Видео:Расстановка коэффициентов в химических реакциях: как просто это сделатьСкачать
Ваш ответ
Видео:Составление уравнений химических реакций. 1 часть. 8 класс.Скачать
решение вопроса
Видео:Как расставлять коэффициенты в уравнении реакции? Химия с нуля 7-8 класс | TutorOnlineСкачать
Похожие вопросы
- Все категории
- экономические 43,399
- гуманитарные 33,632
- юридические 17,905
- школьный раздел 607,960
- разное 16,854
Популярное на сайте:
Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.
Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.
Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.
Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.
Видео:Расстановка коэффициентов в химических реакциях: как просто это сделатьСкачать
Расставьте коэффициенты в следующих схемах реакций:
Видео:8 класс. Составление уравнений химических реакций.Скачать
Fe + Cl2 → FeCl3
WO3 + H2 → W + H2O
Al + S → Al2S3
Li + O2 → Li2O
Fe + Cl2 → FeCl3
Справа мы видим 3 атома хлора, а слева их два. Наименьшее кратное для обоих чисел – шесть. Ставим коэффициент 2 у хлорида железа и коэффициент 3 у молекулы хлора:
Fe + 3Cl2 → 2FeCl3
Проверяем число атомов: справа у нас два атома железа, а слева – один. Значит осталось уравнять железо:
2Fe + 3Cl2 = 2FeCl3
WO3 + H2 → W + H2O
В этой схеме мы видим, что число атомов водорода и вольфрама одинаково в обеих частях. Но вот кислорода слева 3 атома, а справа – один. Поставим коэффициент 3 у молекулы воды:
WO3 + H2 → W + 3H2O
Теперь у нас справа 6 атомов водорода, а слева – два. Наименьшее кратное – три. Ставим коэффициент 3 у молекулы водорода:
WO3 + 3H2 → W + 3H2O
Теперь число всех атомов сравнялось и мы можем поставить знак равенства. WO3 + 3H2 = W + 3H2O
Al + S → Al2S3
Здесь в левой части схемы нет молекул, поэтому всё просто. В правой части у нас 2 атома алюминия и 3 атома серы. Ставим соответствующие коэффициенты в левой части и готово:
2Al + 3S = Al2S3
Li + O2 → Li2O
В левой части у нас два атома кислорода и один атом лития, а в правой – 2 атома лития и 1 атом кислорода. С чего начать уравнивать?
В левой части у нас молекула кислорода, её не поделить. Атомов кислорода должно быть как минимум два. Поэтому уравняем кислород в правой части:
Li + O2 → 2Li2O
Теперь в правой части у нас уже 4 атома лития. Ставим коэффициент 4 в левой части:
4Li + O2 = 2Li2O
Видео:Уравнивание реакций горения углеводородовСкачать
Расставьте коэффициенты в уравнении реакции горения железа в хлоре дайте характеристику этой реакции
FOR-DLE.ru — Всё для твоего DLE 😉
Привет, я Стас ! Я занимаюсь так называемой «вёрсткой» шаблонов под DataLife Engine.
На своем сайте я выкладываю уникальные, адаптивные, и качественные шаблоны. Все шаблоны проверяются на всех самых популярных браузерх.
Раньше я занимался простой вёрсткой одностраничных, новостных и т.п. шаблонов на HTML, Bootstrap. Однажды увидев сайты на DLE решил склеить пару шаблонов и выложить их в интернет. В итоге эта парочка шаблонов набрала неплохую популярность и хорошие отзывы, и я решил создать отдельный проект.
Кроме шаблонов я так же буду выкладывать полезную информацию для DataLife Engin и «статейки» для веб мастеров. Так же данный проект будет очень полезен для новичков и для тех, кто хочет правильно содержать свой сайт на DataLife Engine. Надеюсь моя работа вам понравится и вы поддержите этот проект. Как легко и удобно следить за обновлениями на сайте?
Достаточно просто зарегистрироваться на сайте, и уведомления о каждой новой публикации будут приходить на вашу электронную почту!
Задание 1
Дайте общую характеристику галогенов на основании их положения в Периодической системе химических элементов Д.И. Менделеева.
Галогены располагаются в VIIА группе Периодической системы. На внешнем энергетическом уровне атомов галогенов расположено 7 электронов, следовательно, до завершения недостаёт только одного электрона, поэтому они являются сильными окислителями, получая в результате степень окисления -1. С увеличением радиуса их атомов от фтора к астату уменьшается электроотрицательность галогенов и, следовательно, их окислительная способность. Максимальная степень окисления галогенов +7, в частности в высших оксидах Г2O7, кроме фтора, поскольку он является самым электроотрицательным химическим элементом и положительных степеней окисления не проявляет.
Задание 2
Расскажите о нахождении галогенов в природе.
Галогены в природе встречаются только в виде соединений (флюорит CaF2, криолит KAlF3, галит NaCl, сильвин KCl и др.).
Большинство соединений брома и иода хорошо растворяются в воде, поэтому чаще всего эти галогены встречаются не в виде минералов, а в водах морей и океанов, а также в некоторых морских растениях из класса бурых водорослей, например ламинарии.
Какова роль этих элементов в жизнедеятельности живых организмов?
Фтор является необходимым элементом в процессах обмена веществ в железах, мышцах и нервных клетках, участвует в формировании зубной эмали.
Хлор относится к макроэлементам живых организмов, в которых его содержание составляет около 0,25%. Хлорид-ионы обеспечивают водно-солевой обмен, поддерживают внутриклеточное давление, стимулируют обмен веществ, рост волос. Соляная кислота входит в состав желудочного сока, поддерживает определённый уровень кислотности, необходимый для осуществления процессов расщепления пищевых веществ, например белков, является препятствием для различных микробов.
Соединения брома регулируют процессы возбуждения и торможения центральной нервной системы.
В организме человека содержится 4•10 -5 % иода, из них больше половины находится в щитовидной железе — в составе гормонов тироксина и трииодтиронина. Недостаток иода в пище снижает выработку гормонов щитовидной железы и приводит к тяжёлым заболеваниям, т.к. эти гормоны регулируют мышечную деятельность, работу сердца и мозга, влияют на аппетит и пищеварение.
Задание 3
Охарактеризуйте общие физические свойства галогенов.
При обычных условиях светло-жёлтый фтор и жёлто-зелёный хлор — газы, бром — буровато-коричневая жидкость, а иод — твёрдое чёрно-серое вещество с металлическим блеском.
Как изменяется цвет и плотность галогенов в ряду F2→ Сl2→ Вr2→ I2?
Цвет изменяется от светло-жёлтого у фтора до чёрно-серого в иода и плотность возрастает от фтора к иоду.
Фтор имеет цвет светло-жёлтый, хлор — жёлто-зелёный, бром — буровато-коричневый, а иод — чёрно-серый.
С увеличением порядкового номера атома элемента возрастает плотность,
Задание 4
Определите тип химической связи и тип кристаллической решётки в следующих веществах: иод, хлорид калия, бромоводород?
Вещество | Тип химической связи | Тип кристаллической решётки |
Иод І2 | ковалентная неполярная | молекулярная |
Хлорид калия KCl | ионная | ионная |
Бромоводород HBr | ковалентная полярная | молекулярная |
Задание 5
Охарактеризуйте химические свойства галогенов.
Взаимодействуют с металлами:
Mg + 2Cl = MgCl2
Взаимодействуют с неметаллами:
2P + 3Cl2 = 2PCl3
Взаимодействуют с водородом:
H2 + Cl2 = 2HCl
Вступают в реакции замещения:
Cl2 + 2NaBr = 2NaCl + Br2
Взаимодействую со щелочами:
Cl2 + KOH = KCl + KClO + H2O
Задание 6
Напишите уравнения реакций (для реакций, протекающих в растворах, запишите ионные уравнения, а в уравнениях окислительно-восстановительных реакций расставьте коэффициенты методом электронного баланса, укажите окислитель и восстановитель) с помощью которых можно осуществить следующие превращения:
а) NaCl → HCl → FeCl2 → FeCl3 → AgCl;
2NaCl + H2SO4 (конц.) = Na2SO4 + 2HCl↑
2HCl + Fe = FeCl2 + H2↑
Схема окислительно-восстановительной реакции.
H +1 Cl + Fe 0 ⟶ Fe +2 Cl2 + H2 0
Fe 0 -2ē ⟶ Fe +2 |2|2|1 ― процесс окисления
2H +1 +2ē ⟶ H2 0 |2| |1 ― п роцесс восстановления
Проводим вертикальную черту и пишем за ней число электронов, которые отдали и присоединили атомы железа и водорода. Находим наименьшее общее кратное для чисел 2 и 2. Это число 2, которое записываем за второй вертикальной чертой посередине, и поделив его поочередно на 2 и 2, записываем результат за третьей чертой в строках, касающихся элементов железа и водорода. Множители 1 являются искомыми коэффициентами. Поскольку элементы изменили степень окисления полностью (в правой части схемы эти элементы ни в одном веществе не проявляют такую же степень окисления, как в исходном веществе) и одинаковыми являются индексы элемента железа в формуле исходного вещества и продукта реакции, поэтому ставим коэффициент 1 (который обычно не пишем) перед формулой двух соединений железа (Fe, FeCl2), а разными являются индексы элемента водорода в формуле исходного вещества и продукта реакции, поэтому ставим коэффициент 1, поскольку относится к двум атомам водорода, перед формулой водорода. Подбираем коэффициенты для остальных соединений.
В приведённой реакции железо — восстановитель, а хлороводород (за счёт атомов водорода в степени окисления +1) — окислитель.
2FeCl2 + Cl2 = 2FeCl 3
Схема окислительно-восстановительной реакции.
Fe +2 Cl2 + Cl2 0 ⟶ Fe +3 Cl3 -1
Fe +2 -1ē ⟶ Fe +3 |1|2|2 ― процесс окисления
Cl2 0 +2ē ⟶ 2Cl -1 |2| |1 ― процесс восстановления
Проводим вертикальную черту и пишем за ней число электронов, которые отдали и присоединили атомы железа и хлора. Находим наименьшее общее кратное для чисел 1 и 2. Это число 2, которое записываем за второй вертикальной чертой посередине, и поделив его поочередно на 1 и 2, записываем результат за третьей чертой в строках, касающихся элементов железа и хлора. Множители 2 и 1 являются искомыми коэффициентами. Поскольку элементы изменили степень окисления полностью (в правой части схемы эти элементы ни в одном веществе не проявляют такую же степень окисления, как в исходном веществе) и одинаковыми являются индексы элемента железа в формуле исходного вещества и продукта реакции, поэтому ставим коэффициент 2 перед формулой двух соединений железа (FeCl2, FeCl3), а разными являются индексы элемента хлора в формуле исходного вещества и продукта реакции, поэтому ставим коэффициент 1 (который обычно не пишем), перед формулой хлора.
В приведённой реакции хлорид железа (II) (за счёт атомов железа в степени окисления +2) — восстановитель, а хлор — окислитель.
б) KBr → Br2 → ZnBr2 → HBr → Br2 → NaBrO3.
2KBr + Cl2 = 2KCl + Br2
Схема окислительно-восстановительной реакции.
2KBr -1 + Cl2 0 ⟶ 2KCl -1 + Br2 0
2Br -1 -2ē ⟶ Br2 0 |2|2|1 ― процесс окисления
Cl2 0 +2ē ⟶ 2Cl -1 |2| |1 ― процесс восстановления
Проводим вертикальную черту и пишем за ней число электронов, которые отдали и присоединили атомы брома и хлора. Находим наименьшее общее кратное для чисел 2 и 2. Это число 2, которое записываем за второй вертикальной чертой посередине, и поделив его поочередно на 2 и 2, записываем результат за третьей чертой в строках, касающихся элементов брома и хлора. Множители 1 являются искомыми коэффициентами. Поскольку элементы изменили степень окисления полностью (в правой части схемы эти элементы ни в одном веществе не проявляют такую же степень окисления, как в исходном веществе) и разными являются индексы элементов в формуле исходного вещества и продукта реакции, поэтому ставим коэффициент 1 (который обычно не пишем) перед формулами хлора и брома. Подбираем коэффициенты для остальных соединений.
В приведённой реакции бромид калия (за счёт атомов брома в степени окисления -1) — восстановитель, а хлор — окислитель.
Br2 + Zn = ZnBr2
Схема окислительно-восстановительной реакции.
Br2 0 + Zn 0 ⟶ Zn +2 Br2 -1
Восстановитель Zn 0 -2ē ⟶ Zn +2 |2|2|1 ― процесс окисления
Окислитель Br2 0 +2ē ⟶ 2Br -1 |2| |1 ― процесс восстановления
Проводим вертикальную черту и пишем за ней число электронов, которые отдали и присоединили атомы цинка и брома. Находим наименьшее общее кратное для чисел 2 и 2. Это число 2, которое записываем за второй вертикальной чертой посередине, и поделив его поочередно на 2 и 2, записываем результат за третьей чертой в строках, касающихся элементов цинка и брома. Множители 1 являются искомыми коэффициентами. Поскольку элементы изменили степень окисления полностью (в правой части схемы эти элементы ни в одном веществе не проявляют такую же степень окисления, как в исходном веществе) и одинаковыми являются индексы элементов брома и цинка в формуле исходного вещества и продукта реакции, поэтому ставим коэффициент 1 (который обычно не пишем) перед формулами всех соединений.
2HBr + Cl2 = 2HCl + Br2
Схема окислительно-восстановительной реакции.
HBr -1 + Cl2 0 ⟶ HCl -1 + Br2 0
2Br -1 -2ē ⟶ Br2 0 |2|2|1 ― процесс окисления
Cl2 0 +2ē ⟶ 2Cl -1 |2| |1 ― процесс восстановления
Проводим вертикальную черту и пишем за ней число электронов, которые отдали и присоединили атомы брома и хлора. Находим наименьшее общее кратное для чисел 2 и 2. Это число 2, которое записываем за второй вертикальной чертой посередине, и поделив его поочередно на 2 и 2, записываем результат за третьей чертой в строках, касающихся элементов брома и хлора. Множители 1 являются искомыми коэффициентами. Поскольку элементы изменили степень окисления полностью (в правой части схемы эти элементы ни в одном веществе не проявляют такую же степень окисления, как в исходном веществе) и разными являются индексы элементов в формуле исходного вещества и продукта реакции, поэтому ставим коэффициент 1 (который обычно не пишем) только перед формулами брома и хлора. Подбираем коэффициенты для остальных соединений.
В приведённой реакции бромоводород (за счёт атомов брома в степени окисления -1) — восстановитель, а хлор — окислитель.
3Br2 + 6NaOH = 5NaBr + NaBrO3 + 3H2O
Схема окислительно-восстановительной реакции (тип ОВР: диспропорционирование (самоокисление-самовосстановление) — реакции, в ходе которых и окисляются, и восстанавливаются атомы одного химического элемента) .
Br2 0 + NaOH ⟶ NaBr -1 + NaBr + 5 O3 + H2O
Br 0 -5ē ⟶ Br +5 |5|5|х1 ― процесс окисления
Br 0 +1ē ⟶ Br -1 |1| |х5 ― процесс восстановления
Проводим вертикальную черту и пишем за ней число электронов, которые отдали и присоединили атомы брома. Находим наименьшее общее кратное для чисел 5 и 1. Это число 5, которое записываем за второй вертикальной чертой посередине, и поделив его поочередно на 5 и 1, записываем результат за третьей чертой в строках, касающихся элементов брома и хлора. Числа в последнем столбце — 1 и 5 — это дополнительные множители в схемах соответствующих процессов:
Br 0 -5ē ⟶ Br +5
5Br 0 +5ē ⟶ 5Br -1
Добавим эти уравнения, получим суммарную схему:
Br 0 + 5Br 0 ⟶ Br +5 + 5Br -1
6Br2 0 ⟶ Br +5 + 5Br -1
Эти коэффициенты переносим в уравнение реакции (обратите внимание: два атома Br 0 есть в составе Br2, поэтому около Br2 ставим коэффициент 3).
3Br2 0 + NaOH ⟶ 5NaBr -1 + NaBr + 5 O3 + H2O.
Проверяем, уравнялось ли число атомов элементов, которых не было в схемах окисления и восстановления. Число атомов натрия в обеих частях разное, уравниваем его, поэтому перед NaOH пишем коэффициент 6.
3Br2 0 + 6NaOH ⟶ 5NaBr -1 + NaBr + 5 O3 + H2O
Число атомов водорода в обеих частях разное, уравниваем его, поэтому перед Н2О пишем коэффициент 3.
3Br2 0 + 6NaOH = 5NaBr -1 + NaBr + 5 O3 + 3H2O
Число атомов кислорода в обеих частях одинаковое: по 6 атомов.
В приведённой реакции бром является восстановителем и окислителем.
Задание 7
Какой объём хлора (н.у.) можно получить из 100 мл 25%-ной соляной кислоты (р=1,12 г/мл) в результате реакций с двумя окислителями — перманганатом калия и оксидом марганца (IV)?
Дано: V(раствора)=100 мл, ρ(раствора)=1,12 г/мл, w(HCl)=25%
Решение
1. Рассчитываем массу раствора:
m(раствора)= V(раствора) • ρ(раствора)=100 мл • 1,12 г/мл=112 г
2. Вычисляем массу соляной кислоты в растворе:
m(HCl)=w(HCl) • m(раствора):100%=25% • 112 г : 100%=28 г
3. Рассчитываем количество вещества соляной кислоты массой 28 г по формуле: n=m/M, где M — молярная масса.
Mr(HСl)=Ar(H)+Ar(Cl)=1+35,5=36,5, поэтому M(HCl)=36,5 г/моль
n(HCl)=m(HCl)/M(HCl)=28 г : 36,5 г/моль=0,767 моль
4. Составляем два уравнения реакции:
16HCl + 2KMnO4=5Cl2 + 2KCl + 2MnCl2 + 8H2O (1)
MnO2 + 4HCl =MnCl2 + Cl2 + 2H2O (2)
По уравнению реакции (1) n(HCl):n1(Cl2)=16:5=1:0,3125, то есть количество вещества хлора в 0,315 раза больше количества вещества соляной кислоты, поэтому:
n1(Cl2)=0,315•n(HCl)=0,3125 • 0,767 моль=0,24 моль
По уравнению реакции (2) n(HCl):n2(Cl2)=1:0,25, то есть количество вещества хлора в 0,25 раза больше количества вещества соляной кислоты, поэтому:
n2(Cl2)=n(HCl):4=0,767 моль:4=0,192 моль
5. Объём хлора определенным количеством вещества рассчитываем по формуле: V= n •VM, где VM ― молярный объём.
V1( Cl 2)=n1( Cl 2)•VM=0,24 моль • 22,4 л/моль=5,4 л
V1( Cl 2)=n2( Cl 2)•VM=0,192 моль • 22,4 л/моль=4,3 л
Совпали ли полученные значения? Не совпали.
Как вы думаете, почему? Разными являются количественные соотношения образованного хлора в этих реакциях. По уравнению реакции (1) хлора образуется в 0,3125 раза больше соляной кислоты, а по уравнению реакции (2) — в 0,25 раза больше.
16HCl + 2KMn + 7O4 = 5Cl2 + 2KCl + 2Mn + 2Cl2 + 8H2O (1)
n(HCl):n1(Cl2)=16:5=1:0,3125
Mn + 4O2 + 4HCl = Mn + 2Cl2 + Cl2 + 2H2O (1)
n(HCl):n2(Cl2)=1:0,25
Задание 8
Какую массу иода можно получить из 30 г иодида натрия действием избытка хлорной воды, если выход продукта реакции составляет 65%?
Дано: m(NaI)=30 г, wвых.(I2)=65%
Найти: mпракт.(I2)-?
Решение
1 способ
1. Рассчитываем количество вещества иодида натрия массой 30 г по формуле: n=m/M, где M ― молярная масса .
Mr(NaI)=Ar(Na)+Ar(I)=23+127=150, поэтому M(NaI)=150 г/моль
n(NaI)=m(NaI)/M(NaI)=30 г : 150 г/моль=0,2 моль
2. Составляем уравнение реакции:
2NaI + Cl2 = 2NaCl + I 2
По уравнению реакции n(NaI):n(I2)=2:1, то есть количество вещества иода в 2 раза меньше количества вещества иодида натрия, поэтому:
n(I2)=n(NaI):2=0,2 моль:2=0,1 моль
3. Вычисляем теоретически возможную массу иода количеством вещества 0,1 моль по формуле: m=n • M.
Mr(I2)=2•Ar(I)=2•127=254, поэтому M(I2)=254 г/моль
mтеор.(I2)=n (I2) • M(I2)=0,1 моль • 254 г/моль=25,4 г
4. Вычисляем практически полученную массу иода.
mпракт.(I2)=wвых.(I2) • mтеор.(I2):100%=65% • 25,4 г:100%=16,5 г
2 способ
1. Составляем химическое уравнение:
30 г х г
2NaI + Cl2 = 2NaCl + I 2
300 г 254 г
Над формулами соединений NaI и I2 записываем приведенную в условии задачи массу иодида натрия (30 г) и неизвестную массу иода (х г), а под формулами соединений ― массы количества вещества согласно коэффициентам в химическом уравнении.
M(NaI)=150 г/моль, поэтому масса 1 моль=150 г, а масса 2 моль=300 г
M(I2)=254 г/моль, поэтому масса 1 моль=254 г
х= mтеор.(I2)= 254 г • 30 г : 300 г=25,4 г
2. Вычисляем практически полученную массу иода.
mпракт.(I2)=ωвых.(I2) • mтеор.(I2):100%=65% • 25,4 г:100%=16,5 г
Ответ: 16,5 г
Дополнительное задание
Подготовьте сообщение об истории открытия, свойствах и применении одного из галогенов. Аргументируйте свой выбор галогена. Самостоятельно.
🔍 Видео
Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 классСкачать
Расстановка Коэффициентов в Химических Реакциях // Подготовка к ЕГЭ по ХимииСкачать
Химические уравнения. СЕКРЕТНЫЙ СПОСОБ: Как составлять химические уравнения? Химия 8 классСкачать
Химические уравнения - Как составлять уравнения реакций // Составление Уравнений Химических РеакцийСкачать
8 класс. Химия. Как расставить коэффициенты в уравнении?Скачать
Типы Химических Реакций — Химия // Урок Химии 8 КлассСкачать
29. Общая реакция горения для всех углеводородов. Как расставить коэффициенты реакции легкоСкачать
Типы химических реакций. 1 часть. 8 класс.Скачать
Составление уравнений реакций горения. 11 класс.Скачать
ОКСИДЫ ХИМИЯ — Что такое Оксиды? Химические свойства Оксидов | Реакция ОксидовСкачать
Химические уравнения. Урок 15. Химия 7 классСкачать
Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по ХимииСкачать
Химические Цепочки — Решение Цепочек Химических Превращений // Химия 8 классСкачать
Реакции замещенияСкачать