Решение линейных уравнений методом прямоугольников

Видео:Метод Жордана-Гаусса (метод прямоугольников). ВидеоурокСкачать

Метод Жордана-Гаусса (метод прямоугольников). Видеоурок

Высшая математика и экономика

Образовательные онлайн сервисы: теория и практика

Видео:Метод Гаусса и метод Жордана-Гаусса ➜ 2 метода за 7 минутСкачать

Метод Гаусса и метод Жордана-Гаусса ➜ 2 метода за 7 минут

Примеры — Линейная алгебра

Решение системы линейных уравнений методом Жордана-Гаусса (метод прямоугольников)

Видеоурок: Метод Жордана-Гаусса (метод прямоугольников)

Пример из видеоурока в рукописном виде:

Решение линейных уравнений методом прямоугольников

Пример 2.

Решение линейных уравнений методом прямоугольников

Запишем систему в виде:

4

-2

1

-2

Последовательно будем выбирать разрешающий элемент РЭ, который лежит на главной диагонали матрицы.
Разрешающий элемент равен (1). На месте разрешающего элемента получаем 1, а в самом столбце записываем нули.
Все остальные элементы матрицы, включая элементы столбца B, определяются по правилу прямоугольника: НЭ = СЭ — (А*В)/РЭ, где РЭ — разрешающий элемент (1), А и В — элементы матрицы, образующие прямоугольник с элементами СТЭ и РЭ.

4

-2

9

2

Разрешающий элемент равен (-1). На месте разрешающего элемента получаем 1, а в самом столбце записываем нули. Все остальные элементы матрицы, включая элементы столбца B, определяются по правилу прямоугольника.

8

2

9

4

Разрешающий элемент равен (1). На месте разрешающего элемента получаем 1, а в самом столбце записываем нули.
Все остальные элементы матрицы, включая элементы столбца B, определяются по правилу прямоугольника.

8

6

4

9

Разрешающий элемент равен (-4).
На месте разрешающего элемента получаем 1, а в самом столбце записываем нули.
Все остальные элементы матрицы, включая элементы столбца B, определяются по правилу прямоугольника.

-7.75

-12

-7.25

-2.25

Теперь исходную систему можно записать как:
x1 = -7.75 — 8×5 — 10.75×6
x2 = -12 — 10×5 — 11×6
x3 = -7.25 — 6×5 — 5.25×6
x4 = -2.25 — x5 — 1.25×6
Необходимо переменные x5,x6 принять в качестве свободных переменных и через них выразить остальные переменные.
Приравняем переменные x5,x6 к 0
x1 = -7.75
x2 = -12
x3 = -7.25
x4 = -2.25
Среди базисных переменных есть отрицательные значения. Следовательно, данное решение не опорное.

Видео:Математика без Ху!ни. Метод Гаусса.Скачать

Математика без Ху!ни. Метод Гаусса.

Метод Жордана-Гаусса онлайн

Данный онлайн калькулятор находит общее решение системы линейных уравнений методом Жордана-Гаусса. Дается подробное решение. Для вычисления выбирайте количество уравнений и количество переменных. Затем введите данные в ячейки и нажимайте на кнопку «Вычислить.» Теоретическую часть нахождения решения системы линейных уравнений методом Жордана-Гаусса смотрите ниже.

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Видео:Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

Метод Жордана-Гаусса

Метод Жордана-Гаусса − это метод для решения систем линейных уравнений а также метод нахождения обратной матрицы. Данный метод является модификацией метода Гаусса.

Первый этап метода Жордана-Гаусса аналогична методу Гаусса (прямой ход Гаусса), который подробно можно посмотреть на странице «Метод Гаусса онлайн». Второй этап (обратный ход) метода Жордана-Гаусса заключается в обнулении всех элементов матрицы коэффициентов системы линейных уравнений, выше ведущих элементов. Отметим, что мы здесь рассматриваем произвольную систему линейных уравнений, где число переменных может быть не равным числу ограничений.

Рассмотрим следующую систему линейных уравнений:

Решение линейных уравнений методом прямоугольников(1)

Запишем систему (1) в матричном виде:

Ax=b(2)
Решение линейных уравнений методом прямоугольниковРешение линейных уравнений методом прямоугольников(3)

A-называется матрица коэффициентов системы, b − правая часть ограничений, x− вектор переменных, которую нужно найти. Пусть rang(A)=p.

Построим расшренную матрицу системы:

Решение линейных уравнений методом прямоугольников(4)

После прямого хода Гаусса (подробнее о прямом ходе Гаусса посмотрите на странице «Метод Гаусса онлайн») получим следующую расширенную матрицу:

Решение линейных уравнений методом прямоугольников(5)

Если Решение линейных уравнений методом прямоугольников. Решение линейных уравнений методом прямоугольниковравны нулю, то система линейных уравнений имеет решение, если же хотя бы один из этих чисел отлично от нуля, то система несовместна. Иными словами, система (2) совместна тогда и только тогда, когда ранг матрицы A навен рангу расширенной матрицы (A|b).

Пусть Решение линейных уравнений методом прямоугольников. Тогда в обратном порядке, начиная с ведущего элемента Решение линейных уравнений методом прямоугольниковприменяем обратный ход Гаусса. Суть обратного хода заключается в обнулении всех элементов расширенной матрицы, стоящих выше ведущих элементов.

Итак, обнуляем все элементы, стоящие в столбце p, выше элемента Решение линейных уравнений методом прямоугольников. Так как Решение линейных уравнений методом прямоугольников≠0, то сложим строки 1,2. p−1 со строкой p, умноженной на Решение линейных уравнений методом прямоугольниковсоответственно.

Расширенная матрица примет следующий вид:

Решение линейных уравнений методом прямоугольников

Аналогичным методом обнуляем элементы столбцов p−1, p−2, . 2 выше ведущих элементов Решение линейных уравнений методом прямоугольников.

Расширенная матрица примет следующий вид:

Решение линейных уравнений методом прямоугольников

Делим каждую строку на соответствующий ведущий элемент (если ведущий элемент существует):

Решение линейных уравнений методом прямоугольников

Тогда решение можно записать так:

Решение линейных уравнений методом прямоугольников

где Решение линейных уравнений методом прямоугольников− произвольные вещественные числа.

Отметим, что при m=n и rangA=n система линейных уравнений (2) имеет единственное решение.

Рассмотрим численные примеры.

Видео:Система линейных уравнений. Общее решение. Метод ГауссаСкачать

Система линейных уравнений.  Общее решение. Метод Гаусса

Примеры решения системы линейных уравнений методом Жордана-Гаусса

Пример 1. Найти решение системы линейных уравнений методом Жордана-Гаусса:

Решение линейных уравнений методом прямоугольников

Матричный вид записи: Ax=b, где

Решение линейных уравнений методом прямоугольников.

Для решения системы, построим расширенную матрицу:

Решение линейных уравнений методом прямоугольников.

Обозначим через aij элементы i-ой строки и j-ого столбца.

Первый этап. Прямой ход Гаусса

Исключим элементы 1-го столбца матрицы ниже элемента a11. Для этого сложим строки 2,3 со строкой 1, умноженной на 1/2,-3/2 соответственно:

Решение линейных уравнений методом прямоугольников.

Исключим элементы 2-го столбца матрицы ниже элемента a2 2. Для этого сложим строку 3 со строкой 2, умноженной на 1/5:

Решение линейных уравнений методом прямоугольников.

Второй этап. Обратный ход Гаусса

Исключим элементы 3-го столбца матрицы выше элемента a33. Для этого сложим строки 1, 2 со строкой 3, умноженной на -3/2, -5/4 соответственно:

Решение линейных уравнений методом прямоугольников.

Исключим элементы 2-го столбца матрицы выше элемента a22. Для этого сложим строку 1 со строкой 2, умноженной на -2/5:

Решение линейных уравнений методом прямоугольников.

Делим каждую строку матрицы на соответствующий ведущий элемент (если ведущий элемент существует):

Решение линейных уравнений методом прямоугольников.
Решение линейных уравнений методом прямоугольников.

Векторный вариант решения:

Решение линейных уравнений методом прямоугольников.

Пример 2. Найти решение системы линейных уравнений методом Жордана-Гаусса:

Решение линейных уравнений методом прямоугольников

Матричный вид записи: Ax=b, где

Решение линейных уравнений методом прямоугольников

Для решения системы, построим расширенную матрицу:

Решение линейных уравнений методом прямоугольников

Обозначим через aij элементы i-ой строки и j-ого столбца.

Первый этап. Прямой ход Гаусса.

Исключим элементы 1-го столбца матрицы ниже элемента a11. Для этого сложим строки 2,3 со строкой 1, умноженной на 4/3, 5/3 соответственно:

Решение линейных уравнений методом прямоугольников

Исключим элементы 2-го столбца матрицы ниже элемента a2 2. Для этого сложим строку 3 со строкой 2, умноженной на -2:

Решение линейных уравнений методом прямоугольников

Второй этап. Обратный ход Гаусса

Исключим элементы 2-го столбца матрицы выше элемента a22. Для этого сложим строку 1 со строкой 2, умноженной на -3/10:

Решение линейных уравнений методом прямоугольников

Делим каждую строку матрицы на соответствующий ведущий элемент (если ведущий элемент существует):

Решение линейных уравнений методом прямоугольников

Выразим переменные x1, x2 относительно остальных переменных.

Решение линейных уравнений методом прямоугольников

x3− произвольное действительное число.

Векторный вариант решения:

Запишем вышеизложенное решение, представив свободные переменные в виде тождеств:

Решение линейных уравнений методом прямоугольников

Тогда векторное решение можно представить так:

Решение линейных уравнений методом прямоугольников,

x3− произвольное действительное число.

Видео:Метод средних прямоугольниковСкачать

Метод средних прямоугольников

Правило прямоугольника

Алгоритм пересчета таблиц по правилу прямоугольника.
Выбираем из старого плана четыре числа, которые расположены в вершинах прямоугольника и всегда включают разрешающий элемент РЭ.

Назначение сервиса . Онлайн-калькулятор Правило прямоугольника предназначен для пересчета таблиц методом жордановских преобразований.

  • Шаг №1
  • Шаг №2

Решение линейных уравнений методом прямоугольников

Примечание. Данный метод не стоит путать с формулой прямоугольников.

Пример №1 . Производится пересчет элементов новой симплекс-таблицы. Каким будет значение элемента x25 в новой симплекс-таблице, если до пересчета x25 = -3 , x27 =5 , х45 = -8 , х47 =2

Пример №2 . По приведенной ниже симплекс-таблице определите, является ли соответствующее ей базисное решение оптимальным. Если решение не является оптимальным, осуществите пересчет таблицы.

ПЧX3X4
F-52-1
X1421
X2312

Решение.
Базисное решение называется допустимым базисным решением, если значения входящих в него базисных переменных xj≥0, что эквивалентно условию неотрицательности bj≥0.
Поскольку X1 = 4 > 0, X2 = 3 > 0, то это допустимое базисное решение. Определим, является ли оно оптимальным. Если найдется хотя бы один коэффициент индексной строки меньше нуля, то план не оптимальный, и его необходимо улучшить. В индексной строке X4 = -1 1 /2
Следовательно, 2-ая строка является ведущей. Вместо переменной x4 в план войдет переменная x2.
Таблица 1

ПЧX3X4
F-52-1
X1421
X2312

Разрешающий элемент РЭ=2. Строка, соответствующая переменной x2 , получена в результате деления всех элементов строки x на разрешающий элемент РЭ=2 (см. табл.2) . На месте разрешающего элемента получаем 1. В остальных клетках столбца x2 записываем нули. Все остальные элементы, включая элементы индексной строки, определяются по правилу прямоугольника. Для этого выбираем из старого плана четыре числа, которые расположены в вершинах прямоугольника и всегда включают разрешающий элемент РЭ.
НЭ = СЭ — (А*В)/РЭ
СТЭ — элемент старого плана, РЭ — разрешающий элемент (2), А и В — элементы старого плана, образующие прямоугольник с элементами СТЭ и РЭ (см. табл.2).
Формируем таблицу.

Таблица 2

4-(3 • 1):22-(1 • 1):21-(2 • 1):2
3 : 21 : 22 : 2
-5-(3 • -1):22-(1 • -1):2-1-(2 • -1):2

Получаем новую таблицу:

Таблица 3

ПЧX3X2
F-3 1 /22 1 /20
X12 1 /21 1 /20
X41 1 /21 /21

Поскольку X3≥0, X2≥0, то получили оптимальный план.

Пример №3 . Решить задачу линейного программирования симплекс-методом, используя в качестве начальной угловой точки:
f(x) = -2x1 + x2 + 4x3 – x4 – x5 → min
x2 + 2x4 – x5 = 1
x1 — x4 – x5 = 1
2x2 + x3 + 2x5 = 4
xj ≥ 0, j=1. 5, x 0 = (1;1;2;0;0)

Затем систему ограничений преобразуем методом Гаусса-Жордана к такой форме, чтобы базисными стали переменные x1, x2, x3, а вектор b = (1, 1, 2) T

-10-10-21
-1-10011
-40-2-10-2
0-214-1-1

Итерация №1. Разрешающий элемент РЭ=-1.
Формируем таблицу.
Строка, соответствующая переменной x2 , получена в результате деления всех элементов строки x2 на разрешающий элемент РЭ=-1. На месте разрешающего элемента получаем 1. В остальных клетках столбца x2 записываем нули. Все остальные элементы, включая элементы индексной строки, определяются по правилу прямоугольника.
Получаем новую таблицу:

-10-10-21
1100-1-1
-40-2-10-2
2014-3-3

Итерация №2. Разрешающий элемент РЭ=-1.
Строка, соответствующая переменной x4, получена в результате деления всех элементов строки x3 на разрешающий элемент РЭ=-1. На месте разрешающего элемента получаем 1. В остальных клетках столбца x4 записываем нули.
Все остальные элементы, включая элементы индексной строки, определяются по правилу прямоугольника.
Получаем новую таблицу:

-10-10-21
1100-1-1
402102
-140-70-3-11

Итерация №3. Разрешающий элемент РЭ=-1. Строка, соответствующая переменной x3 , получена в результате деления всех элементов строки x1 на разрешающий элемент РЭ=-1. На месте разрешающего элемента получаем 1. В остальных клетках столбца x3 записываем нули. Все остальные элементы, включая элементы индексной строки, определяются по правилу прямоугольника.
Получаем новую таблицу:

10102-1
1100-1-1
2001-44
-700011-18

Далее необходимо переназначить переменные и решать симплекс-методом.

💥 Видео

Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

Метод Гаусса и метод Жордана-ГауссаСкачать

Метод Гаусса и метод Жордана-Гаусса

Решение системы уравнений методом Крамера.Скачать

Решение системы уравнений методом Крамера.

Метод Жордана-Гаусса решения систем линейных уравнений.Скачать

Метод Жордана-Гаусса решения систем линейных уравнений.

Метод прямоугольников для нахождения определенного интегралаСкачать

Метод прямоугольников для нахождения определенного интеграла

Метод Жордана-Гаусса (01)Скачать

Метод Жордана-Гаусса (01)

Метод левых, правых и средних прямоугольниковСкачать

Метод левых, правых и  средних прямоугольников

метод прямоугольниковСкачать

метод прямоугольников

Практика. Решение систем методом Жордана-ГауссаСкачать

Практика. Решение систем методом Жордана-Гаусса

Решение системы уравнений методом Гаусса 4x4Скачать

Решение системы уравнений методом Гаусса 4x4

Решение системы линейных уравнений методом ГауссаСкачать

Решение системы линейных уравнений методом Гаусса

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.Скачать

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.

12. Метод Гаусса решения систем линейных уравнений. Часть 1.Скачать

12. Метод Гаусса решения систем линейных уравнений. Часть 1.

Линейная алгебра, 9 урок, Метод ГауссаСкачать

Линейная алгебра, 9 урок, Метод Гаусса
Поделиться или сохранить к себе: