Решение алгебраических уравнений на маткаде

Решение алгебраических уравнений на маткаде

Электронный курс по MathCAD

Лекция 5.
Решение уравнений и систем.

5.1 Решение алгебраических (и других) уравнений и систем.

5.2 Решение дифференциальных уравнений и систем (задача Коши и граничные задачи).

5.3 Задание.

Решение алгебраических уравнений на маткаде Решение алгебраических уравнений на маткаде Решение алгебраических уравнений на маткаде Решение алгебраических уравнений на маткаде

5.1 Решение алгебраических (и других) уравнений и систем.


Линейные алгебраические уравнения.

Определение: Уравнение вида ax+b=0 с заданным базовым множеством Gx, a из Ga , b из Gb называется линейным уравнением.

Этапы решения при помощи Mathcad:

  1. Ввести уравнение (знак «=» вводится при помощи комбинации [Ctrl++]).
  2. Выделить курсором переменную, относительно которой должно быть решено уравнение.
  3. Выбрать команду Solve (Вычислить) подменю Variable (Переменные) меню Symbolics (Символы).

При решении линейных уравнений (без параметров) или дробных уравнений, которые сводятся к линейным, MathCAD находит все существующие решения. Однако при этом следует правильно интерпретировать сообщения, выдаваемые системой.

Нормальный случай.

В качестве решения MathCAD выдает число — это означает,

что уравнение однозначно разрешимо (однозначное решение линейного уравнения над множеством действительных чисел, которое одновременно является областью определения этого уравнения).

Рассмотрим другой пример: Решение алгебраических уравнений на маткаде

Решение алгебраических уравнений на маткаде

После выполнения описанных выше действий для нахождения решения Mathcad выдает сообщение о том, что решение не найдено.

Проанализировав данное уравнение приходим к выводу, что выданное Mathcad сообщение означает, что решений нет L=.

MathCAD выдает сообщение «Решение не найдено», даже если уравнение имеет «формальное решение», которое не принадлежит области определения (смотри примеры ниже).

Многозначность.
Если в качестве решения MathCAD выдает имя переменной, это означает, что множество решений уравнения совпадает с областью определения. Однако, такие понятия, как множество решений уравнения и область определения, отсутствуют в MAthCAD и он не выписывает оболасть определения. Вы можете найти область определения, решая с помощью Mathcad систему неравенств или уравнений

Решение алгебраических уравнений на маткаде

Такой результат, выданный Mathcad после выполнения действий по решению уравнения, означает, что любое значение x из базового множества удовлетворяет этому уравнению, т. е. L=R.

Решение алгебраических уравнений на маткаде Решение алгебраических уравнений на маткаде

Дробные уравнения

Команда Solve (Вычислить) из подменю Variable (Переменные) меню Symbolics (Символы)выдает множество решений: L = .

Решение алгебраических уравнений на маткаде

Решение 6 копируем в буфер, а затем выделяем маркером переменную x и активизируем команду Substitute (Замена) подменю Variable (Переменные) меню Symbolics (Символы) для замены переменной значением 6.

Рассмотрим другой пример: Решение алгебраических уравнений на маткаде

Последнее уравнение (рисунок справа) условно эквивалентно уравнению:2x=4. Решение уравнения Mathcad: 2. Формальное решение x = 2 не входит в область допустимых значений. Mathcad выдает правильное сообщение!

Решение алгебраических уравнений на маткаде Решение алгебраических уравнений на маткаде

Здесь также правильное решение: множество решений совпадает с областью допустимых значений L = D. Только следует учесть, что D=<R>.

Квадратные уравнения и алгебраические уравнения высших порядков.

Определение: Уравнение P(x)=0 называется алгебраическим уравнением n-го порядка, если P(x) представляет собой полином степени n, при n=2 данное уравнение называется квадратным уравнением.

При решении такого рода уравнения необходимо выполнить те же действия, что и при решении линейных уравнений.

Квадратное уравнение.

Решение алгебраических уравнений на маткаде

Команда Solve (Вычислить) подменю Variable (Переменные) меню Symbolics (Символы) дает решение в виде вектора: L= .

Иррациональное уравнения (уравнения с радикалами).

Корни (радикалы) могут вычисляться в MathCAD либо при помощи знака корня (клавиши [Ctrl+]), либо как степени (клавиша [^] с дробными показателями. Знак квадратного корня вводится нажатием клавиши []. Знак корня и квадратный корень можно найти на панели Calculator (Калькулятор). Последовательность действий при решении уравнений с радикалами та же, что и при решении рассмотренных ранее уравнений.

С точки зрения теории, между решениями уравнений с радикалами и решением алгебраических уравнений имеется два важных различия, по крайней мере, при нахождении действительных решений.

  • Радикалы определены не везде в действительной области. Это обстоятельство приводит к необходимости находить область определени, прежде чем решать само уравнение. Данная проблема справедливо игнорируется MathCAD, поскольку он не может знать, во множестве каких чисел (действительных или комплексных) вы намерены решать уравнение. Выход: вы можете самостоятельно найти область определения, воспользовавшись при этом возможностями MathCAD, связанными с решениями неравенств.
  • Вторая проблема, возникающая при решении уравнений с радикалами, имеет принципиальный характер. Функция x 2 (как и любая другая функция с четным показателем) на является инъективной (проблема главных значений). В связи с этим возведение в квадрат обеих частей уравнения, содержащего квадратные корни, не является эквивалентным преобразованием. Как всегда, при применении к обеим частям уравнения не инъективного преобразования увеличивается множество решений. В результате в него могут войти «фиктивные» решения. Как ни удивительно, MAthCAD сам производит проверку решений на «фиктивность».
Решение алгебраических уравнений на маткаде

Классический случай решения уравнения с радикалами.

Решение алгебраических уравнений на маткаде

Mathcad распознает «фиктивные» решения (которые могут возникнуть в результате неэквивалентного преобразования «возведение в квадрат») и выдает верное сообщение: Решение не найдено. L =

Решение алгебраических уравнений на маткаде Решение алгебраических уравнений на маткаде

В приведенных примерах демонстрируется способность MathCAD находить область определения иррационального уравнения путем решения неравенств.

Решение алгебраических уравнений на маткаде Решение алгебраических уравнений на маткаде

Уравнения с радикалами третьей степени, как и уравнения с комплексными коэффициентами, не представляют для MathCAD никакой сложности.

Уравнения с параметрами.
При решении уравнений с параметрами MathCAD ведет себя по-разному, в зависимости от того, каким образом производятся символьные вычисления — с помощью символьного знака равенства или команд меню Symbolics.

В данном примере использование палитры символьных преобразований позволяет решить уравнение (solve) и упрстить результат (simplify)

Видео:8. MathCad. Решение систем линейных алгебраических уравненийСкачать

8. MathCad. Решение систем линейных алгебраических уравнений

Решение алгебраических уравнений на маткаде

Уравнение и системы уравнений в математическом пакете Mathcad в символьном виде решаются с использованием специального оператора символьного решения solve в сочетании со знаком символьного равенства, который может быть также введен с рабочей панели “Символика”. Например:

Решение алгебраических уравнений на маткаде

Решение алгебраических уравнений на маткаде

Аналогичные действия при решении уравнений в Mathcad можно выполнить, используя меню “Символика”. Для этого необходимо записать вычисляемое выражение. Затем выделить переменную, относительно которой решается уравнение, войти в меню Символика, Переменная, Разрешить. Например:

Решение алгебраических уравнений на маткаде

В случае, если необходимо упростить полученный результат, используется знак равенства [=]. Например:

Решение алгебраических уравнений на маткаде

При решении некоторых уравнений, результат включает большое количество символов. Mathcad сохраняет его в буфере, а на дисплей выводитcя сообщение: “This array has more elements than can be displayed at one time. Try using the “submatrix” function” – “Этот массив содержит больше элементов, чем может быть отображено одновременно. Попытайтесь использовать функцию “submatrix””. В этом случае рекомендуется использовать численное решение. Или, в случае необходимости, символьное решение может быть выведено и отображено на дисплее.

Символьное решение может быть получено с использованием блока given … find. В этом случае при записи уравнения для связи его левой и правой части использует символ логического равенства “=” с панели инструментов Boolean, например:

Решение алгебраических уравнений на маткаде

Аналогичным способом решаются системы уравнений в символьном виде. Ниже приводятся примеры решения систем уравнений в символьном виде различными способами. При использовании оператора символьного решения solve в сочетании со знаком символьного равенства Решение алгебраических уравнений на маткадесистема уравнений должна быть задана в виде вектора, который вводится вместо левого маркера оператора solve, а перечень переменных, относительно которых решается система, вместо правого маркера. Например:

Решение алгебраических уравнений на маткаде

Пример использования блока given…find для решения системы уравнений:

Видео:Mathcad-09. Пример: уравненияСкачать

Mathcad-09. Пример: уравнения

Электронная библиотека

Задача ставится следующим образом:

Пусть имеется алгебраическое уравнение с одним неизвестным х или система алгебраических уравнений

Требуется решить данное уравнение или систему уравнений, т.е. найти те значения х, в которых уравнения превращаются в верное равенство.

Отыскание корней численными методами связано с несколькими задачами:

Ø Исследование существования корней в принципе, определение их количества и примерного расположения;

Ø Отыскание корней с заданной погрешностью

Всевозможные функции MathCAD нацелены на решение второй задачи, т.е. предполагается, что корни уже приблизительно локализированы. Выбор встроенных функций для решения уравнений и систем уравнений осуществляется в зависимости от специфики уравнения.

Решение одного уравнения с одним неизвестным

Рассмотрим алгебраическое уравнение f(x)=0 с одним неизвестным х, например, sin(x)=0.

Для решения таких уравнений MathCAD имеет встроенную функцию root, которая, в зависимости от типа задачи, может включать либо два, либо четыре аргумента и, соответственно, работает несколько по-разному.

Мнемоника команды выглядит следующим образом:

root (f(x), x) или root (f(x), x, a, b),

где f(х) – скалярная функция, определяющая уравнение; х – скалярная переменная, относительно которой решается уравнение; а, b – границы интервала, внутри которого происходит поиск корня.

Первый тип функции root требует дополнительного задания начального значе

ния переменной х. Для этого нужно просто предварительно присвоить х некоторое число. Поиск корня будет производиться вблизи этого числа. Таким образом, присвоение начального значения требует априорной информации о примерной локализации корня.

Приведем пример решения очень простого уравнения sin(x)=0, корни которого известны заранее (рис. 38).

Обратите внимание, что, хотя уравнение имеет бесконечное количество корней MathCAD находит (с заданной точностью) только один из них, х0, лежащий наиболее близко к х = 0,5. Если задать другое начальное значение, например х = 3, то решением будет другой корень уравнения х1 = π и т.д. Таким образом, для поиска корня средствами MathCAD требуется его предварительная локализация. Это связано с особенностями выбранного численного метода, который называется методом секущих.

Если уравнение неразрешимо, то при попытке найти его корень будет выдано сообщение об ошибке. Кроме того, к ошибке или выдаче неправильного корня может привести и попытка применить метод секущих в область локального экстремума. В этом случае секущая может иметь направление, близкое к горизонтальному, выводя точку следующего приближения далеко от предполагаемого корня. Для решения таких уравнений лучше применять функцию Minerr.

Рис. 7.1. Функция Minerr

Примечание: Для решения уравнения с одним неизвестным применимы и градиентные методы, относящиеся в MathCAD к системам уравнений.

Иногда удобнее задавать не начальное приближение к корню, а интервал [а, b], внутри которого корень заведомо находится. В этом случае следует использовать функцию root с четырьмя аргументами, а присваивать начальное значение х не нуж

но. Поиск корня будет осуществлен в промежутке между а и b альтернативным численным методом (Риддера или Брента). Явный вид функции f(x) может быть определен непосредственно в теле функции root (рис. 39).

Решение алгебраических уравнений на маткадеКогда root имеет четыре аргумента, следует помнить о двух ее особенностях:

Ø внутри интервала [а, b] не должно находиться более одного корня, иначе будет найден один из них, заранее неизвестно, какой именно;

Ø значения f(а) и f(b) должны иметь разный знак, иначе будет выдано сообщение об ошибке.

Решение алгебраических уравнений на маткадеЕсли уравнение не имеет действительных корней, но имеет мнимые, то их также можно найти. Например, уравнение х 2 +1=0, имеющее два чисто мнимых корня, решается два раза с разными начальными значениями (рис. 40).

При задании начального значения 0,5 численный метод отыскивает первый корень (отрицательную мнимую единицу –i), а при начальном значении –0,5 находится и второй корень i.

Для решения этого уравнения второй вид функции root (с четырьмя, а не с двумя аргументами) неприменим, поскольку f(х) является положительно определенной, и указать интервал, на границах которого она имела бы разный знак, невозможно.

Нахождение корней полинома

Если функция f(x) является полиномом, то все его корни можно определить, использую встроенную функцию polyroots(v), где v – вектор, составленный из коэффициентов полинома.

Поскольку полином n-й степени имеет ровно n корней (некоторые из них могут быть кратными), вектор v должен состоять из n+1 элемента. Результатом действия функции polyroots является вектор, составленный из n корней рассматриваемого полинома. При этом нет надобности вводить какое-либо начальное приближение, как для функции root.

Например, найдем корни полинома четвертой степени f(x)=х 4 -6х 3 +12х 2 -10х+3 с

помощью функции polyroots (рис. 41).

Рис. 7.2. Функция Polyroots

Запишем коэффициенты рассматриваемого в примере полинома в виде вектора. Первым в векторе должен идти свободный член полинома, вторым – коэффициент при х 1 и т.д. Соответственно, последним n+1 элементом вектора должен быть коэффициент при старшей степени x N .

Совет: Иногда исходный полином имеется не в развернутом виде, а, например, как произведение нескольких полиномов. В этом случае определить все его коэффициенты можно, выделив его и выбрав в меню Symbolics (Символика) пункт Expand (Разложить). В результате символьный процессор MathCAD сам преобразует полином в нужную форму, пользователю надо будет только корректно ввести ее в аргументы функции polyroots.

Далее показано действие функции polyroots. Обратите внимание, что численный метод вместо двух из трех действительных единичных корней (иными словами, кратного корня 1) выдает два мнимых числа. Однако малая мнимая часть этих корней находится в пределах погрешности, определяемой константой TOL, и не должна вводить пользователей в заблуждение. Просто нужно помнить, что корни полинома могут быть комплексными, и ошибка вычислений может сказываться как на действительной, так и на комплексной части искомого корня.

Для функции polyroots можно выбрать один из двух численных методов – метод полиномов Лаггера (он установлен по умолчанию) или метод парной матрицы.

Решение системы линейных алгебраических уравнений

Рассмотрим систему уравнений вида

В матричной форме СЛАУ записывается в эквивалентном виде:

где А – матрица коэффициентов СЛАУ размерности n×n; x – вектор неизвестных; В – вектор правых частей уравнений.

Решение алгебраических уравнений на маткаде

СЛАУ имеет единственное решение, если матрица А является невырожденной, т. е. ее определитель не равен нулю. С вычислительной точки зрения, решение СЛАУ не представляет трудностей, если матрица А не очень велика.

В MathCAD СЛАУ можно решить как в более наглядной форме (1), так и в более удобной для записи форме (2). Для первого способа следует использовать вычислительный блок Given/Find, а для второго – встроенную функцию решения системы линейных уравнений lsolve. Мнемоника написания команды следующая:

где А – матрица коэффициентов системы; В – вектор правых частей.

Применение функции lsolve показано на рис. 42.

В некоторых случаях, для большей наглядности представления СЛАУ, его можно решить точно так же, как систему нелинейных уравнений. Не забывайте, что при численном решении всем неизвестным требуется присвоить начальные значения (это сделано в первой строке листинга) (рис. 43). Они могут быть произвольными, так как решение СЛАУ с невырожденной матрицей единственно.

Решение системы нелинейных уравнений

Рис. 7.4. Решение системы

Рассмотрим решение системы N нелинейных уравнений с m неизвестными

Здесь fi(x1, … , xm) – некоторые скалярные функции от скалярных переменных x1, x2, …, хm и, возможно, от еще каких-либо переменных. Уравнений может быть как больше, так и меньше числа переменных. Заметим, что систему можно формально переписать в виде f(x)=0, где х – вектор, составленный из переменных x1, x2, …, хm; f(x) – соответствующая векторная функция.

Для решения систем имеется специальный вычислительный блок, состоящий из трех частей, идущих последовательно друг за другом:

1) Given – ключевое слово;

2) Система, записанная логическими операторами в виде равенств и, возможно, неравенств;

3) Find (х1, …, хm) – встроенная функция для решения системы относительно переменных х1, …, хm.

Вставлять логические операторы следует, пользуясь панелью инструментов Boolean (Булевы операторы). Если вы предпочитаете ввод с клавиатуры помните, что логический знак равенства вводится сочетанием клавиш + . Блок Given/Find используется для поиска решения итерационные методы, поэтому, как и для функции root, требуется задать начальные значения для всех х1, …, хm. Сделать это необходимо до ключевого слова Given. Значение функции Find есть вектор, составленный из решения по каждой переменной. Таким образом, число элементов вектора

Find равно числу аргументов.

Решение алгебраических уравнений на маткаде

В листинге (рис 44) приведен пример решения системы двух уравнений.

В первой строке листинга переменным х и у, относительно которых она будет решаться, присваиваются начальные значения. После этого следует ключевое слово Given и два логических оператора, выражающих рассматриваемую систему уравнений. Завершает вычислительный блок функция Find, содержащая вектор решения. Первый элемент вектора есть первый аргумент функции Find, второй элемент – ее второй аргумент.

Совет: Часто бывает очень полезно проверить точность решения уравнений, вычислив значения образующих их функций в найденных вычислительным процессором корнях.

Рис. 7.6. Точность

В листинге найдено только одно из двух решений – находящееся в правой нижней части графика (рис. 45). Чтобы отыскать и второе решение, следует повторить вычисления, изменив начальные значения так, чтоб они лежали ближе к другой точке пересечения графиков, например, х=–1, y=–1.

Пока мы рассмотрели пример системы из двух уравнений и таким же числом

неизвестных, что встречается наиболее часто. Но число уравнений и неизвестных может и не совпадать. Более того, в вычислительный блок можно добавить дополнительные условия в виде неравенств. Например, введение ограничения на поиск только отрицательных значений х (рис. 46).

Рис. 7.7. Ограничение на поиск

Обратите внимание, что, несмотря на те же начальные значения, что и в предыдущем листинге мы получили другой корень. Это произошло именно благодаря введению дополнительного неравенства, которое определено в блоке Given в предпоследней строке.

Если предпринять попытку решить несовместную систему, MathCAD выдаст сообщение об ошибке, гласящее, что ни одного решения не найдено, и предложение попробовать поменять начальные значения или значение погрешности.

Примечание: Вычислительный блок использует константу CTOL в качестве погрешности выполнения уравнений, введенных после ключевого слова Given. Другая константа TOL определяет условие прекращения итераций численным алгоритмом. Значение CTOL может быть задано пользователем, так же как и TOL, например, CTOL:=0,01. По умолчанию принято, что CTOL=TOL=0,001, но по желанию можно переопределить их.

Рис. 7.8. Переопределение

Вычислительным блоком с функцией Find можно найти и корень уравнения с одним неизвестным. Действие Find в этом случае совершенно аналогично уже рас

смотренным в данном разделе примерам. Задача поиска корня рассматривается как решение системы, состоящей из одного уравнения. Единственным отличием будет скалярный, а не векторный тип числа возвращаемого функцией Find (рис 47).

Символьное решение уравнений

Некоторые уравнения можно решить точно с помощью символьного процессора MathCAD. Делается это очень похоже на численное решение уравнений с применением вычислительного блока. Присваивать неизвестным начальные значения нет необходимости. Рассмотрим листинги символьного решение уравнения с одним неизвестным и системы двух уравнений с двумя неизвестными.

Как видно, вместо знака равенства после функции Find в листингах (рис. 48) следует знак символьных вычислений, который можно ввести с панели Symbolic, или, нажав клавиши + .

Решение алгебраических уравнений на маткаде

Рис. 7.9. Пример вычисления

Не забывайте, что сами уравнения должны иметь вид логических выражений, т.е. знаки равенства нужно вводить с помощью панели Booleans (Булевы операторы). Обратите внимание, что во втором листинге вычислены как два первых действительных корня, которые мы уже находили численным методом, так и два других мнимых корня. Эти два последних корня чисто мнимые, так как множитель

Срочно?
Закажи у профессионала, через форму заявки
8 (800) 100-77-13 с 7.00 до 22.00

📺 Видео

Решение систем линейных уравнений в MathCAD 14 (31/34)Скачать

Решение систем линейных уравнений в MathCAD 14 (31/34)

MathCAD Решение системы линейных уравнений матричным методомСкачать

MathCAD  Решение системы линейных уравнений матричным методом

Mathcad Prime. Урок 5 - Способы решения уравненийСкачать

Mathcad Prime. Урок 5 - Способы решения уравнений

Пример решения уравнения в MathCAD 14 (33/34)Скачать

Пример решения уравнения в MathCAD 14 (33/34)

Решение СЛАУ в пакете MathCadСкачать

Решение СЛАУ в пакете MathCad

MathCAD в физике (ч.5, решение алгебраических уравнений и их систем)Скачать

MathCAD в физике (ч.5, решение алгебраических уравнений и их систем)

MathCAD. Given - FindСкачать

MathCAD. Given - Find

MathCAD Решение системы уравненийСкачать

MathCAD  Решение системы уравнений

MathCAD Решение уравнений с помощью функции root 1 вариантСкачать

MathCAD  Решение уравнений с помощью функции root 1 вариант

MathCad решение систем уравнений методом Крамера.wmvСкачать

MathCad решение систем уравнений методом Крамера.wmv

5 Системы линейных алгебраических уравнений MathcadСкачать

5 Системы линейных алгебраических уравнений Mathcad

Ключевое слово solve в MathCAD 14 (26/34)Скачать

Ключевое слово solve в MathCAD 14 (26/34)

Mathcad Prime (часть 2)Скачать

Mathcad Prime (часть 2)

Числовое решение. Функция polyroots в MathCAD 14 (27/34)Скачать

Числовое решение. Функция polyroots в MathCAD 14 (27/34)

Решение СЛУ MathCad Prime 4 0Скачать

Решение СЛУ MathCad Prime 4 0

1 Решение системы линейных уравнений СЛАУ через обратную матрицу в Mathcad Определитель матрицыСкачать

1 Решение системы линейных уравнений СЛАУ через обратную матрицу в Mathcad Определитель матрицы
Поделиться или сохранить к себе:
Решение алгебраических уравнений на маткаде