Решение квадратных уравнений когда дискриминант меньше нуля

Дискриминант

Дискриминантом квадратного трехчлена называют выражение (b^-4ac), где (a, b) и (c) – коэффициенты данного трехчлена.

Например, для трехчлена (3x^2+2x-7), дискриминант будет равен (2^2-4cdot3cdot(-7)=4+84=88). А для трехчлена (x^2-5x+11), он будет равен ((-5)^2-4cdot1cdot11=25-44=-19).

Дискриминант обозначается буквой (D) и часто используется при решении квадратных уравнений . Также по значению дискриминанта можно понять, как примерно выглядит график квадратичной функции (см. ниже).

Видео:Отрицательный дискриминантСкачать

Отрицательный дискриминант

Дискриминант и корни квадратного уравнения

Значение дискриминанта показывает количество корней квадратного уравнения:
— если (D) положителен – уравнение будет иметь два корня;
— если (D) равен нулю – только один корень;
— если (D) отрицателен – корней нет.

Это не надо учить, к такому выводу несложно прийти, просто зная, что квадратный корень из дискриминанта (то есть, (sqrt) входит в формулу для вычисления корней квадратного уравнения: (x_=) (frac<-b+sqrt>) и (x_=) (frac<-b-sqrt>) . Давайте рассмотрим каждый случай подробнее.

Видео:Дискриминант меньше нуляСкачать

Дискриминант меньше нуля

Если дискриминант положителен

В этом случае корень из него – это некоторое положительное число, а значит (x_) и (x_) будут различны по значению, ведь в первой формуле (sqrt) прибавляется, а во второй – вычитается. И мы имеем два разных корня.

Пример: Найдите корни уравнения (x^2+2x-3=0)
Решение:

Вычисляем дискриминант по формуле (D=b^2-4ac)

Найдем корни уравнения

Получили два различных корня из-за разных знаков перед (sqrt)

На графике квадратичной функции положительный дискриминант будет означать пересечение функции с осью икс ровно в двух точках – корнях уравнения. И это логично. Вдумайтесь – если уравнение (x^2+2x-3=0) имеет корни (x_=1) и (x_=-3), значит при подстановке (1) и (-3) вместо икса, левая часть станет нулем. А значит, если те же самые единицу и минус тройку подставить в функцию (y=x^2+2x-3) получим (y=0). То есть, функция (y=x^2+2x-3) проходит через точки ((1;0)) и ((-3;0)) (подробнее смотри статью Как построить график функции ).

Решение квадратных уравнений когда дискриминант меньше нуля

Видео:Решение квадратных неравенств графическим методом, если дискриминант меньше нуля. 8 класс.Скачать

Решение квадратных неравенств графическим методом, если дискриминант меньше нуля. 8 класс.

Если дискриминант равен нулю

А сколько корней будет, если дискриминант равен нулю? Давайте рассуждать.

Формулы корней выглядят так: (x_=) (frac<-b+sqrt>) и (x_=) (frac<-b-sqrt>) . И если дискриминант – ноль, то и корень из него тоже ноль. Тогда получается:

То есть, значения корней уравнения будут совпадать, потому что прибавление или вычитание нуля ничего не меняет.

Пример: Найдите корни уравнения (x^2-4x+4=0)
Решение:

Вычисляем дискриминант по формуле (D=b^2-4ac)

Находим корни уравнения

Получили два одинаковых корня, поэтому нет смысла писать их по отдельности – записываем как один.

На графике квадратичной функции нулевой дискриминант означает одну точку пересечения функции с осью икс. Все аналогично изложенному выше: два корня – две точки пересечения, один корень – одна. В частности, функция (y=x^2-4x+4) будет выглядеть вот так:

Решение квадратных уравнений когда дискриминант меньше нуля

Видео:Решение квадратных неравенств графическим методом, если дискриминант равен нулю. 8 класс.Скачать

Решение квадратных неравенств графическим методом, если дискриминант равен нулю. 8 класс.

Если дискриминант отрицателен

В этом случае корень из дискриминанта извлечь нельзя (т.к. квадратный корень из отрицательного числа – невычислим), а значит и корни квадратного уравнения мы вычислить не можем.

Пример: Найдите корни уравнения (x^2+x+3=0)
Решение

Вычисляем дискриминант по формуле (D=b^2-4ac)

Находим корни уравнения

Оба корня содержат невычислимое выражение (sqrt), значит, и сами не вычислимы

То есть, отсутствие корней у квадратного уравнения с отрицательным дискриминантом – не чья-то случайная придумка. Это не потому что «в учебнике так написано», а действительно правда: невозможно найти такое число, чтоб при подстановке его вместо икса в выражение (x^2+x+3) получился ноль.

Матхак: заметим, что если вы решаете обычное квадратное уравнение или неравенство и получаете отрицательный дискриминант, стоит проверить решение еще раз, так как это не частая ситуация в школьном курсе математики.

Ну, а на графиках все просто: нет корней – нет точек пересечения с осью икс!

Видео:Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать

Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | Математика

Квадратные неравенства

Чтобы решить квадратные неравенства вспомним, что такое квадратичная функция?
Квадратичная функция – это функция записанная формулой : y=ax 2 +bx+c, где x – независимая переменная, a, b и c – некоторые числа, при этом a≠0.
Графиком квадратичной функции является парабола.

В зависимости от значения a ветви графика направлены вверх или вниз:

  • если a>0, то ветви параболы направлены вверх;
  • если a 2 +bx+c=0

Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.

Квадратные неравенства имеют вид.

ax 2 +bx+c>0
ax 2 +bx+c 2 +bx+c≥0
ax 2 +bx+c≤0

Чтобы начать решать квадратные неравенства, необходимо знать как решаются квадратные уравнения?
А также для графического метода решения неравенства, необходимо знать алгоритм построения квадратичной функции или параболы?

Видео:Решение квадратных неравенств | МатематикаСкачать

Решение квадратных неравенств | Математика

Как решать квадратные неравенства?

Решение квадратных неравенств рассмотрим на примерах. Для начала разберем случаи, когда у квадратного уравнения дискриминант меньше нуля (нет корней).

Пример:

Дискриминант меньше нуля —236, следовательно у уравнения нет корней, а это значит, что весь график параболы находится выше оси х, потому что а=3>0 (ветви параболы смотрят вверх)

Решение квадратных уравнений когда дискриминант меньше нуля

Можно проверить себя взяв любое число с числовой прямой, например число 1. Подставить число 1 вместо переменой х в неравенство 3x 2 +2x+20>0.

Получили верное неравенство 25>0, следовательно так как у нас нет корней уравнения нам подойдут все точки числовой прямой.

Пример:

Рассмотрим этот же пример со знаком неравенства меньше 0

3x 2 +2x+20 2 +2x+20=0

Дискриминант меньше нуля —236, следовательно у уравнения нет корней, значит парабола не пересекает ось x. Весь график параболы находится выше оси х, потому что а=3>0.

А знак уравнения меньше 2 +2x+20 2 +2•1+20 2 +x-2 2 +x-2=0

Дискриминант больше нуля, следовательно у уравнения два корня, значит парабола пересекает ось x в точка x=1 и x=-2. Ветви параболы смотрят вверх, потому что а=1>0.

Знак уравнения меньше 2 +x-2 2 +(-3)-2 2 +(0)-2 2 +(2)-2 2 +x-2>0

Дискриминант больше нуля, следовательно у уравнения два корня, значит парабола пересекает ось x в точка x=1 и x=-2. Ветви параболы смотрят вверх, потому что а=1>0.

Знак уравнения больше >0. Нам в ответ необходимо записать часть параболы, которая находится выше оси x. Визуально графически можно оценить по картинке, нам подходят интервалы (-∞;-2) и (1;+∞).

Решение квадратных уравнений когда дискриминант меньше нуляТакже можно решить методом интервалов. Ось x делится на три участка.

Первый участок (-∞;-2). На этом участке можно взять любое число меньше -2, например возьмем число -3 и подставим в неравенство x 2 +x-2 2 +(-3)-2>0

Получили верное неравенство 4>0, следовательно этот интервал (-∞; 2) подходит.

Второй участок (-2; 1). На этом участке можно взять число 0.

Получили неверное неравенство -2>0, следовательно этот интервал (-2; 1) не подходит.

Третий участок (1; +∞). На этом участке возьмем число 2.

Получили верное неравенство 4>0, следовательно этот интервал (1; +∞) подходит.

Видео:Как решать квадратные уравнения ⁉ Дискриминант 🌟 ОБЪЯСНЕНИЕ 🌟 D меньше (равен, больше) нуляСкачать

Как решать квадратные уравнения ⁉ Дискриминант 🌟 ОБЪЯСНЕНИЕ 🌟 D меньше (равен, больше) нуля

Дискриминант квадратного уравнения

Дискриминант квадратного уравнения — это выражение, находящееся под корнем в формуле нахождения корней квадратного уравнения. Дискриминант обозначается латинской буквой D.

Вид уравненияФормула корнейФормула
дискриминанта
ax 2 + bx + c = 0Решение квадратных уравнений когда дискриминант меньше нуляb 2 — 4ac
ax 2 + 2kx + c = 0Решение квадратных уравнений когда дискриминант меньше нуляk 2 — ac
x 2 + px + q = 0Решение квадратных уравнений когда дискриминант меньше нуляРешение квадратных уравнений когда дискриминант меньше нуля
Решение квадратных уравнений когда дискриминант меньше нуляp 2 — 4q

Все формулы нахождения корней квадратных уравнений можно записать короче с помощью дискриминанта:

Вид уравненияФормула
ax 2 + bx + c = 0Решение квадратных уравнений когда дискриминант меньше нуля, где D = b 2 — 4ac
ax 2 + 2kx + c = 0Решение квадратных уравнений когда дискриминант меньше нуля, где D = k 2 — ac
x 2 + px + q = 0Решение квадратных уравнений когда дискриминант меньше нуля, где D = Решение квадратных уравнений когда дискриминант меньше нуля
Решение квадратных уравнений когда дискриминант меньше нуля, где D = p 2 — 4q

Дискриминант позволяет определить, имеет ли уравнение корни и сколько их, не решая само уравнение:

  1. Если дискриминант больше нуля, то уравнение имеет два корня.
  2. Если дискриминант равен нулю, то уравнение имеет один корень.
  3. Если дискриминант меньше нуля, то уравнение не имеет корней.

Несмотря на то, что есть несколько формул дискриминанта, чаще всего используют первую:

так как она относится к формуле:

Решение квадратных уравнений когда дискриминант меньше нуля,

которая является универсальной формулой нахождения корней квадратного уравнения. Данная формула подходит даже для неполных квадратных уравнений.

Видео:Неполные квадратные уравнения. Алгебра, 8 классСкачать

Неполные квадратные уравнения. Алгебра, 8 класс

Решение квадратных уравнений через дискриминант

Для решения квадратного уравнения по формуле можно сначала вычислить дискриминант и сравнить его с нулём. В зависимости от результата, либо искать корни по формуле, либо сделать вывод, что корней нет.

Пример 1. Решить уравнение:

Определим, чему равны коэффициенты:

D = b 2 — 4ac = (-4) 2 — 4 · 3 · 2 = 16 — 24 = -8,

Определим, чему равны коэффициенты:

D = b 2 — 4ac = (-6) 2 — 4 · 1 · 9 = 36 — 36 = 0,

Уравнение имеет всего один корень:

Решение квадратных уравнений когда дискриминант меньше нуля

Определим, чему равны коэффициенты:

D = b 2 — 4ac = (-4) 2 — 4 · 1 · (-5) = 16 + 20 = 36,

🌟 Видео

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

6. Квадратное уравнение. Дискриминант равен нулю.Скачать

6. Квадратное уравнение. Дискриминант равен нулю.

Урок 18 как решить квадратное неравенство дискриминант меньше нуляСкачать

Урок 18 как решить квадратное неравенство дискриминант меньше нуля

Быстрый способ решения квадратного уравненияСкачать

Быстрый способ решения квадратного уравнения

Квадратные уравнения #shorts Как решать квадратные уравненияСкачать

Квадратные уравнения #shorts  Как решать квадратные уравнения

Как решать квадратные уравнения для чайниковСкачать

Как решать квадратные уравнения для чайников

Решение квадратных уравнений. Дискриминант. Практическая часть. 1ч. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. Практическая часть. 1ч. 8 класс.

Как решать квадратные уравнения. 8 класс. Вебинар | МатематикаСкачать

Как решать квадратные уравнения. 8 класс. Вебинар | Математика

Решение квадратных неравенств методом интервалов. 8 класс.Скачать

Решение квадратных неравенств методом интервалов. 8 класс.

МАТЕМАТИКА 8 класс - Неполные Квадратные Уравнения. Как решать Неполные Квадратные Уравнения?Скачать

МАТЕМАТИКА 8 класс - Неполные Квадратные Уравнения. Как решать Неполные Квадратные Уравнения?

Квадратное уравнение. Как решить? | Математика ОГЭ 2023 | УмскулСкачать

Квадратное уравнение. Как решить? | Математика ОГЭ 2023 | Умскул
Поделиться или сохранить к себе: