Привести к каноническому виду уравнение прямой x 2y

Задача 61290 Перевести к каноническому виду прямую .

Условие

Привести к каноническому виду уравнение прямой x 2y

Перевести к каноническому виду прямую Привести к каноническому виду уравнение прямой x 2y

Решение

Привести к каноническому виду уравнение прямой x 2y

Найдем [b]две[/b] точки принадлежащие линии пересечения плоскостей
[m]left<begin
x+2y+4z-8=0\6x+3y+2z-18=0 endright.[/m]

Так как точек на прямой бесчисленное множество, то выберем НАПРИМЕР,
такую точку A, у которой координата z=0

и выберем такую точку В, у которой координата y=0

[m]left<beginx+4z-8=0\6x+2z-18=0 endright.[/m] умножаем второе на (-2)

Составить каноническое уравнение прямой, проходящей через точку А с направляющим вектором АВ

См формулу в скрине
Привести к каноническому виду уравнение прямой x 2y

Видео:13. Общие уравнения прямой в пространстве / приведение к каноническому видуСкачать

13. Общие уравнения прямой в пространстве / приведение к каноническому виду

Приведение кривой второго порядка к каноническому виду

Пример . Дано уравнение кривой 3x 2 +10xy+3y 2 -2x-14y-13=0 в системе координат (0,i,j), где i =(1,0) и j =(0,1).
1. Определить тип кривой.
2. Привести уравнение к каноническому виду и построить кривую в исходной системе координат.
3. Найти соответствующие преобразования координат.

Решение. Приводим квадратичную форму B=3x 2 +10xy+3y 2 к главным осям, то есть к каноническому виду. Матрица этой квадратичной формы Привести к каноническому виду уравнение прямой x 2y. Находим собственные числа и собственные векторы этой матрицы:
Привести к каноническому виду уравнение прямой x 2y
Характеристическое уравнение:
Привести к каноническому виду уравнение прямой x 2y; λ1=-2, λ2=8. Вид квадратичной формы: Привести к каноническому виду уравнение прямой x 2y.
Исходное уравнение определяет гиперболу.
Заметим, что вид квадратичной формы неоднозначен. Можно записать 8x1 2 -2y1 2 , однако тип кривой остался тот же – гипербола.
Находим главные оси квадратичной формы, то есть собственные векторы матрицы B. Привести к каноническому виду уравнение прямой x 2y.
Собственный вектор, отвечающий числу λ=-2 при x1=1: x 1=(1,-1).
В качестве единичного собственного вектора принимаем вектор Привести к каноническому виду уравнение прямой x 2y, где Привести к каноническому виду уравнение прямой x 2y– длина вектора x 1.
Координаты второго собственного вектора, соответствующего второму собственному числу λ=8, находим из системы
Привести к каноническому виду уравнение прямой x 2y.
x 2=(1,1); Привести к каноническому виду уравнение прямой x 2y.
Итак, имеем новый ортонормированный базис ( i 1, j 1).
По формулам (5) пункта 4.3.3. переходим к новому базису:
Привести к каноническому виду уравнение прямой x 2yили

Задание. Привести к каноническому виду уравнение линии 17x 2 + 12xy + 8y 2 — 20 = 0.
Решение.Пример 2

Задание. Привести к каноническому виду уравнение линии второго порядка, используя теорию квадратичных форм и определить её вид. Уравнение кривой второго порядка путем выделения полного квадрата привести к каноническому виду. Решение

Задание. Привести уравнение к каноническому виду: 16x 2 — 9y 2 -64x — 8y +199 = 0.
Решение.Скачать решение

Задание. Установить, что каждое из следующих уравнений определяет гиперболу, и найти координаты ее центра С, полуоси, эксцентриситет, уравнения асимптот и уравнения директрис. Изобразить гиперболу на чертеже, указав фокусы, асимптоты и директрисы.
Решение:Скачать решение

Задание. Установить, что каждое из следующих уравнений определяет эллипс, и найти координаты его центра С, полуоси, эксцентриситет, уравнения директрис. Изобразить эллипс на чертеже, указав оси симметрии, фокусы и директрисы.
Решение:Скачать решение

Видео:Общее уравнение прямой привести к каноническому видуСкачать

Общее уравнение прямой привести к каноническому виду

Общее уравнение прямой на плоскости

В данной статье мы рассмотрим общее уравнение прямой на плоскости. Приведем примеры построения общего уравнения прямой, если известны две точки этой прямой или если известна одна точка и нормальный вектор этой прямой. Представим методы преобразования уравнения в общем виде в канонический и параметрический виды.

Пусть задана произвольная декартова прямоугольная система координат Oxy. Рассмотрим уравнение первой степени или линейное уравнение:

где A, B, C − некоторые постоянные, причем хотя бы один из элементов A и B отлично от нуля.

Мы покажем, что линейное уравнение на плоскости определяет прямую. Докажем следующую теорему.

Теорема 1. В произвольной декартовой прямоугольной системе координат на плоскости каждая прямая линия может быть задана линейным уравнением. Обратно, каждое линейное уравнение (1) в произвольной декартовой прямоугольной системе координат на плоскости определяет прямую линию.

Доказательство. Достаточно доказать, что прямая L определяется линейным уравнением при какой нибудь одной декартовой прямоугольной системе координат, поскольку тогда она будет определяться линейным уравнением и при любом выборе декартовой прямоугольной системы координат.

Пусть на плоскости задана прямая L. Выберем систему координат так, чтобы ось Ox совпадал с прямой L, а ось Oy был перпендикулярной к ней. Тогда уравнение прямой L примет следующий вид:

Все точки на прямой L будут удовлетворять линейному уравнению (2), а все точки вне этой прямой, не будут удовлетворять уравнению (2). Первая часть теоремы доказана.

Пусть задана декартова прямоугольная система координат и пусть задана линейное уравнение (1), где хотя бы один из элементов A и B отличен от нуля. Найдем геометрическое место точек, координаты которых удовлетворяют уравнению (1). Так как хотя бы один из коэффициентов A и B отличен от нуля, то уравнение (1) имеет хотя бы одно решение M(x0,y0). (Например, при A≠0, точка M0(−C/A, 0) принадлежит данному геометрическому месту точек). Подставляя эти координаты в (1) получим тождество

Ax0+By0+C=0.(3)

Вычтем из (1) тождество (3):

A(xx0)+B(yy0)=0.(4)

Очевидно, что уравнение (4) эквивалентно уравнению (1). Поэтому достаточно доказать, что (4) определяет некоторую прямую .

Поскольку мы рассматриваем декартову прямоугольную систему координат, то из равенства (4) следует, что вектор с компонентами <x−x0, y−y0> ортогонален вектору n с координатами <A,B>.

Рассмотрим некоторую прямую L, проходящую через точку M0(x0, y0) и перпендикулярной вектору n (Рис.1). Пусть точка M(x,y) принадлежит прямой L. Тогда вектор Привести к каноническому виду уравнение прямой x 2yс координатами x−x0, y−y0 перпендикулярен n и уравнение (4) удовлетворено (скалярное произведение векторов n и Привести к каноническому виду уравнение прямой x 2yравно нулю). Обратно, если точка M(x,y) не лежит на прямой L, то вектор Привести к каноническому виду уравнение прямой x 2yс координатами x−x0, y−y0 не ортогонален вектору n и уравнение (4) не удовлетворено. Теорема доказана.

Привести к каноническому виду уравнение прямой x 2y

Вектор n=<A,B> называется нормальным вектором прямой L.

Замечание 1. Если два общих уравнения прямой

A1x+B1y+C1=0(5)
A2x+B2y+C2=0(6)

определяют одну и ту же прямую, то найдется такое число λ, что выпонены равенства

A2=A1λ, B2=B1λ, C2=C1λ.(7)
(A1λA2)x0+(B1λB2)x0+(C1λC2)=0.(8)

Так как выполнены первые два равенства из выражений (7), то C1λC2=0. Т.е. C2=C1λ. Замечание доказано.

Заметим, что уравнение (4) определяет уравнение прямой, проходящей через точку M0(x0, y0) и имеющий нормальный вектор n=<A,B>. Поэтому, если известен нормальный вектор прямой и точка, принадлежащая этой прямой, то можно построить общее уравнение прямой с помощью уравнения (4).

Пример 1. Прямая проходит через точку M=(4,−1) и имеет нормальный вектор n=. Построить общее уравнение прямой.

Решение. Имеем: x0=4, y0=−1, A=3, B=5. Для построения общего уравнения прямой, подставим эти значения в уравнение (4):

Упростив получим общее уравнение прямой:

Пример 2. Прямая проходит через точки M1=(−5, 2) и M2=(−2, 3). Построить общее уравнение прямой.

Решение. Вычислим вектор Привести к каноническому виду уравнение прямой x 2y:

Привести к каноническому виду уравнение прямой x 2y

Вектор Привести к каноническому виду уравнение прямой x 2yпараллелен прямой L и, следовательно, перпердикулярен нормальному вектору прямой L. Построим нормальный вектор прямой L, учитывая, что скалярное произведение векторов n и Привести к каноническому виду уравнение прямой x 2yравно нулю. Можем записать, например, n=.

Для построения общего уравнения прямой воспользуемся формулой (4). Подставим в (4) координаты точки M1 (можем взять также координаты точки M2) и нормального вектора n:

Упростим полученное уравнение:

Подставляя координаты точек M1 и M2 в (9) можем убедится, что прямая заданная уравнением (9) проходит через эти точки.

Видео:§31.1 Приведение уравнения кривой к каноническому видуСкачать

§31.1 Приведение уравнения кривой к каноническому виду

Приведение общего уравнения прямой на плоскости к каноническому виду

Нам нужно привести уравнение (1) к каноническому виду. Для этого найдем некоторую точку M0(x0,y0) на этой прямой. Тогда имеем:

Ax0+By0+C=0(10)
A(xx0)+B(yy0)=0(11)

Вторую слагаемую уравнения (11) переместим на право и разделим обе части уравнения на −AB:

Привести к каноническому виду уравнение прямой x 2y(12)

Мы получили каноническое уравнение прямой. Вектор q=<−B, A> является направляющим вектором прямой (12).

Обратное преобразование смотрите здесь.

Пример 3. Прямая на плоскости представлена следующим общим уравнением:

Привести данное уравнение прямой к каноническому виду.

Решение: Найдем некоторую точку на прямой (13). Для этого подставим в (13) y=1 и найдем x. Получим x=2. Запишем уравнение прямой пользуясь формулой (11):

Переместим на право вторую слагаемую и разделим обе части уравнения на 2·5:

Привести к каноническому виду уравнение прямой x 2y
Привести к каноническому виду уравнение прямой x 2y

Видео:Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Приведение общего уравнения прямой на плоскости к параметрическому виду

В предыдущем параграфе мы привели общее уравнение прямой (1) к каноническому виду (12). Из канонического уравнения легко получить параметрическое уравнение прямой. для этого левый и правый части уравнения (12) обозначим через параметр t. Тогда получим:

Привести к каноническому виду уравнение прямой x 2y

Выразив x и y через параметр t, получим параметрическое уравнение прямой:

Привести к каноническому виду уравнение прямой x 2y

Обратное преобразование смотрите здесь.

Пример 4. Прямая на плоскости представлена следующим общим уравнением:

Привести данное уравнение прямой к параметрическому виду.

Решение: Найдем некоторую точку на прямой (13). Для этого подставим в (14) x=3 и найдем y. Получим y=11. Запишем уравнение прямой пользуясь формулой (11):

Переместим на право вторую слагаемую и разделим обе части уравнения на 5·2:

Привести к каноническому виду уравнение прямой x 2y

Обозначим обе части уравнения через параметр t:

Привести к каноническому виду уравнение прямой x 2y

Выразим x и y через параметр t:

Привести к каноническому виду уравнение прямой x 2y

Ответ. Параметрическое уравнение прямой имеет следующий вид:

📹 Видео

Семинар №9 "Приведение уравнения второго порядка к каноническому виду"Скачать

Семинар №9 "Приведение уравнения второго порядка к каноническому виду"

Каноническое уравнение прямой в пространстве Преход от общего уравненияСкачать

Каноническое уравнение прямой в пространстве  Преход от общего уравнения

Приводим уравнение кривой 2 порядка к каноническому видуСкачать

Приводим уравнение кривой 2 порядка  к каноническому виду

Видеоурок "Приведение к каноническому виду"Скачать

Видеоурок "Приведение к каноническому виду"

Кривые второго порядка. Эллипс. Приведение к каноническому виду и чертежСкачать

Кривые второго порядка. Эллипс. Приведение к каноническому виду и чертеж

Написать канонические и параметрические уравнения прямой в пространствеСкачать

Написать канонические и параметрические уравнения прямой в пространстве

2. Приведение уравнений второго порядка к каноническому видуСкачать

2. Приведение уравнений второго порядка к каноническому виду

53. Приведение общего уравнения кривой к каноническому видуСкачать

53. Приведение общего уравнения кривой к каноническому виду

Видеоурок "Общие уравнения прямой"Скачать

Видеоурок "Общие уравнения прямой"

Приведение кривой второго порядка к каноническому виду. ПримерСкачать

Приведение кривой второго порядка к каноническому виду. Пример

Кривые второго порядка. Парабола. Приведение к каноническому виду и чертежСкачать

Кривые второго порядка. Парабола. Приведение к каноническому виду и чертеж

Семинар 6. Приведение уравнения кривой II порядка к каноническому видуСкачать

Семинар 6. Приведение уравнения кривой II порядка к каноническому виду

Приведение ДУ 2 порядка в частных производных к каноническому видуСкачать

Приведение ДУ 2 порядка в частных производных к каноническому виду

Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Математика без Ху!ни. Кривые второго порядка. Эллипс.

Аналитическая геометрия, 6 урок, Уравнение прямойСкачать

Аналитическая геометрия, 6 урок, Уравнение прямой

Видеоурок "Канонические уравнения прямой"Скачать

Видеоурок "Канонические уравнения прямой"
Поделиться или сохранить к себе: