Решение по схеме горнера онлайн калькулятор уравнений

Метод Горнера. Деление многочлена онлайн
Коэффициенты многочлена разделенные пробелами
Коэффициент C в биноме вида x-C
Заданный многочлен имеет вид
если разделим его
Получим многочлен
и остаток

Рассмотрим процедуру деления многочлена вида

результат деления есть функция вида

Такой результат получается только в результате деления исходного многочлена на бином без остатка.

В общем же случае говорится, что функцию можно представить в виде

где r — это остаток от деления.

Коэффициенты функции рассчитываются по рекуррентным ф ормулам

Схема Горнера очень удобна своей простой и отсутствием функции деления. Это позволяет решать с повышенной точностью подобные уравнения, а также решать целочисленные уравнения, без каких либо машинных(компьютерных) погрешностей.

Кстати!

Есть новый калькулятор который осуществляет деление многочлена на многочлен с остатком . Работает в том числе и в комплексном поле, кроме того, делящий многочлен может быть на самом деле многочленом(!), а не биномом, как в этой статье.

Кроме этого, эта же схема позволяет решать задачу определения значения функции при каком либо значении. «Фи!» — скажете Вы. «Это же элементарно, любой калькулятор это может».

да конечно, поставивив вместо неизвестного x необходимое значение мы получим нам нужный результат, но какой ценой?

Нам придется возводить значения в степень, что несомненно внесет свою погрешность в расчеты.

Это явно проявляется при работе в поле комплексных чисел, при делении многочлена на комплексный бином.

Нам проще воспользоватся теоремой Безу, которая гласит: Остаток r от деления многочлена на на линейный двучлен равен значению многочлена при

Бот созданный на этом сайте, позволяет Вам решать поставленную задачу методом Горнера, не только для действительных чисел, но и для комплексных. Это расширяет возможности применения бота и позволяет более полно исследовать функцию.

Если делящий многочлен не является одночленом, то стоит воспользоватся калькулятором который делит произвольные многочлены друг на друга с вычислением остатка.Деление многочлена на многочлен.Division of complex polynomials Теперь рассмотрим примеры.

разделить с остатком

Пишем коэффициенты 2 0 -3 2 и через точку запятой -2. Надеюсь понятно почему пишем -2, а не+2 ?

Заданный многочлен имеет вид
если разделим его
Получим многочлен
и остаток

Следующий пример исходный полином тот же, но значение С будет комплексным например 1+i

Пишем коэффициенты 2 0 -3 2 и через точку запятой 1+i

Заданный многочлен имеет вид
если разделим его
Получим многочлен
и остаток

Таким образом мы можем писать любые значения, в том числе и комплексные, в коэффицентах как делимого полинома так и делящего бинома

Видео:Схема Горнера. 10 класс.Скачать

Схема Горнера. 10 класс.

Схема Горнера. Примеры

РЕШЕНИЕ КУБИЧЕСКИХ УРАВНЕНИЙ ПО СХЕМЕ ГОРНЕРА

4x 3 — 19x 2 + 19x + 6 = 0

Для начала нужно методом подбора найти один корень. Обычно он является делителем свободного члена. В данном случае делителями числа 6 являются ±1, ±2, ±3, ±6.

1: 4 — 19 + 19 + 6 = 10 ⇒ число 1 не является корнем многочлена

-1: -4 — 19 — 19 + 6 = -36 ⇒ число -1 не является корнем многочлена

2: 4 ∙ 8 — 19 ∙ 4 + 19 ∙ 2 + 6 = 0 ⇒ число 2 является корнем многочлена

Мы нашли 1 из корней многочлена. Корнем многочлена является 2, а значит исходный многочлен должен делиться на x — 2. Для того, чтобы выполнить деление многочленов, воспользуемся схемой Горнера:

4-19196
2

В верхней строке выставляются коэффициенты исходного многочлена. В первой ячейке второй строки ставится найденный нами корень 2. Во второй строке пишутся коэффициенты многочлена, который получится в результате деления. Они считаются так:

4-19196
24
Во вторую ячейку второй строки запишем число 1, просто перенеся его из соответствующей ячейки первой строки.
4-19196
24-11
2 ∙ 4 — 19 = -11
4-19196
24-11-3
2 ∙ (-11) + 19 = -3
4-19196
24-11-30
2 ∙ (-3) + 6 = 0

Последнее число — это остаток от деления. Если он равен 0, значит мы все верно посчитали.

Таким образом мы исходный многочлен разложили на множители:

4x 3 — 19x 2 + 19x + 6 = (x — 2)(4x 2 — 11x — 3)

И теперь, всего лишь, осталось найти корни квадратного уравнения

4x 2 — 11x — 3 = 0
D = b 2 — 4ac = (-11) 2 — 4 ∙ 4 ∙ (-3) = 169
D > 0 ⇒ уравнение имеет 2 корня

Видео:Вспоминаем схему Горнера и уравнения высших степенейСкачать

Вспоминаем схему Горнера и уравнения высших степеней

Деление многочленов столбиком

Алгоритм деления в столбик применяется в частности при нахождении интегралов.

  • Решение онлайн
  • Видеоинструкция

Пример деления в столбик . Найти частное деления и остаток многочлена:

Решение по схеме горнера онлайн калькулятор уравнений

№1.

x 3 -12x 2 -42x -3
x 3 -3x 2x 2
-9x 2 -42

№2.

x 3 -12x 2 -42x -3
x 3 -3x 2x 2 -9x
-9x 2 -42
-9x 2 + 27x
-27x -42

№3.

x 3 -12x 2 -42x -3
x 3 -3x 2x 2 -9x -27
-9x 2 -42
-9x 2 + 27x
-27x -42
-27x + 81
-123

Целая часть: x 2 -9x -27
Остаток: -123

Таким образом, ответ можно записать как: Решение по схеме горнера онлайн калькулятор уравнений
см. также и другие примеры решение столбиком.

Пример №1 . Найти частное и остаток от деления многочлена на многочлен:
P(x)=2x 5 +3x 3 -x 2 +4x+1, Q(x)=2x 2 -x+1

Пример №2 . Не производя деление найти остаток от деления многочлена на двучлен:
P(x)=-x 4 +6x 3 -2x 2 +x-2, Q(x)=x-6
Решение. Выделим общий множитель (x-6).
-x 3 (x-6)-2x(x-6)-12x+x-2 = -x 3 (x-6)-2x(x-6)-11(x-6)-66-2 = -x 3 (x-6)-2x(x-6)-11(x-6)-68
Остаток от деления: -68/(x-6)

🌟 Видео

Схема ГорнераСкачать

Схема Горнера

КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примереСкачать

КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примере

Кубические уравнения. Деление столбиком. Схема Горнера.Скачать

Кубические уравнения. Деление столбиком. Схема Горнера.

Схема Горнера. Объяснение на пальцах. Деление многочленовСкачать

Схема Горнера. Объяснение на пальцах. Деление многочленов

Схема Горнера. Теперь вы ее точно поймете и не забудетеСкачать

Схема Горнера. Теперь вы ее точно поймете и не забудете

Математика за 2 минуты: схема ГорнераСкачать

Математика за 2 минуты: схема Горнера

Теорема Безу. Схема Горнера. Практическая часть. 10 класс.Скачать

Теорема Безу. Схема Горнера. Практическая часть. 10 класс.

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

СХЕМА ГОРНЕРА ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэСкачать

СХЕМА ГОРНЕРА ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэ

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

Повторяем решение уравнений. Полезно всем! Вебинар | МатематикаСкачать

Повторяем решение уравнений. Полезно всем! Вебинар | Математика

Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

ОГЭ №21 Как решать кубическое уравнение x^3+4x^2-9x-36=0 Группировка Деление многочлена столбикомСкачать

ОГЭ №21 Как решать кубическое уравнение x^3+4x^2-9x-36=0 Группировка Деление многочлена столбиком

Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.

Математика это не ИсламСкачать

Математика это не Ислам

СХЕМА ГОРНЕРА 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

СХЕМА ГОРНЕРА 😉 #егэ #математика #профильныйегэ #shorts #огэ

Схема Горнера / Деление многочлена высшей степениСкачать

Схема Горнера / Деление многочлена высшей степени

Решение квадратных уравнений. Метод разложения на множители. 8 класс.Скачать

Решение квадратных уравнений. Метод разложения на множители. 8 класс.
Поделиться или сохранить к себе: