Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Видео:Математика| Разложение квадратного трехчлена на множители.Скачать

Математика| Разложение квадратного трехчлена на множители.

Калькулятор онлайн.
Выделение квадрата двучлена и разложение на множители квадратного трехчлена.

Т.е. задачи сводятся к нахождению чисел ( p, q ) и ( n, m )

Программа не только даёт ответ задачи, но и отображает процесс решения.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода квадратного трехчлена, рекомендуем с ними ознакомиться.

В качестве переменной может выступать любая латинсая буква.
Например: ( x, y, z, a, b, c, o, p, q ) и т.д.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5x — 3,5x^2

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 3&1/3 — 5&6/5x +1/7x^2
Результат: ( 3frac — 5frac x + fracx^2 )

При вводе выражения можно использовать скобки. В этом случае при решении введённое выражение сначала упрощается.
Например: 1/2(x-1)(x+1)-(5x-10&1/2)

Видео:Разложение квадратного трехчлена на множители. 8 класс.Скачать

Разложение квадратного трехчлена на множители. 8 класс.

Решение уравнений, сводящихся к квадратным

Биквадратные уравнения

Биквадратным уравнением называется уравнение вида:

$$ ax^4+bx^2+c = 0, a neq 0 $$

Алгоритм решения биквадратного уравнения

Шаг 1. Ввести новую переменную: $z = x^2 ge 0$.

Переписать уравнение для новой переменной: $az^2+bz+c = 0$

Шаг 2. Решить полученное квадратное уравнение.

Если $D gt 0$, $z_ = frac<-b pm sqrt> $. Проверить условие $z ≥ 0$, если положительных корней нет, решений нет, переход на шаг 4.

Если D = 0,$z_0 = -frac$. Проверить условие $z ge 0$, если корень отрицательный, решений нет, переход на шаг 4.

Если $D lt 0$, решений нет, переход на шаг 4.

Шаг 3.Если после шага 2 остались положительные корни, найти x: $x = pm sqrt$.

Шаг 4. Работа завершена.

Шаг 1. $z = x^2 ge 0, z^2+7z-30 = 0$

$z_1 = -10 lt 0, z_2 = 3 gt 0 $

Шаг 3. Находим корни из положительного $z: x_ = pm sqrt$

Метод разложения на множители

Решение уравнений, в которые переменная x входит с различными натуральными степенями и вещественными коэффициентами, по существу, является поиском корней многочлена.

Число $x_0$ называют корнем многочлена $P_n (x) = a_n x^n+a_ x^ + ⋯ + a_1 x+a_0$ если $P_n (x_0 ) = 0$.

Для многочлена $P_n$ (x) произвольной степени n справедливо следующее.

Если $x = x_0$ является корнем многочлена $P_n$ (x), то $P_n (x) = (x-x_0) P_ (x)$, где $P_ (x)$ — многочлен степени n-1.

Таким образом, разными способами находя корни и формируя скобки, можно постепенно добиваться понижения степени «оставшегося» многочлена, пока не будут найдены все корни.

При разложении многочлена

  • множители вида (x-a) называют линейными множителями ;
  • множители вида $ (x^2+bx+c)$, для которых $D lt 0$, называют неприводимыми квадратичными множителями .

Любой многочлен $P_n$ (x) можно представить в виде конечного числа линейных и/или неприводимых квадратичных множителей.

Причём, такое представление единственно с точностью до порядка множителей.

Для разложения многочленов на множители применяются разные методы:

  • вынесение общего множителя за скобку (см. §19 справочника для 7 класса);
  • группировка (см. §20 справочника для 7 класса);
  • формулы сокращенного умножения (см. §25 справочника для 7 класса);
  • метод неопределённых коэффициентов;
  • выделение полного квадрата и т.п.

Решим уравнение $2x^3-x^2-8x+4 = 0$.

Раскладываем на множители: $x^2 (2x-1)-4(2x-1) = 0$

$$ (x^2-4)(2x-1) = 0 Rightarrow (x-2)(x+2)(2x-1) = 0 $$

Корни уравнения: $x_1 = 2, x_2 = -2, x_3 = frac$

Метод замены переменной

Замена переменной – это уравнение, с помощью которого можно упростить исходное уравнение, и перейти к решению системы из двух более простых уравнений:

$Исходное quad сложное quad уравнение iff <left< begin Новая quad переменная quad (урав. quad связи quad со quad старой quad переменной \ Исходное quad урав. quad в quad «упрощ.» quad виде end right.>$

Например, для биквадратных уравнений:

$$ ax^4+bx^2+c = 0 iff <left< begin z = x^2 ge 0 \ az^2+bz+c = 0 end right.> $$

Можно предложить аналогичные схемы для других уравнений:

$$ ax+b sqrt+c = 0 iff <left< begin z = sqrt ge 0 \ az^2+bz+c = 0 end right.> $$

И, в общем виде, для любой рациональной степени n:

$$ ax^+bx^n+c = 0 iff <left< begin z = x^n \ az^2+bz+c = 0 end right.> , n in Bbb Q $$

В других случаях замена переменной не настолько очевидна.

Но при удачном выборе, этот метод очень упрощает задачу.

Раскроем скобки:$ x^2-x = frac$. Сделаем замену:

$$ z = frac Rightarrow z(z-2) = 24 Rightarrow z^2-2z-24 = 0 Rightarrow (z-6)(z+4) = 0 Rightarrow left[ begin z_1 = -4 \ z_2 = 6 end right.$$

Возвращаемся к исходной переменной x:

$$ left[ begin x^2-x = -4 \ x^2-x = 6 end right. Rightarrow left[ begin x^2-x+4 = 0 \ x^2-x-6 = 0 end right. Rightarrow left[ begin D lt 0, x in varnothing \ (x-3)(x+2) = 0 end right. Rightarrow left[ begin x_1 = -2 \ x_2 = 3 end right. $$

При использовании метода замены переменной не забывайте возвращаться к исходной переменной.

Выделение полного квадрата

Метод выделения полного квадрата является одним из методов разложения на множители. Его идея – представить многочлен в виде разности квадратов двух других многочленов степенью пониже, и разложить разность на две скобки:

$$ P_n (x) = Q_k^2 (x)-R_m^2 (x) = (Q_k (x)-R_m (x))(Q_k (x)+R_m (x)) $$

Такое разложение не всегда возможно.

Рассмотрим выделение полного квадрата для квадратного трёхчлена:

$$ = a Biggl(x+frac Biggr)^2 — frac = a Biggl(x+ frac Biggr)^2- frac, D = b^2-4ac $$

Нами выделен полный квадрат $(x+frac)^2$.

Данное выражение используется для построения и анализа графиков парабол (см. §28 данного справочника).

А его разложение на две линейные скобки, известное как теорема Виета (см. §26 данного справочника), возможно только при условии $D ge 0$.

Решить уравнение $x^4+4x^2-1 = 0$

Выделим полный квадрат и разложим на множители:

$$ left[ begin x^2+2-sqrt = 0 \ x^2+2+sqrt = 0 end right. Rightarrow left[ begin x^2 = sqrt -2 gt 0 \ x^2 = -(2+sqrt) lt 0 end right. Rightarrow x_1,2 = pm sqrt<sqrt-2> $$

Примеры

Пример 1. Решите биквадратные уравнения:

Делаем замену: $2x^4+7x^2-4 = 0 iff <left< begin z = x^2 ge 0 \ 2z^2+7z-4 = 0 end right.>$

Решаем квадратное уравнение: $D = 7^2-4 cdot 2 cdot (-4) = 49+32 = 81 = 9^2$

$$ z = frac = left[ begin z_1 = -4 lt 0 \ z_2 = frac gt 0 end right. $$

Выбираем положительный z и возвращаемся к исходной переменной x:

Делаем замену: $(x+3)^4-10(x+3)^2+24 = 0 iff <left< begin z = (x+3)^2 ge 0 \ z^2-10z+24 = 0 end right.>$

Решаем квадратное уравнение: $z^2-10z+24 = 0 Rightarrow (z-4)(z-6) = 0 Rightarrow left[ begin z_1 = 4 \ z_2 = 6 end right.$

Берём оба корня и возвращаемся к исходной переменной.

$$ left[ begin (x+3)^2 = 4 \ (x+3)^2 = 6 end right. Rightarrow left[ begin x+3 = pm sqrt \ x+3 = pm sqrt end right. Rightarrow left[ begin x_ = -3 pm 2 \ x_ = -3 pm sqrt end right. Rightarrow left[ begin x_1 = -5 \ x_2 = -1 \ x_ = -3 pm sqrt end right. $$

Пример 2. Решите уравнения аналогичные биквадратным:

Делаем замену: $x+4 sqrt-60 = 0 iff <left< begin z = sqrt ge 0 \ z^2+4z-60 = 0 end right.>$

Решаем квадратное уравнение: $ z^2+4z-60 = 0 Rightarrow (z+10)(z-6) = 0 Rightarrow left[ begin z_1 = -10 \ z_2 = 6 end right.$

Выбираем положительный корень и возвращаемся к исходной переменной:

Делаем замену: $(x-1)^6-7(x-1)^3-8 = 0 iff <left< begin z = (x-1)^3 \ z^2-7z-8 = 0 end right.>$

Решаем квадратное уравнение: $ z^2-7z-8 = 0 Rightarrow (z+1)(z-8) = 0 Rightarrow left[ begin z_1 = -1 \ z_2 = 8 end right.$

При замене куба знак z может быть любым, берём оба корня и возвращаемся к исходной переменной.

$$ left[ begin (x-1)^3 = -1 \ (x-1)^3 = 8 end right. Rightarrow left[ begin x-1 = -1 \ x-1 = 2 end right. Rightarrow left[ begin x_1 = 0 \ x_2 = 3 end right. $$

Пример 3. Решите уравнения с помощью замены переменной:

Заметим, что $(x+3)^2 = x^2+6x+9$. Получаем:

$$ (x^2+6x)^2-(x^2+6x+9) = 33 Rightarrow (x^2+6x)^2-(x^2+6x)-42 = 0 $$

Решаем квадратное уравнение: $ z^2-z-42 = 0 Rightarrow (z+6)(z-7) = 0 Rightarrow left[ begin z_1 = -6 \ z_2 = 7 end right.$

Берём оба корня и возвращаемся к исходной переменной.

$$ left[ begin x^2+6x = -6 \ x^2+6x = 7 end right. Rightarrow left[ begin x^2+6x+6 = 0 \ x^2+6x-7=0 end right. Rightarrow left[ begin D = 12, x = frac<-6 pm 2 sqrt> \ (x+7)(x-1) = 0 end right. Rightarrow left[ begin x_ = -3 pm sqrt \ x_3 = -7 \ x_4 = 1 end right. $$

Делаем замену: $ frac + frac = 2 iff left[ begin z = x^2+3 ge 3 \ frac + frac = 2 end right.$

Решаем уравнение относительно z:

$$ frac + frac = 2 Rightarrow frac = frac Rightarrow 4(z+1)+5z = 2z(z+1) $$

$$ 2z^2+2z-9z-4 = 0 Rightarrow 2z^2-7z-4 = 0 $$

$$ D = 7^2-4 cdot 2 cdot (-4) = 49+32 = 81 = 9^2 $$

$$ z = frac = left[ begin z_1 = — frac lt 3 \ z_2 = 4 gt 3 end right. $$

Выбираем корень больше 3 и возвращаемся к исходной переменной:

$$ x^2+3 = 4 Rightarrow x^2 = 1 Rightarrow x_ = pm 1$$

Пример 4*. Решите уравнения:

Приведём это уравнение к биквадратному.

В линейных множителях (x+a) выберем все a =

Найдем их среднее арифметическое (см. §52 справочника для 7 класса)

Замена переменных $z = x+a_$:

Упрощаем уравнение, используя формулу разности квадратов:

$$ (z^2-9)(z^2-1) = 945 Rightarrow z^4-10z^2+9 = 945 Rightarrow z^4-10z^2-936 = 0 $$

Получили биквадратное уравнение.

Делаем замену: $z^4-10z^2-936 = 0 iff <left< begin t = z^2 ge 0 \ t^2-10t-936 = 0 end right.> $

Решаем квадратное уравнение:

$$ D = 100+4 cdot 936 = 3844 = 62^2, t = frac = left[ begin t_1 = -26 lt 0 \ t_2 = 36 gt 0 end right. $$

Выбираем положительный корень и возвращаемся к переменной z:

$$ z = pm sqrt = pm sqrt = pm 6 $$

Возвращаемся к исходной переменной x:

$$ x = z-4 = pm 6-4 = left[ begin x_1 = -10 \ x_2 = 2 end right. $$

$$ z- frac =2,1 |times z (z neq 0) $$

$$ z^2-2,1z-1 = 0 Rightarrow D = 2,1^2+4 = 8,41 = 2,9^2; z = frac = left[ begin z_1 = -0,4 \ z_2 = 2,5 end right. $$

Берём оба корня и возвращаемся к исходной переменной.

$$ left[ begin frac = -0,4 \ frac = 2,5 end right. Rightarrow left[ begin x^2+1 = -0,4x \x^2+1 = 2,5x end right. Rightarrow left[ begin x^2+0,4x+1 = 0 \ x^2-2,5x+1 = 0 end right. $$

В первом уравнении $D = 0,4^2-4 lt 0$, решений нет.

Во втором уравнении (x-2)(x-1/2) = 0 $Rightarrow left[ begin x_1 = frac \ x_2 = 2 end right.$

Видео:Квадратный Трехчлен / Разложение квадратного трехчлена на множители, Как решать Квадратные УравненияСкачать

Квадратный Трехчлен / Разложение квадратного трехчлена на множители, Как решать Квадратные Уравнения

Разложение квадратного трёхчлена на множители

Видео:ОГЭ 2019 ЗАДАНИЕ 21. Биквадратное уравнение.Скачать

ОГЭ 2019 ЗАДАНИЕ 21. Биквадратное уравнение.

Как разложить на множители квадратный трёхчлен

Квадратный трёхчлен — это многочлен вида ax 2 + bx + c .

В прошлых уроках мы решали квадратные уравнения. Общий вид таких уравнений выглядел так:

Левая часть этого уравнения является квадратным трёхчленом.

Одним из полезных преобразований при решении задач является разложение квадратного трёхчлена на множители. Для этого исходный квадратный трёхчлен приравнивают к нулю и решают квадратное уравнение. В этом случае говорят, что выполняется поиск корней квадратного трёхчлена.

Полученные корни x1 и x2 следует подстáвить в следующее выражение, которое и станет разложением:

Таким образом, чтобы разложить квадратный трёхчлен на множители при помощи решения квадратного уравнения, нужно воспользоваться следующей готовой формулой:

Где левая часть — исходный квадратный трёхчлен.

Пример 1. Разложить на множители следующий квадратный трёхчлен:

Найдём корни квадратного трёхчлена. Для этого приравняем данный квадратный трёхчлен к нулю и решим квадратное уравнение:

В данном случае коэффициент b является чётным. Поэтому можно воспользоваться формулами для чётного второго коэффициента. Чтобы сэкономить время, некоторые подробные вычисления можно пропустить:

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Итак, x1 = 6 , x2 = 2 . Теперь воспользуемся формулой ax 2 + bx + c = a(xx1)(xx2). В левой части вместо выражения ax 2 + bx + c напишем свой квадратный трёхчлен x 2 8x + 12. А в правой части подставим имеющиеся у нас значения. В данном случае a = 1, x1 = 6, x2 = 2

Если a равно единице (как в данном примере), то решение можно записать покороче:

Чтобы проверить правильно ли разложен квадратный трёхчлен на множители, нужно раскрыть скобки у правой части получившегося равенства.

Раскроем скобки у правой части равенства, то есть в выражении (x − 6)(x − 2) . Если мы всё сделали правильно, то должен получиться квадратный трёхчлен x 2 8x + 12

Пример 2. Разложить на множители следующий квадратный трёхчлен:

Приравняем данный квадратный трёхчлен к нулю и решим уравнение:

Как и в прошлом примере коэффициент b является чётным. Поэтому можно воспользоваться формулами для чётного второго коэффициента:

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Итак, x1 = 4 , x2 = 3 . Приравняем квадратный трехчлен 2x 2 − 14x + 24 к выражению a(xx1)(xx2) , где вместо переменных a , x1 и x2 подстáвим соответствующие значения. В данном случае a = 2

Выполним проверку. Для этого раскроем скобки у правой части получившегося равенства. Если мы всё сделали правильно, то должен получиться квадратный трёхчлен 2x 2 − 14x + 24

Видео:5 Лайфхаков Которые Помогут Решить Биквадратное УравнениеСкачать

5 Лайфхаков Которые Помогут Решить Биквадратное Уравнение

Как это работает

Разложение квадратного трёхчлена на множители происходит, если вместо коэффициентов квадратного трёхчлена подстáвить теорему Виета и выполнить тождественные преобразования.

Для начала рассмотрим случай, когда коэффициент a квадратного трёхчлена равен единице:

Вспоминаем, что если квадратное уравнение является приведённым, то теорема Виета имеет вид:

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Тогда приведённый квадратный трехчлен x 2 + bx + c можно разложить на множители следующим образом. Сначала выразим b из уравнения x1 + x2 = −b . Для этого можно умножить обе его части на −1

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Переменную c из теоремы Виета выражать не нужно — она уже выражена. Достаточно поменять местами левую и правую часть:

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Теперь подставим выраженные переменные b и c в квадратный трёхчлен x 2 + bx + c

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Раскроем скобки там где это можно:

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

В получившемся выражении выполним разложение многочлена на множители способом группировки. В данном случае удобно сгруппировать первый член со вторым, а третий с четвёртым:

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Из первых скобок вынесем общий множитель x , из вторых скобок — общий множитель −x2

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Далее замечаем, что выражение ( xx1 ) является общим множителем. Вынесем его за скобки:

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Но это был случай, когда исходный квадратный трёхчлен является приведённым. В нём коэффициент a равен единице. И соответственно, в формуле разложения такого квадратного трехчлена коэффициент a можно опустить.

Теперь рассмотрим случай, когда коэффициент a квадратного трёхчлена не равен единице. Это как раз тот случай, когда в формуле разложения присутствует перед скобками коэффициент a

Вспоминаем, что если квадратное уравнение не является приведённым, то есть имеет вид ax 2 + bx + c = 0 , то теорема Виета принимает следующий вид:

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Это потому что теорема Виета работает только для приведённых квадратных уравнений. А чтобы уравнение ax 2 + bx + c = 0 стало приведённым, нужно разделить обе его части на a

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Далее чтобы квадратный трёхчлен вида ax 2 + bx + c разложить на множители, нужно вместо b и c подставить соответствующие выражения из теоремы Виета. Но в этот раз нам следует использовать равенства Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответыи Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Для начала выразим b и c . В первом равенстве умножим обе части на a . Затем обе части получившегося равенства умножим на −1

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Теперь из второго равенства выразим c . Для этого умножим обе его части на a

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Теперь подставим выраженные переменные b и с в квадратный трёхчлен ax 2 + bx + c . Для наглядности каждое преобразование будем выполнять на новой строчке:

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Здесь вместо переменных b и c были подставлены выражения −ax1 − ax2 и ax1x2 , которые мы ранее выразили из теоремы Виета. Теперь раскроем скобки там где это можно:

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

В получившемся выражении выполним разложение многочлена на множители способом группировки. В данном случае удобно сгруппировать первый член со вторым, а третий с четвёртым:

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Теперь из первых скобок вынесем общий множитель ax , а из вторых — общий множитель −ax2

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Далее замечаем, что выражение x − x1 тоже является общим множителем. Вынесем его за скобки:

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Вторые скобки содержат общий множитель a . Вынесем его за скобки. Его можно расположить в самом начале выражения:

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Отметим, что если квадратный трехчлен не имеет корней, то его нельзя разложить на множители. Действительно, если не найдены корни квадратного трёхчлена, то нéчего будет подставлять в выражение a(xx1)(xx2) вместо переменных x1 и x2 .

Если квадратный трёхчлен имеет только один корень, то этот корень одновременно подставляется в x1 и x2 . Например, квадратный трёхчлен x 2 + 4x + 4 имеет только один корень −2

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Тогда значение −2 в процессе разложения на множители будет подставлено вместо x1 и x2 . А значение a в данном случае равно единице. Её можно не записывать, поскольку это ничего не даст:

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Скобки внутри скобок можно раскрыть. Тогда получим следующее:

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

При этом если нужно получить короткий ответ, последнее выражение можно записать в виде (x + 2) 2 поскольку выражение (x + 2)(x + 2) это перемножение двух сомножителей, каждый из которых равен (x + 2)

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Видео:Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

Примеры разложений

Пример 1. Разложить на множители следующий квадратный трёхчлен:

Найдём корни квадратного трёхчлена:

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Воспользуемся формулой разложения. В левой части напишем квадратный трёхчлен 3x 2 − 2x − 1 , а в правой части — его разложение в виде a(xx1)(xx2) , где вместо a , x1 и x2 подстáвим соответствующие значения:

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Во вторых скобках можно заменить вычитание сложением:

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Пример 2. Разложить на множители следующий квадратный трёхчлен:

Упорядочим члены так, чтобы старший коэффициент располагался первым, средний — вторым, свободный член — третьим:

Найдём корни квадратного трёхчлена:

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Воспользуемся формулой разложения:

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Упростим получившееся разложение. Вынесем за первые скобки общий множитель 3

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Теперь воспользуемся сочетательным законом умножения. Напомним, что он позволяет перемножать сомножители в любом порядке. Умножим 3 на вторые скобки. Это позвóлит избавиться от дроби в этих скобках:

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Пример 3. Разложить на множители следующий квадратный трёхчлен:

Найдём корни квадратного трёхчлена:

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Воспользуемся формулой разложения:

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Пример 4. Найдите значение k , при котором разложение на множители трёхчлена 3x 2 − 8x + k содержит множитель (x − 2)

Если разложение содержит множитель (x − 2) , то один из корней квадратного трёхчлена равен 2 . Пусть корень 2 это значение переменной x1

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Чтобы найти значение k , нужно знать чему равен второй корень. Для его определения воспользуемся теоремой Виета.

В данном случае квадратный трёхчлен не является приведённым, поэтому сумма его корней будет равна дроби Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы, а произведение корней — дроби Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Выразим из первого равенства переменную x2 и сразу подстáвим найденное значение во второе равенство вместо x2

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Теперь из второго равенства выразим k . Так мы найдём его значение.

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Пример 5. Разложить на множители следующий квадратный трёхчлен:

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Перепишем данный трёхчлен в удобный для нас вид. Если в первом члене заменить деление умножением, то получим Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы. Если поменять местами сомножители, то получится Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы. То есть коэффициент a станет равным Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Коэффициент b можно перевести в обыкновенную дробь. Так проще будет искать дискриминант:

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Найдём корни квадратного трёхчлена:

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Воспользуемся формулой разложения:

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Видео:КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примереСкачать

КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примере

Задания для самостоятельного решения

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Разложение квадратного трехчлена на множители биквадратные уравнения с 29 ответы

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже

📹 Видео

Решение квадратных уравнений. Метод разложения на множители. 8 класс.Скачать

Решение квадратных уравнений. Метод разложения на множители. 8 класс.

Уравнения, сводящиеся к квадратным | Квадратный трёхчлен #4 | Ботай со мной #023 | Борис ТрушинСкачать

Уравнения, сводящиеся к квадратным | Квадратный трёхчлен #4 | Ботай со мной #023 | Борис Трушин

Биквадратное уравнениеСкачать

Биквадратное уравнение

Разложение квадратного трехчлена на множители. Практическая часть. 1ч. 8 класс.Скачать

Разложение квадратного трехчлена на множители. Практическая часть. 1ч. 8 класс.

БИКВАДРАТНОЕ УРАВНЕНИЕ В ЕГЭ #shorts #математика #егэ2022 #огэ2021 #уравнениеСкачать

БИКВАДРАТНОЕ УРАВНЕНИЕ В ЕГЭ #shorts #математика #егэ2022 #огэ2021 #уравнение

Разложение квадратного трехчлена на множители.Скачать

Разложение квадратного трехчлена на множители.

Биквадратное уравнениеСкачать

Биквадратное уравнение

Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать

Реакция на результаты ЕГЭ 2022 по русскому языку

Решение биквадратных уравнений. Практическая часть. 1ч. 8 класс.Скачать

Решение биквадратных уравнений. Практическая часть. 1ч. 8 класс.

Квадратный трехчлен. Разложение на множители - алгебра 8 классСкачать

Квадратный трехчлен. Разложение на множители - алгебра 8 класс

Разложение квадратного трехчлена на множители. Практическая часть. 2ч. 8 класс.Скачать

Разложение квадратного трехчлена на множители. Практическая часть. 2ч. 8 класс.

Решение биквадратных уравнений. Практическая часть. 2ч. 8 класс.Скачать

Решение биквадратных уравнений. Практическая часть. 2ч. 8 класс.

Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0Скачать

Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0
Поделиться или сохранить к себе: