,03 ≈ 0,03, tg 0,12 ≈ 0,12, sin 0,03 • tg 0,12 ≈ 0,0036 ≈ 0,004.
  2. Вычислить приближенно sin 2°. Переводим 2° в радианную меру: 2° ≈ 0,034. sin 2° ≈ 0,034.

Видео:Обратные тригонометрические функции, y=arcsinx и y=arccosx, их свойства и графики. 10 класс.Скачать

Обратные тригонометрические функции, y=arcsinx и y=arccosx, их свойства и графики. 10 класс.

Тождественные преобразования

Формулы сложения

Тригонометрические функции связаны между собой многочисленными соотношениями. Первая серия тождеств описывает связь между координатами точки окружности — это так называемые основные соотношения. Эти соотношения позволяют выразить значения одних функций через другие (при одном и том же значении аргумента). Вторая серия тождеств происходит от симметрии и периодичности в движении точки по окружности. Отсюда мы получаем формулы приведения. Третий источник тригонометрических формул — это изучение поворотов. Поворот точки на угол а + β можно составить из композиции двух поворотов — на угол а и на угол β. Есть простые формулы, связывающие координаты точек Решение тригонометрических уравнений по графикуЭти формулы называются формулами сложения.

Нашей целью является вывод формул, связывающих sin (а ± β), cos (а ± β), tg (а ± β), ctg (а ± β) с тригонометрическими функциями углов а и β. Достаточно вывести формулу косинуса разности, остальные формулы получатся как ее следствия.

Теорема. Косинус разности двух углов равен произведению косинусов этих углов, сложенному с произведением синусов:

cos (а — β) =cos а cos β + sin а sin β.

Доказательство. Построим углы а и β помощью единичной окружности, т. е. точки Ра и Рβ , такие, что векторы Решение тригонометрических уравнений по графикуобразуют углы а и β с положительным направлением оси абсцисс. Угол между векторами Решение тригонометрических уравнений по графикуравен а — β (рис. 96).

Решение тригонометрических уравнений по графику

Вычислим скалярное произведение этих векторов. По определению скалярного произведения

Решение тригонометрических уравнений по графику

(так как векторы Решение тригонометрических уравнений по графикуимеют длину, равную 1).

Теперь вычислим это же скалярное произведение с помощью координат:

Решение тригонометрических уравнений по графику

Сравнивая результаты вычислений, получаем требуемую формулу:

Решение тригонометрических уравнений по графику

Доказательство теоремы закончено. Выведем остальные формулы.

Косинус суммы. Сумму а + β представим как разность а — ( — β) и подставим в формулу для косинуса разности:

Решение тригонометрических уравнений по графику

Воспользуемся тем, что cos( —p) = cos p (четность косинуса), a sin( —p)=—sin p (нечетность синуса). Получим:

Решение тригонометрических уравнений по графику

Синус суммы. Воспользуемся одной из формул приведения:

Решение тригонометрических уравнений по графику

Теперь по формуле косинуса разности получим:

Решение тригонометрических уравнений по графику

Решение тригонометрических уравнений по графику

Решение тригонометрических уравнений по графику

В качестве примера вычислим sin 15°. Представим 15° как разность 45° —30°. Получим sin 15° = sin (45° — 30°) = sin 45° cos 30° Решение тригонометрических уравнений по графику

Тангенс суммы и разности. По определению tg(a + β) Решение тригонометрических уравнений по графикуформулам синуса и косинуса суммы имеем:

Решение тригонометрических уравнений по графику

Разделив числитель и знаменатель этой дроби на cos a cos β, получим:

Решение тригонометрических уравнений по графику

Заменяя β на ( — β) и пользуясь нечетностью тангенса, получаем:

Решение тригонометрических уравнений по графику

Формулы удвоения

Формулы сложения являются одними из основных формул, связывающих тригонометрические функции. Из них можно вывести различные следствия. Полагая а = р, получим так называемые формулы удвоения.

Решение тригонометрических уравнений по графику

Заметим, что в формуле для cos 2a можно заменить Решение тригонометрических уравнений по графикуна 1 — Решение тригонометрических уравнений по графикуили Решение тригонометрических уравнений по графикуна 1 — Решение тригонометрических уравнений по графику. Получим две новые формулы:

Решение тригонометрических уравнений по графику

Тригонометрические функции половинного угла

Из формул двойных углов Решение тригонометрических уравнений по графикуможно получить формулы для синуса и косинуса половинного угла. Сначала запишем:

Решение тригонометрических уравнений по графику

Затем в этих формулах подставив Решение тригонометрических уравнений по графикувместо а, получим:

Решение тригонометрических уравнений по графику

Извлекая корень, получим:

Решение тригонометрических уравнений по графику

(Для того чтобы раскрыть модули, надо знать, в какой четверти лежит угол Решение тригонометрических уравнений по графику).

Обилие тригонометрических формул связано с тем, что между основными тригонометрическими функциями — синусом, косинусом, тангенсом и котангенсом — есть соотношения, которые позволяют по-разному написать одно и то же выражение. Возникает вопрос: нельзя ли выбрать одну какую-то функцию и через нее выражать все остальные? Если в качестве такой функции мы выберем синус, то во многих формулах появятся квадратные корни. Так, например, выражая sin 2а через sin а, мы получим sin 2а = 2 sin а cos а = 2 sin а Решение тригонометрических уравнений по графику. Такие формулы неудобны.

Оказывается, что все тригонометрические функции от аргумента х (и от nх при целом n) выражаются через тангенс угла Решение тригонометрических уравнений по графикурационально, без квадратных корней. Выведем эти полезные формулы.

Напишем формулы двойного угла для исходного угла Решение тригонометрических уравнений по графику

Решение тригонометрических уравнений по графику

Представим число 1 в виде Решение тригонометрических уравнений по графикуи поделим на 1 правые части последних формул

Решение тригонометрических уравнений по графику

Поделим теперь числитель и знаменатель каждой дроби на

Решение тригонометрических уравнений по графику

Пользуясь этими формулами, можно функцию вида у = а sin x + b cos x + c представить в виде рациональной функции от tg Решение тригонометрических уравнений по графику.

Пример. Выразить у = 2 sin х + З cos х — 1 в виде функции от tg Решение тригонометрических уравнений по графику.

Решение тригонометрических уравнений по графику

Преобразование суммы тригонометрических функций в произведение и обратные преобразования

Пусть требуется преобразовать сумму sin a + sin β в произведение. Используем следующий искусственный прием: напишем тождества

Решение тригонометрических уравнений по графику

заменим а и β выражениями, стоящими справа, в формулах для синуса суммы и разности:

Решение тригонометрических уравнений по графику

Аналогично выводятся еще три формулы:

Решение тригонометрических уравнений по графику

Выпишем подряд четыре формулы сложения:

Решение тригонометрических уравнений по графику

Вычитая почленно из четвертого равенства третье, получим:

Решение тригонометрических уравнений по графику

Складывая третье и четвертое равенства, получим:

Решение тригонометрических уравнений по графику

Складывая два первых равенства, получим:

Решение тригонометрических уравнений по графику

Мы рассмотрели различные тождества, связывающие тригонометрические функции. Все их запомнить трудно, и приходится обращаться к таблицам и справочникам. Важнее запомнить не сами формулы, а то, какие функции между собой они связывают, что с их помощью можно получить.

Видео:Отбор корней тригонометрического уравнения с помощью графикаСкачать

Отбор корней тригонометрического уравнения с помощью графика

Тригонометрические уравнения

Простейшим тригонометрическим уравнением называется уравнение вида sinx=a, где cos x=a, tgx=a, где a — некоторое действительное число.

Арксинус

Рассмотрим уравнение sin x = a. Так как областью значений синуса является отрезок [—1; 1], то это уравнение не имеет решений при |a| > 1. Пусть теперь |а| Решение тригонометрических уравнений по графику

По рисунку ясно, что прямая у = а пересечет синусоиду бесконечно много раз. Это означает, что при |a| ≤ 1 уравнение sin x = a имеет бесконечно много корней. Так как синус имеет период 2π, то достаточно найти все решения в пределах одного периода. По графику видно, что при |a| Решение тригонометрических уравнений по графику

Эти две серии решений иногда записываются одной формулой:

Решение тригонометрических уравнений по графику

Пример. Решить уравнение Решение тригонометрических уравнений по графику

Одно решение этого уравнения Решение тригонометрических уравнений по графикуВсе остальные решения получаются по формулам

Решение тригонометрических уравнений по графику

Как мы уже выяснили, уравнение sinx=a при |а| ≤ 1 имеет бесконечно много решений. Для одного из них имеется специальное название — арксинус.

Определение. Пусть число а по модулю не превосходит единицы. Арксинусом числа а называется угол х, лежащий в пределах от Решение тригонометрических уравнений по графику, синус которого равен а.

Обозначение: х = arcsin а.

Итак, равенство x = arcsin a равносильно двум условиям: sin z = a и Решение тригонометрических уравнений по графику

Обратим еще раз внимание на то, что arcsin а существует лишь, если |а|≤ 1.

Примеры:

Решение тригонометрических уравнений по графику

Теперь решения уравнения sin х = а (при |а| ≤ 1) можно записать так: х = arcsin а+2πk, х= π — arcsin а+2πk, или в виде одной формулы:

Решение тригонометрических уравнений по графику

Запишем некоторые тождества для арксинуса.

  1. sin arcsin а = а.

Это тождество вытекает из определения арксинуса (arcsin а — это такой угол х, что sin х=а).

Решение тригонометрических уравнений по графику

Действительно, обозначим sin х через а. Тогда наше тождество будет равносильно определению арксинуса: arcsin а = х, если Решение тригонометрических уравнений по графикуи sinx = a. Заметим, что выражение arcsin (sin х) имеет смысл при любом х, однако при Решение тригонометрических уравнений по графикуоно не равно х.

Решение тригонометрических уравнений по графику

Действительно, синусы от правой и левой частей равны: sin (arcsin ( —а)) = —а и sin ( — arcsin а)= —sin (arcsin а)= —а. В то же время правая часть доказываемого равенства — это угол, принадлежащий отрезку Решение тригонометрических уравнений по графику. Поэтому левая и правая части равны между собой.

Арккосинус

Так же как и в предыдущем пункте, при |а|>1 уравнение cosx = a решений не имеет; если |а| ≤ 1 то решений уравнения бесконечно много.

Если a — какое-либо решение уравнения cos х=а, то —а также есть решение этого уравнения, так как cos a = cos ( — a). По графику или на единичном круге видно, что при |а| Решение тригонометрических уравнений по графику

Эти серии обычно записывают в виде одной формулы:

Решение тригонометрических уравнений по графику

Пример. Решить уравнение Решение тригонометрических уравнений по графику

Одно решение находится легко: Решение тригонометрических уравнений по графику.

Запишем все решения так:

Решение тригонометрических уравнений по графику

Так же как и для синуса, выделяется одно определенное решение уравнения cos х = а и ему дается специальное название — арккосинус.

Определение. Пусть а — число, по модулю не превосходящее единицы. Арккосинусом числа а называется угол х, лежащий в пределах от 0 до π, косинус которого равен а.

Обозначение: х= arccos а.

Равенство x = arccos a равносильно двум условиям: cos x = a и 0 ≤ х ≤ π. Арккосинус числа а существует лишь при |а| ≤ 1 .

Пример:

Решение тригонометрических уравнений по графику

Решение уравнения cos х=а (при |а| ≤ 1) можно записать теперь в общем виде:

Решение тригонометрических уравнений по графику

По каким причинам для значений арксинуса был выбран отрезок Решение тригонометрических уравнений по графику, а для арккосинуса отрезок [0; π]?

Это объясняется тем, что на этих отрезках, во-первых, синус и косинус принимают все возможные значения от — 1 до 1 и, во-вторых, каждое значение принимается ровно один раз. Отрезков с этими условиями бесконечно много, но при этом выбраны отрезки «поближе к нулю».

Для арккосинуса можно вывести ряд тождеств.

  1. cos (arccos а) = а.

Это тождество следует из определения арккосинуса.

Решение тригонометрических уравнений по графику

Обозначим cos x = а. Получим определение арккосинуса: arccos а = х, если x ∈ [0; π ] и cos х = а.

Решение тригонометрических уравнений по графику

Сначала вычислим косинус от левой и правой частей:

Решение тригонометрических уравнений по графику

Если равны косинусы двух чисел, то это еще не означает, что равны сами числа. Проверим, что правая часть принадлежит отрезку [0; π]. (Так как левая часть тоже принадлежит этому отрезку, то из равенства косинусов двух чисел теперь уже будет следовать равенство самих чисел.) Итак, надо доказать, что π —arccos а принадлежит [0; π]. Действительно, arccos а ∈ [0; π — arccos а ∈ [ — π ; 0], π— arccos а ∈ [0; π], что и требовалось доказать.

Арктангенс

Область значений тангенса (котангенса) — вся числовая ось. Поэтому уравнения tgx = a, ctg х — а имеют решения при любом а. В пределах одного периода π тангенс и котангенс принимают каждое значение ровно один раз. Поэтому если известно одно решение уравнения tg х—а или ctg х=а, то все остальные получают прибавлением периода:

Решение тригонометрических уравнений по графику

где a — какое-либо решение соответствующего уравнения. Примеры. Решить уравнения:

Решение тригонометрических уравнений по графику

Определения арктангенса и арккотангенса вводятся аналогично определениям арксинуса и арккосинуса, поэтому мы проведем его короче.

Определение. Арктангенсом числа а называется угол Решение тригонометрических уравнений по графику тангенс которого равен а. Арккотангенсом числа а называется угол x ∈ (0; π), котангенс которого равен а.

Обозначения: х = arctg а и x = arcctg а. Примеры.

Решение тригонометрических уравнений по графику

2. Решить уравнения:

Решение тригонометрических уравнений по графику

Решение тригонометрических уравнений по графику

Решение тригонометрических уравнений

Тригонометрические уравнения встречаются в задачах, в которых из соотношений между тригонометрическими функциями требуется найти неизвестные углы. Основными, чаще всего встречающимися тригонометрическими уравнениями являются уравнения простейшего типа sin х — а, cos х = а, tg х = а и ctg х = а, которые уже рассмотрены в предыдущих пунктах. Следует отметить, что такие уравнения обычно имеют бесконечные серии решений, задаваемые с помощью параметра, принимающего целые значения.

Более сложные тригонометрические уравнения обычно решаются сведением их к простейшим с помощью различных алгебраических и тригонометрических формул и преобразований. Рассмотрим некоторые приемы решения тригонометрических уравнений.

а) Уравнения, алгебраические относительно одной из тригонометрических функций.

Примеры решения уравнений.

Решение тригонометрических уравнений по графику

Это уравнение является квадратным относительно sin х. Корни этого квадратного уравнения Решение тригонометрических уравнений по графикуи sin x= — 2. Второе из полученных простейших уравнений не имеет решений, так как |sinx| ≤ 1, решение первого можно записать так:

Решение тригонометрических уравнений по графику

Если в уравнении встречаются разные тригонометрические функции, то надо пытаться заменить их все через какую-нибудь одну, используя тригонометрические тождества.

Решение тригонометрических уравнений по графику

Так как квадрат синуса легко выражается через косинус, то, заменяя sin2 х на 1 —cos2 х и приводя уравнение к квадратному относительно cos х, получим 2 (1 —cos2 х) — 5 cos х — 5 = 0, т. е. квадратное уравнение 2 cos2 x + 5 cos x + 3 = 0, корни которого Решение тригонометрических уравнений по графику

Уравнение Решение тригонометрических уравнений по графикурешений не имеет. Решения уравнения cos x= — 1 запишем в виде

Решение тригонометрических уравнений по графику

Решение тригонометрических уравнений по графику

Заменив ctg x на Решение тригонометрических уравнений по графикуи приведя к общему знаменателю, получим квадратное уравнение Решение тригонометрических уравнений по графику, корни которого tg x=l, tg х = 3, откуда

Решение тригонометрических уравнений по графику

Решение тригонометрических уравнений по графику

Если в этом уравнении заменим косинус на синус (по аналогии с предыдущими примерами) или наоборот, то получим уравнение с радикалами. Чтобы избежать этого, используют формулы, выражающие синус и косинус через тангенс половинного угла, т. е.

Решение тригонометрических уравнений по графику

Делая замену, получаем уравнение относительно Решение тригонометрических уравнений по графику

Решение тригонометрических уравнений по графику

Квадратное уравнение Решение тригонометрических уравнений по графикуимеет корни Решение тригонометрических уравнений по графикуоткуда

Решение тригонометрических уравнений по графику

б) Уравнения, решаемые понижением их порядка.

Формулы удвоения позволяют квадраты синуса, косинуса и их произведения заменить линейными функциями от синуса и косинуса двойного угла. Такие замены делать выгодно, так как они понижают порядок уравнения.

Примеры решения уравнений.

  1. Решить уравнение Решение тригонометрических уравнений по графику

Можно заменить cos 2х на 2 Решение тригонометрических уравнений по графику— 1 и получить квадратное уравнение относительно cos х, но проще заменить Решение тригонометрических уравнений по графикуна Решение тригонометрических уравнений по графикуи получить линейное уравнение относительно cos 2х:

Решение тригонометрических уравнений по графику

2. Решить уравнение Решение тригонометрических уравнений по графику

Подставляя вместо Решение тригонометрических уравнений по графикуих выражение через cos 2x, получим:

Решение тригонометрических уравнений по графику

в) Уравнения, решаемые после преобразований с помощью тригонометрических формул.

Иногда в уравнениях встречаются тригонометрические функции кратных углов. В таких случаях нужно использовать формулы преобразования суммы в произведение.

Примеры решения уравнений.

Решение тригонометрических уравнений по графику

Решение тригонометрических уравнений по графику

Решение тригонометрических уравнений по графику

Преобразуем произведение синусов в сумму:

Решение тригонометрических уравнений по графику

Полученное уравнение можно решить разными способами. Можно воспользоваться формулами сложения и преобразовать в произведение. Удобнее воспользоваться условием равенства косинусов двух углов 2х и 6х:

Решение тригонометрических уравнений по графику

Получим два уравнения:

Решение тригонометрических уравнений по графику

Проверьте, что решения второй серии содержат в себе все решения первой серии. Учитывая это, ответ можно записать короче:

Решение тригонометрических уравнений по графику

г) Однородные уравнения.

Решим уравнение Решение тригонометрических уравнений по графику

Если считать, что sin х и cos х — члены первой степени, то каждое слагаемое имеет вторую степень. Уравнение, в котором каждое слагаемое имеет одну и ту же степень, называется однородным. Его можно решать делением на старшую степень синуса (или косинуса). Делим наше уравнение на cos2 х. (При этом мы не потеряем корней, так как если мы в данное уравнение подставим cos x = 0, то получим, что и sin x=0, что невозможно.)

Решение тригонометрических уравнений по графику

Решение тригонометрических уравнений по графику

Гармонические колебания

Гармонические колебания — это процесс, который может быть описан функцией вида у = A sin (ω + а).

Примеры:

1) Колебания упругой пружины. Конец упругой пружины (точка Р) при ее сжатии или растяжении описывает колебательные движения. Если на прямой, по которой движется точка Р, ввести координату х так, чтобы в положении равновесия xр = 0, оттянуть конец пружины в положительном направлении на расстояние A и в момент времени t = 0 отпустить его, то зависимость координаты точки Р от времени t (рис. 98) будет иметь следуюший вид: Решение тригонометрических уравнений по графику, где ω — некоторый коэффициент, характеризующий упругость пружины.

2) Электрический колебательный контур. Рассмотрим электрическую цепь, состоящую из последовательно соединенных конденсатора С и катушки индуктивности L (рис. 99). Если эту цепь замкнуть накоротко и считать, что в ней есть некоторый запас энергии (например, ненулевой заряд в конденсаторе), то по этой цепи пойдет ток, напряжение которого U будет меняться со временем. При идеальном предположении отсутствия потерь в цепи зависимость U от времени t будет иметь следующий вид: U = U0 sin (ωt + a), где ω — некоторая характеристика контура, которая вычисляется через параметры конденсатора и катушки. Константы Uo и а зависят от состояния цепи в начальный момент времени.

Таким образом, гармоническое колебание у=А sin (ωt + a) определяется тремя параметрами: амплитудой A>0, угловой скоростью ω>0 и так называемой начальной фазой а. Часто вместо угловой скорости ω говорят о частоте колебаний v, которая связана с угловой скоростью ω (или иначе круговой частотой) формулой ω = 2πv. Функция у периодична. Ее основной период равен

Решение тригонометрических уравнений по графику

Колебания приходится складывать. В механике это связано с тем, что на точку может действовать несколько сил, каждая из которых вызывает гармонические колебания. В электро-и радиотехнике сложение колебаний происходит как естественное наложение токов. Оказывается, имеет место замечательный закон: при сложении гармонических колебаний одной и той же частоты получается снова гармоническое колебание той же частоты. На математическом языке это означает, что сумма двух функций

Решение тригонометрических уравнений по графику

есть функция того же вида: Решение тригонометрических уравнений по графику

Достаточно научиться складывать функции вида у = A1 sin ωt и

Решение тригонометрических уравнений по графику

y = A2 cos ωt. Для их сложения применяется прием введения вспомогательного угла. Итак, рассмотрим выражение у = A1 sin ωt + A2 cos ωt. Оно похоже на формулу синуса суммы: sin (ωt + a) = sin ωt cos a+ cos ωt sin a. Числа A1 и A2 нельзя считать косинусом и синусом, однако если их разделить на число Решение тригонометрических уравнений по графикуто тогда это будет возможно. Введем угол а с помощью соотношении

Решение тригонометрических уравнений по графику

Решение тригонометрических уравнений по графику

Примеры:

Решение тригонометрических уравнений по графику

Периодические функции

Тригонометрические функции являются периодическими. В общем виде функция y = f(x) называется периодической, если существует такое число Т ≠ О, что равенство f (x+T)=f (х) выполняется тождественно при всех значениях х.

Обычно среди периодов периодической функции можно выделить наименьший положительный период, который часто называют основным периодом. Все другие периоды функции являются целыми кратными основного. График периодической функции состоит из повторяющихся кусков, поэтому достаточно построить его на отрезке изменения аргумента длиной, равной основному периоду. На рисунке 100 изображены графики различных периодических функций.

Решение тригонометрических уравнений по графику

Приведем пример одной интересной периодической функции. Всякое число х можно представить в виде суммы его целой и дробной частей. Целая часть числа х определяется как наибольшее целое число, не превосходящее х, и обозначается [х]. Например, [3]=3; [3,14]=3; [ — 3,14]=— 4. Дробная часть обозначается и равна по определению x — [x]. Функция у — <х)=х — [х] является периодической с основным периодом, равным единице. Ее график изображен на рисунке 101.

Если функция y — f (х) периодична и ее периодом является число Т, то и функция y=f (kx) будет периодической, причем ее пе-риодом будет число Решение тригонометрических уравнений по графикуДействительно, рассмотрим функцию y=g(x), где g(x) = f<kx). Вычислим Решение тригонометрических уравнений по графику

Решение тригонометрических уравнений по графику

Сдвиг аргумента не меняет период функции. Отсюда следует, что функция у=А sin (ωt + а), задающая гармоническое колебание, имеет период Решение тригонометрических уравнений по графику

Если Т является общим периодом двух функций f и g, то Т остается периодом их суммы, произведения, частного. Правда, как мы видим на примере тангенса, если Т является основным периодом f и g, то это может быть не так для новых функций, полученных из f и g арифметическими операциями.

Сумма двух функций с различными периодами необязательно будет периодической. Интересен случай сложения двух функций с различными, но очень близкими периодами. Рассмотрим, например, сумму функций Решение тригонометрических уравнений по графикублизки друг к другу. Складывая синусы, получим

Решение тригонометрических уравнений по графику

Решение тригонометрических уравнений по графику

Поэтому Решение тригонометрических уравнений по графикупри маленьких значениях t и Решение тригонометрических уравнений по графику

Однако с ростом t множитель Решение тригонометрических уравнений по графикубудет убывать.

«Ровное» гармоническое колебание типа у1 заменится «биением», график которого изображен на рисунке 102. Можно представить себе, что «биение» — это колебание, амплитуда которого медленно (и тоже периодически) меняется. Явление «биения» можно наблюдать при наложении звуков близкой частоты, при измерении величины океанских приливов, которые вызываются наложением двух периодических процессов с близкими, но различными периодами — притяжением Солнца и притяжением Луны.

Разложение на гармоники

Чистый звуковой тон представляет собой колебание с некоторой постоянной частотой. Музыка, которую мы слышим, представляет собой наложение различных чистых тонов, т. е. получается сложением колебаний с различными частотами. Преобладание звука той или иной частоты (скажем, низких звуков или высоких) связано с амплитудой соответствующих колебаний. Это знакомое нам разложение звуков на чистые тона часто встречается при изучении различных колебательных процессов.

Можно сказать так: простейшие гармонические колебания являются теми кирпичиками, из которых складывается любое колебание. На языке математики это означает, что любую периодическую функцию можно представить с наперед заданной точностью как сумму синусов.

Решение тригонометрических уравнений по графику

Решение тригонометрических уравнений по графику

Эйлер Леонард

(1707—1783) — швейцарский математик и механик, академик Петербургской Академии наук, автор огромного количества научных открытий во всех областях математики. Эйлер первым применил средства математического анализа в теории чисел, положил начало топологии.

«Математика, вероятно, никогда не достигла бы такой высокой степени совершенства, если бы древние не приложили столько усилий для изучения вопросов, которыми сегодня многие пренебрегают из-за их мнимой бесплодности».
Л. Эйлер

Этот замечательный факт обнаружен еще в XVIII в. Д. Бернулли при решении задачи о колебании струны. Это показалось удивительным и невозможным по отношению к любой функции даже такому гениальному математику, как Л. Эйлер, который, кстати, является автором всей современной символики тригонометрии. Систематически разложения периодических функций в сумму синусов (или, как говорят, на гармоники) изучал в начале XIX в. французский математик Ж. Фурье, которые так теперь и называются разложениями (или рядами) Фурье.

Решение тригонометрических уравнений по графику

Видео:3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из ВебиумаСкачать

3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из Вебиума

Тригонометрические и обратные тригонометрические функции

Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику

Решение заданий и задач по предметам:

Дополнительные лекции по высшей математике:

Решение тригонометрических уравнений по графику

Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику Решение тригонометрических уравнений по графику

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

🎥 Видео

Тригонометрические функции, y=tgx и y=ctgx, их свойства и графики. 10 класс.Скачать

Тригонометрические функции, y=tgx и y=ctgx,  их свойства и графики. 10 класс.

Решение тригонометрических уравнений. Вебинар | МатематикаСкачать

Решение тригонометрических уравнений. Вебинар | Математика

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функцииСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ —  Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функции

Отбор корней по окружностиСкачать

Отбор корней по окружности

Тригонометрия в ЕГЭ может быть простойСкачать

Тригонометрия в ЕГЭ может быть простой

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по Математике

10 класс, 16 урок, Функции y=sinx, y=cosx, их свойства и графикиСкачать

10 класс, 16 урок, Функции y=sinx, y=cosx, их свойства и графики

Простейшие тригонометрические уравнения. y=cosx. 1 часть. 10 класс.Скачать

Простейшие тригонометрические уравнения. y=cosx. 1 часть. 10 класс.

Решение тригонометрических уравнений. Однородные уравнения. 10 класс.Скачать

Решение тригонометрических уравнений. Однородные уравнения. 10 класс.

Решение тригонометрических уравнений и их систем. 10 класс.Скачать

Решение тригонометрических уравнений и их систем. 10 класс.
Поделиться или сохранить к себе: