Проект методы решения линейных уравнений

Исследовательская работа по математике на тему: «Способы решения линейных уравнений, содержащих знак модуля».

Проект методы решения линейных уравнений

Понятие «модуль» широко применяется во многих разделах школьного курса математики, например, в изучении абсолютной и относительной погрешностей приближенного числа; в геометрии и физике будут изучаться понятия вектора и его длины (модуля вектора). Понятия модуля применяется в курсах высшей математики, физики и технических наук, изучаемых в высших учебных заведениях. Несмотря на то, что тема «Модуль числа» проходит «красной нитью» через весь курс школьной и высшей математики, для ее изучения по программе отводится очень мало времени (в 6 классе -2 часа, в 8 классе — 4 часа).

Исходя из всего вышесказанного, возникает проблема: найти разнообразные методы в обучении решению задач с модулем.

Практически у каждого обучающегося вызывают затруднения задания, содержащие модуль. Это один из самых трудных материалов, с которыми школьники сталкиваются на экзаменах (в заданиях ЕГЭ это задания С5 и С6).

Считаю, что эта тема требует более глубокого исследования, так как она прослеживается в различных заданиях повышенной сложности, которые предлагают учащимся авторы дидактических материалов, в задачах математических олимпиад, в заданиях вступительных экзаменов в Высшие Учебные Заведения и на ЕГЭ.

Указанные обстоятельства обусловили мой выбор темы исследовательской работы.

Основной целью работы считаю получение расширенной информации о модуле числа, его применении, а также о различных способах решения уравнений, содержащих знак абсолютной величины.

Цель исследовательской работы определяет следующие задачи:

— показать необходимость более глубокого рассмотрения темы «Решение линейных уравнений, содержащих знак модуля» в школьной программе;

— разработать алгебраический метод решения линейных уравнений, содержащих знак модуля;

— разработать графический методы решения линейных уравнений, содержащих знак модуля.

Я предположила, что в результате исследования я смогу показать своим одноклассникам и друзьям, что решение уравнений с модулями не являются одним из сложнейших заданий.

Формулирование цели исследовательской работы определяет:

Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

объект исследования – решение уравнений, содержащих знак абсолютной величины;

предмет исследования – алгебраический и графический методы решения линейных уравнений, содержащих знак модуля.

Проект по математике 5 класс по теме «Линейные уравнения и способы их решения».

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Муниципальное Казённое Образовательное Учреждение

«Средняя общеобразовательная школа №4»

Научный проект по математике

«Виды линейных уравнений»

Ученица 5Г класса

2016-2017 уч. год

1.1 Возникновение проблемы.

1.2 Цель и задачи проекта.

2. Теоретическая часть:

2.1 Понятие линейного уравнения.

Видео:Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки

2.2 Случаи решения линейного уравнения.

3. Практическая часть:

3.3 Решение уравнений с дробными коэффициентами (с переносом

Примеры решение уравнений.

3.4 Применение линейных уравнений при решении задач.

4. Заключение: Решение линейных уравнений, делением на коэффициент.

Примеры решение уравнений.

3.2 Решение линейных уравнений, способом переноса слагаемых

из одной части равнения в другую.

Примеры решение уравнений.

6. Отзыв учителя.

7. Информационные ресурсы.

Математическое образование, получаемое в общеобразовательной школе, является важнейшим компонентом общего образования и общей культуры современного человека. Практически все, что окружает современного человека – это все так или иначе связано с математикой. А последние достижения в физике, технике и информационных технологиях не оставляют никакого сомнения, что и в будущем положение вещей останется прежним. Поэтому решение многих практических задач сводится к решению различных видов уравнений, которые необходимо научиться решать.

Актуальность: чтобы перейти к исследованию данной темы, нам необходимо было ответить на вопрос «Зачем нужно изучать уравнения?». С линейными уравнениями мы знакомы из математики начальной школы, но в курсе 6 класса будет изучена новая тема — перенос слагаемых из одной части уравнения в другую и свойства уравнений. Этот материал в курсе математики -5 класса представляет некоторую сложность и научный интерес.

Видео:Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

Проблема: углубить представления об уравнениях. Ответить на вопрос: «Какими способами можно решить уравнение и показать где, когда и какие уравнения приходится решать современному человеку.

Данная работа является попыткой обобщить и систематизировать изученный материал и изучить новый.

Цель и задачи проекта.

Цель проекта: Рассмотреть различные виды линейных уравнений и способы их решений.

Рассмотреть виды линейных уравнений.

Привести примеры различных способов решения уравнений..

Обобщить знания по этой теме.

Защитить проект и приготовить презентацию.

2.1 Понятие линейного уравнения.

Существуют уравнение в правах, уравнение времени (перевод истинного солнечного времени в среднее солнечное время, принятое в общежитии и в науке; астр.) и т.д..

В математике – это математическое равенство, содержащее одну или несколько неизвестных величин и сохраняющее свою силу только при определенных значениях этих неизвестных величин.

В уравнениях с одной переменной неизвестное обычно обозначают буквой «х».

Уравнения бывают разных видов:

ax + b = 0. — Линейное уравнение.

Видео:Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.

ax2 + bx + c = 0. — Квадратное уравнение.

ax3 + bx2 + cx + d = 0. — Кубическое уравнение.

ax4 + bx2 + c = 0. — Биквадратное уравнение.

Уравнение вида a·x=b, где x – переменная, a и b – некоторые числа, называется линейным уравнением с одной переменной.

Примеры линейных уравнений.

5·x=10 – это линейное уравнение с одной переменной x, здесь коэффициент a равен 5, а число b есть 10.

− 2,3·y=0 – это тоже линейное уравнение, но с переменной y, в котором a=−2,3 и b=0.

А в линейных уравнениях x=−2 и −x=3,33 числовые коэффициенты a не присутствуют в явном виде и равны 1 и −1 соответственно, при этом в первом уравнении b=−2, а во втором — b=3,33.

А годом ранее в учебнике математики Виленкина Н. Я. линейными уравнениями с одним неизвестным помимо уравнений вида a·x=b считали и уравнения, которые можно привести к такому виду с помощью переноса слагаемых из одной части уравнения в другую с противоположным знаком, а также с помощью приведения подобных слагаемых. Согласно этому определению, уравнения вида 5·x=2·x+6, и т.п. тоже линейные.

2.2 Случаи решения линейного уравнения.

Рассмотрим способы решения линейных уравнений a·x+b=0. Выясним , имеет ли линейное уравнение корни, и если имеет, то сколько их и как их найти.

Наличие корней линейного уравнения зависит от значений коэффициентов a и b. При этом линейное уравнение a·x+b=0 имеет

единственный корень при a≠0,

не имеет корней при a=0 и b≠0,

Видео:9 класс, 11 урок, Методы решения систем уравненийСкачать

9 класс, 11 урок, Методы решения систем уравнений

имеет бесконечно много корней при a=0 и b=0, в этом случае любое число является корнем линейного уравнения.

При a=0 линейное уравнение a·x+b=0 принимает вид 0·x+b=0. Из этого уравнения и свойства умножения чисел на нуль следует, что какое бы число мы не взяли в качестве x, при его подстановке в уравнение 0·x+b=0 получится числовое равенство b=0. Это равенство верное, когда b=0, а в остальных случаях при b≠0 это равенство неверное.

Следовательно, при a=0 и b=0 любое число является корнем линейного уравнения a·x+b=0, так как при этих условиях подстановка вместо x любого числа дает верное числовое равенство 0=0. А при a=0 и b≠0 линейное уравнение a·x+b=0 не имеет корней, так как при этих условиях подстановка вместо x любого числа приводит к неверному числовому равенству b=0.

Приведенные обоснования позволяют сформировать последовательность действий, позволяющую решить любое линейное уравнение. Итак, алгоритм решения линейного уравнения таков:

Сначала по записи линейного уравнения находим значения коэффициентов a и b.

Если a=0 и b=0, то это уравнение имеет бесконечно много корней, а именно, любое число является корнем этого линейного уравнения.

Если a=0 и b≠0, то исходное уравнение не имеет корней.

Если же a отлично от нуля, то

коэффициент b переносится в правую часть с противоположным знаком, при этом линейное уравнение преобразуется к виду a·x=−b,

после чего обе части полученного уравнения делятся на отличное от нуля число a, что и дает искомый корень исходного линейного уравнения .

Записанный алгоритм является исчерпывающим ответом на вопрос, как решать линейные уравнения.

Похожий алгоритм применяется для решения уравнений вида a·x=b. Его отличие состоит в том, что при a≠0 сразу выполняется деление обеих частей уравнения на это число, здесь b уже находится в нужной части уравнения и не нужно осуществлять его перенос.

Для решения уравнений вида a·x=b применяется такой алгоритм:

Если a=0 и b=0, то уравнение имеет бесконечно много корней, которыми являются любые числа.

Видео:Решение системы уравнений методом Крамера.Скачать

Решение системы уравнений методом Крамера.

Если a=0 и b≠0, то исходное уравнение не имеет корней.

Если же a отлично от нуля, то обе части уравнения делятся на отличное от нуля число a, откуда находится единственный корень уравнения, равный b/a.

📺 Видео

Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.

ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод ПодстановкиСкачать

ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод Подстановки

Матричный метод решения систем уравненийСкачать

Матричный метод решения систем уравнений

Математика без Ху!ни. Метод Гаусса.Скачать

Математика без Ху!ни. Метод Гаусса.

Решение системы линейных уравнений. Подстановка. С дробными выражениями.Скачать

Решение системы линейных уравнений. Подстановка. С дробными выражениями.

Как ЛЕГКО РЕШАТЬ Систему Линейный Уравнений — Метод СложенияСкачать

Как ЛЕГКО РЕШАТЬ Систему Линейный Уравнений — Метод Сложения

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Метод Гаусса решения систем линейных уравненийСкачать

Метод Гаусса решения систем линейных уравнений

Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

Математика Без Ху!ни. Система линейных уравнений. Метод Крамера.Скачать

Математика Без Ху!ни. Система линейных уравнений. Метод Крамера.

Решение систем уравнений методом сложенияСкачать

Решение систем уравнений методом сложения

6 способов в одном видеоСкачать

6 способов в одном видео

Решение систем уравнений методом сложенияСкачать

Решение систем уравнений методом сложения

Система линейных уравнений. Метод обратной матрицы. Матричный метод.Скачать

Система линейных уравнений. Метод обратной матрицы. Матричный метод.
Поделиться или сохранить к себе: