Тема «Иррациональные уравнения и неравенства»
ВВЕДЕНИЕ В школьном курсе алгебры рассматриваются различные виды уравнений – линейные, квадратные, биквадратные, кубические, рациональные, с параметрами, иррациональные и другие. Данный раздел посвящен иррациональным уравнениям, методам их решения. Кроме того, в разделе введены понятия уравнений следствий и равносильных уравнений, а также приведены примеры задач, математическими моделями которых служат иррациональные уравнения. Приведенася небольшая историческая справка, посвященная введению иррациональных чисел ^ 1. ИЗ ИСТОРИИ
Термин «рациональное» (число) происходит от латиноамериканского слова ratio – отношение, которое является переводом греческого слова “логос”в отличие от рациональных чисел, числа, выражающие отношение несоизмеримых величин, были названы еще в древности иррациональными, т.е. нерациональными (по-гречески “алогос”) правда, первоначально термины “рациональный” и “иррациональный” относились не к числам, а к соизмеримым и соответственно не соизмеримым величинам, которые пифагорейцы называли выразимыми и невыразимыми, Теодор Киренский же симметричными и ассимметричными. В V-VI вв. римские авторы Капелла и Кассиодор переводили эти термины на латынь словами rationalis и irrationalis. Термин «соизмеримый» (commensurabilis) ввел в первой половине VI в. другой римский автор- Боэций.
Древнегреческие математики классической эпохи пользовались только рациональными числами (вернее целыми, дробными и положительными). В своих «Началах» Евклид излагает учение об иррациональностях чисто геометрически.
Математики Индии, Ближнего и Среднего Востока, развивая алгебру, тригонометрию и астрономию, не могли обойтись без иррациональных величин, которые, однако, длительное время не признавали за числа. Греки называли иррациональную величину, например, корень из квадратного числа, «алогос» – невыразимое словами, а позже европейские переводчики с арабского на латынь перевели это слово латинским словом surdus – глухой. В Европе термин surdus- глухой впервые появился в середине XII в. у Герарда Кремонского, известного переводчика математических прозведений с арабского на латынь, затем у итальянского математика Леонардо Фабоначчи и других европейских математиков, вплоть до XVIII в. Правда уже в XVI в. Отдельные ученые, в первую очередь итальянский математик Рафаэль Бомбелли и нидерландский математик Симон Стевин считали понятие иррационального числа равноправным с понятием рационального числа. Стевин писал: «Мы приходим к выводу, что не существует никаких абсурдных, иррациональных, неправильных, необъяснимых или глухих чисел, но что среди чисел существует такое совершенство и согласие, что нам надо размышлять дни и ночи над их удивительной закономерностью.»
Еще до Бомбелли и Стевина многие ученые стран Среднего Востока в своих трудах употребляли иррациональные числа как полноправные объекты алгебры. Более того, комментируя «Начала» Евклида и исследуя общую теорию отношения Евдокса, Омар Хайям уже в начале XII в. теоретически расширяет понятие числа до положительного действительного числа. В том же направлении много было сделано крупнейшим математиком XIII в. ат-Туси.
Математики и астрономы Ближнего и Среднего Востока вслед за астрономами древнего Вавилона и эллинистической эпохи широко пользовались шестидесятеричными дробями, арифметические действия с которыми они называли «арифметикой астрономов». По аналогии с шестидесятеричными дробями самаркандский ученый XV в. ал-Каши в работе «Ключ арифметики» ввел десятичные дроби которыми он пользовался для повышения точности извлечения корней. Независимо от него по такому же пути шел открывший в 1585 г. десятичные дроби в Европе Симон Стевин, который в своих «приложениях к алгебре» (1594 г.) показал, что десятичные дроби можно использовать для бесконечно близкого приближения к действительному числу. Таким образом, уже в XVI в. зародилась идея о том, что естественным аппаратом для введения и обоснования понятия иррационального числа являются десятичные дроби. Появление «Геометрии» Декарта облегчило понимание связи между измерением любых отрезков (и геометрических величин вообще) и необходимости расширения понятия рационального числа. На числовой оси иррациональные числа, как и рациональные, изображаются точками. Это геометрическое толкование позволило лучше понять природу иррациональных чисел и способствовало их признанию.
В современных учебных руководствах основа определения иррационального числа опирается на идеи ал-Каши, Стевина и Декарта об измерении отрезков и о неограниченном приближении к искомому числу с помощью бесконечных десятичных дробей. Однако обоснованием свойств действительных чисел и полная теория их была разработана лишь в XIX в.
^ 2. ОПРЕДЕЛЕНИЕ ИРРАЦИОНАЛЬНЫХ УРАВНЕНИЙ
Равносильные уравнения. Следствия уравнений.
При решении уравнений выполняются различные тождественные преобразования над выражениями, входящими в уравнение. При этом исходное уравнение изменяется другими, имеющими те же корни. Такие уравнения называются равносильными.
Определение: Уравнение f(x)=g(x) равносильно уравнению f1(x)=g1(x), если каждый корень первого уравнения является корнем второго и обратно, каждый корень второго уравнения является корнем первого, т.е. их решения совпадают.
Например, уравнения 3x-6=0; 2х–1=3 равносильны, т.к. каждое из уравнений имеет один корень х=2.
Любые два уравнения, имеющие пустое множество корней, считают равносильными.
Тот факт, что уравнения f(x)=g(x) и f1(x)=g1(x) равносильны, обозначают так:
В процессе решения уравнений важно знать, при каких преобразованиях данное уравнение переходит в равносильное ему уравнение.
Теорема 1: ^ Если какое-либо слагаемое перенести из одной части уравнения в другую, изменив его знак, то получим уравнение, равносильное данному.
Доказательство:
Докажем, что уравнение f(x) = g(x)+q(x) (1)
равносильно уравнению
Пусть х=а – корень уравнения. Значит имеет место числовое равенство f(a)=g(a)+q(a) . Но тогда по свойству действительных чисел будет выполняться и числовое равенство f(a)-q(a)=g(a) показывающее, что а – корень уравнения (2). Аналогично доказывается, что каждый корень уравнения (2) является и корнем уравнения (1).
Что и требовалось доказатью.
Теорема 2: ^ Если обе части уравнения умножить или разделить на отличное от нуля число, то получим уравнение, равносильное данному.
Доказательство: докажем, что уравнение 6х–3=0 равносильно уравнению ^ 2х–1=0
решим уравнение 6х–3=0 и уравнение 2х–1=0
так как корни уравнений равны, то уравнения равносильны.
Что и требовалось доказать.
ОДЗ этого уравнения
Мы знаем, что дробь равна нулю в том случае, когда ее числитель равен нулю, т.е. х²+х–2=0, а знаменатель не равен 0. Решая уравнение х²+х–2=0, находим корни х1=1, х2 = –2 . Но число 1 не входит в ОДЗ данного уравнения и значит, исходное уравнение имеет один корень х=-2.
В этом случае говорят, что уравнение х²+х–2=0, есть следствие уравнения
пусть даны два уравнения:
Если каждый корень уравнения (3) является корнем уравнения (4), то уравнение (4) называют следствием уравнения (3).
Э
тот факт записывают так:
В том случае, когда уравнение (3) — есть также следствие уравнения (4), эти уравнения равносильны.
^ Два уравнения равносильны в том, и только в том случае, когда каждое из них является следствием другого.
В приведенном выше примере уравнение – следствие
х²+х–2=0, имеет два корня x1=1 и х2 =-2, а исходное уравнение имеет один корень х=-2. В этом случае корень х=1 называют посторонним для исходного уравнения
В общем случае корни уравнения-следствия, не являющиеся корнями исходного уравнения, называют посторонними.
Итак, если при решении уравнения происходит переход к уравнению – следствию, то могли появиться посторонние корни. В этом случае все корни уравнения-следствия нужно проверить, подставляя их в исходное уравнение. В некоторых случаях выявление посторонних корней облегчается знанием ОДЗ исходного уравнения – корни, не принадлежащие ОДЗ, можно сразу отбросить. Так, в приведенном примере посторонний корень х=1 не входит в ОДЗ уравнения
и потому отброшен.
И
ногда посторонние корни могут появиться и при тождественных преобразованиях, если они приводят к изменению ОДЗ уравнения. Например, после приведения подобных членов в левой части уравнения
п
олучим уравнение следствие х²-4=0 имеющее два корня х1 = 2, х2 = -2 корень х2 = -2 – посторонний, так как не входит в ОДЗ исходного уравнения.
В тех случаях, когда в результате преобразований произошел переход от исходного уравнения к уравнению, не являющемуся его следствием, возможна потеря корней.
Например, уравнение (х+1)(х+3)= х+1 (5)
Имеет два корня. Действительно, перенося все члены уравнения в левую часть и вынося х+1 за скобки, получим (х+1)(х+2)=0, откуда находим х1=-1, х2=-2 .
Если же обе части уравнения (5) разделить («сократить») на х+1, то получим уравнение х+3=1, имеющее один корень х=-2. В результате такого преобразования корень х=-1 потерян. Поэтому делить обе части уравнения на выражение, содержащее переменную, можно лишь в том случае, когда это выражение отлично от нуля.
Для того, чтобы в процессе решения уравнения избежать потери корней, необходимо следить за тем, чтобы переход осуществлялся либо к равносильным уравнениям, либо к уравнениям-следствиям.
2.2. Определение иррациональных уравнений.
Иррациональными называются уравнения, в которых переменная содержится под знаком корня или под знаком операции возведения в дробную степень.
^ 3. МЕТОДЫ РЕШЕНИЯ ИРРАЦИОНАЛЬНЫХ УРАВНЕНИЙ.
3.1. Решение иррациональных уравнений методом возведения обеих частей уравнения в одну и ту же степень.
^ Пример №1 Р
ешить уравнение
В
озведем обе части уравнения (1) в квадрат:
далее последовательно имеем:
5х – 16 = х² — 4х + 4
х² — 4х + 4 – 5х + 16 = 0
Проверка: Подставив х=5 в уравнение (1), получим – верное равенство. Подставив х= 4 в уравнение (1), получим – верное равенство. Значит оба найденных
значения – корни уравнения.
Преобразуем уравнение к виду:
и применим метод возведения в квадрат:
далее последовательно получаем.
Р
азделим обе части последнего уравнения почленно на 2:
е
ще раз применим метод возведения в квадрат:
х1 х2 = -14 х2 = -1
по теореме, обратной теореме Виета, х1=14, х2 = -1
корни уравнения х²-13х–14 =0
Проверка: подставив значение х=-14 в уравнение (2), получим–
— не верное равенство. Поэтому х = -14 – не корень уравнения (2).
^ Подставив значение x=-1 в уравнение (2), получим- — верное равенство. Поэтому x=-1- корень уравнения (2). Ответ: -1
3.2 Метод введения новых переменных.
Конечно, можно решить это уравнение методом возведения обеих частей уравнения в одну и ту же степень. Но можно решить и другим способом – методом введения новых переменных.
Введем новую переменную Тогда получим 2y²+y–3=0 – квадратное уравнение относительно переменной y. Найдем его корни:
Т.к. , то – не корень уравнения, т.к. не
может быть отрицательным числом . А — верное равенство, значит x=1- корень уравнения.
Искусственные приёмы решения иррациональных уравнений.
Решение:
^ Умножим обе части заданного уравнения на выражение
То уравнение (1) примет вид:
Произведение равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю, а другой при этом известен. Тогда x1=0.Остаётся решить уравнение:
Сложив уравнения (1) и (2), придём к уравнению
Решая уравнение (3) методом возведения в квадрат, получим:
x1=0, x2=4, x3= -4 подставим в уравнение
— не верное равенство, значит x1=0- не корень уравнения.
— верное равенство, значит x2=4- корень уравнения.
— не верное равенство, значит x3= -4- не корень уравнения.
Итак, уравнения, которые содержат переменную под знаком корня, называются иррациональными. Иррациональные уравнения решаются в основном возведением обеих частей уравнения в квадрат (или n-ую степень) или введением новой переменной. Кроме того, пользуются и искусственными приемами решения иррациональных уравнений.
Если в неравенство входят функции под знаком корня, то такие неравенства называют иррациональными.
Стандартный метод решения этих неравенств заключается в возведении обеих частей неравенства в нужную степень: если в неравенство входит квадратный корень, то в квадрат; входит корень третьей степени − в куб и т. д. Однако, преобразования неравенств, возводить в квадрат, не нарушая равносильности, можно только неравенство, у которого обе части неотрицательны. При возведении же в квадрат неравенств, части которых имеют разные знаки, могут получиться неравенства, как равносильные исходному, так и неравносильные ему. Простой пример: –1 0. Следовательно, обе части неравенства неотрицательны (для тех x, которые являются решениями неравенства, другие x нас не интересуют). Значит, возведение в квадрат не нарушает равносильности и можно записать равносильную нашему неравенству систему неравенств:
Видео:Иррациональные уравнения и их системы. 11 класс.Скачать
Читать реферат по математике: «Иррациональные уравнения и неравенства» Страница 1
ученика 11 «В» класса
Решение иррациональных уравнений стандартного вида.Решение иррациональных уравнений смешанного вида.Решение сложных иррациональных уравнений.
Решение иррациональных неравенств стандартного вида.Решение нестандартных иррациональных неравенств.Решение иррациональных неравенств смешанного вида.
Я, Торосян Левон, ученик 11 «В» класса, выполнил реферат по теме: «Иррациональные уравнения и неравенства».
Особенностью моей работы является то, что в школьном курсе на решение иррациональных уравнений отводится очень мало времени, а ВУЗовские задания вообще не решаются. Решение иррациональных неравенств в школьном курсе не рассматри- вают, а на вступительных экзаменах эти задания часто дают. Я самостоятельно изучил правила решения иррациональных уравнений и неравенств. В реферате показаны решения как иррациональных уравнений и неравенств стандартного типа, так и повышенной сложности. Поэтому реферат можно использовать как учебное пособие для подготовки в ВУЗ, также рефератом можно пользоваться при изучении этой темы на факультативных занятиях.
II. Иррациональные уравнения
Иррациональным называется уравнение, в котором переменная содержится под знаком корня.
Решаются такие уравнения возведением обеих частей в степень. При возведении в четную степень возможно расширение области определения заданного уравнения. Поэтому при решении таких иррациональных уравнений обязательны проверка или нахождение области допустимых значений уравнений. При возведении в нечетную степень обеих частей иррационального уравнения область определения не меняется.
Иррациональные уравнения стандартного вида можно решить пользуясь следующим правилом:
Решение иррациональных уравнений стандартного вида:
а) Решить уравнение= x – 2,
2x – 1 = x2 – 4x + 4,Проверка:
x2 – 6x + 5 = 0,х = 5,= 5 – 2,
x2 = 1 – постор. кореньх = 1,1 – 2 ,
Ответ: 5пост. к.1 -1.
б) Решить уравнение= х + 4,
в) Решить уравнение х – 1 =
х3 – 3х2 + 3х – 1 = х2 – х – 1,
х = 0илих2 – 4х + 4 = 0,
г) Решить уравнение х –+ 4 = 0,
х2 + 8х + 16 = 25х – 50,х = 11,11 –+ 4 = 0,
х2 – 17х + 66 = 0,0 = 0
х1 = 11,х = 6,6 –+ 4 = 0,
Решение иррациональных уравнений смешанного вида:
Иррациональные уравнения, содержащие знак модуля:
а) Решить уравнение=
Учитывая ноль подкоренного выражения, данное уравнение равносильно двум системам:
Видео:СУПЕР ЛАЙФХАК — Как решать Иррациональные УравненияСкачать
Похожие работы
Тема: Иррациональные уравнения и неравенства |
Предмет/Тип: Математика (Реферат) |
Тема: Иррациональные уравнения и неравенства |
Предмет/Тип: Математика (Реферат) |
Тема: Иррациональные уравнения и неравенства |
Предмет/Тип: Математика (Статья) |
Тема: Иррациональные уравнения |
Предмет/Тип: Математика (Курсовая работа (п)) |
Тема: Иррациональные уравнения |
Предмет/Тип: Математика (Реферат) |
«РефератКо» — электронная библиотека учебных, творческих и аналитических работ, банк рефератов. Огромная база из более 766 000 рефератов. Кроме рефератов есть ещё много дипломов, курсовых работ, лекций, методичек, резюме, сочинений, учебников и много других учебных и научных работ. На сайте не нужна регистрация или плата за доступ. Всё содержимое библиотеки полностью доступно для скачивания анонимному пользователю
Видео:Алгебра 10 класс (Урок№20 - Иррациональные уравнения и неравенства.)Скачать
Claw.ru | Рефераты по математике | Иррациональные уравнения и неравенства
Видео:Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнемСкачать
Иррациональные уравнения и неравенства
| Категория реферата: Рефераты по математике
| Теги реферата: анализ темы курсовой работы, обучение реферат
| Добавил(а) на сайт: Kaljagin.
уравнения и неравенства
[pic] реферат по алгебре ученика 11 «В» класса
II. Основные правила
III. Иррациональные уравнения:
. Решение иррациональных уравнений стандартного вида.
. Решение иррациональных уравнений смешанного вида.
. Решение сложных иррациональных уравнений.
IV. Иррациональные неравенства:
. Решение иррациональных неравенств стандартного вида.
. Решение нестандартных иррациональных неравенств.
. Решение иррациональных неравенств смешанного вида.
VI. Список литературы
Я, Торосян Левон, ученик 11 «В» класса, выполнил реферат по теме:
«Иррациональные уравнения и неравенства».
Особенностью моей работы является то, что в школьном курсе на решение иррациональных уравнений отводится очень мало времени, а ВУЗовские задания вообще не решаются. Решение иррациональных неравенств в школьном курсе не рассматри- вают, а на вступительных экзаменах эти задания часто дают.
Я самостоятельно изучил правила решения иррациональных уравнений и неравенств.
Рекомендуем скачать другие рефераты по теме: реферат на тему организация, написание дипломной работы.
📽️ Видео
ИРРАЦИОНАЛЬНЫЕ НЕРАВЕНСТВА неравенства с корнемСкачать
9 класс, 6 урок, Иррациональные неравенстваСкачать
Уравнения с корнем. Иррациональные уравнения #shortsСкачать
8 класс, 38 урок, Иррациональные уравненияСкачать
Иррациональные неравенства | Математика ЕГЭ 10 класс | УмскулСкачать
Иррациональные уравнения и неравенстваСкачать
Иррациональные неравенства. 11 класс.Скачать
Ограничения в иррациональных уравнениях #shorts #ЕГЭ #ОГЭ #математика #подготовкакегэ #егэматематикаСкачать
Как решать неравенства? Математика 10 класс | TutorOnlineСкачать
✓ Иррациональное уравнение | ЕГЭ-2018. Задание 12. Математика. Профильный уровень | Борис ТрушинСкачать
Иррациональные уравнения | Математика ЕГЭ 10 класс | УмскулСкачать
Равносильность уравнений и неравенств. Видеоурок 7. Алгебра 10 классСкачать
Иррациональные уравнения | Математика ЕГЭ 10 класс | УмскулСкачать
Иррациональные неравенства | Математика ЕГЭ | УмскулСкачать
10 класс. Алгебра. Иррациональные неравенства.Скачать