Принципы составления уравнений тепловых балансов

Тепловое равновесие и уравнение теплового баланса

Тела, температура которых отличается, могут обмениваться тепловой энергией. То есть, между телами будет происходить теплообмен. Самостоятельно тепловая энергия переходит от более нагретых тел к менее нагретым.

Видео:Урок 112 (осн). Уравнение теплового балансаСкачать

Урок 112 (осн). Уравнение теплового баланса

Что такое теплообмен и при каких условиях он происходит

Тела, имеющие различные температуры, будут обмениваться тепловой энергией. Этот процесс называется теплообменом.

Теплообмен – процесс обмена тепловой энергией между телами, имеющими различные температуры.

Рассмотрим два тела, имеющие различные температуры (рис. 1).

Тело, имеющее более высокую температуру, будет остывать и отдавать тепловую энергию телу, имеющему низкую температуру. А тело с низкой температурой будет получать количество теплоты и нагреваться.

Принципы составления уравнений тепловых балансов

На рисунке, горячее тело имеет розовый оттенок, а холодное изображено голубым цветом.

Когда температуры тел выравниваются, теплообмен прекращается.

Чтобы теплообмен происходил, нужно, чтобы тела имели различные температуры.

Когда температура тел выравняется, теплообмен прекратится.

Тепловое равновесие — это состояние, при котором тела имеют одинаковую температуру.

Видео:ЕГЭ физика. Уравнение теплового баланса (термодинамика)Скачать

ЕГЭ физика. Уравнение теплового баланса (термодинамика)

Уравнение теплового баланса и сохранение тепловой энергии

Когда тело остывает, оно отдает тепловую энергию (теплоту). Утерянное количество теплоты Q имеет знак «минус».

А когда тело нагревается – оно получает тепловую энергию. Приобретенное количество теплоты Q имеет знак «плюс».

Эти факты отражены на рисунке 2.

Принципы составления уравнений тепловых балансов

Закон сохранения тепловой энергии: Количество теплоты, отданное горячим телом равно количеству теплоты, полученному холодным телом.

Примечание: Существует и другая формулировка закона сохранения энергии: Энергия не появляется сама собой и не исчезает бесследно. Она переходит из одного вида в другой.

Уравнение теплового баланса

Тот факт, что тепловая энергия сохраняется, можно записать с помощью математики в виде уравнения. Такую запись называют уравнением теплового баланса.

Запишем уравнение теплового баланса для двух тел, обменивающихся тепловой энергией:

(large Q_<text> left( text right) ) – это количество теплоты горячее тело теряет.

(large Q_<text> left( text right) ) – это количество теплоты холодное тело получает.

В левой части уравнения складываем количество теплоты каждого из тел, участвующих в теплообмене.

Записываем ноль в правой части уравнения, когда теплообмен с окружающей средой отсутствует. То есть, теплообмен происходит только между рассматриваемыми телами.

В некоторых учебниках применяют сокращения:

[large Q_ + Q_ = 0 ]

Примечание: Складывая два числа мы получим ноль, когда эти числа будут:

  • равными по модулю и
  • имеют различные знаки (одно число — знак «плюс», а второе – знак «минус»).

Если несколько тел участвуют в процессе теплообмена

Иногда в процессе теплообмена участвуют несколько тел. Тогда, для каждого тела нужно записать формулу количества теплоты Q. А потом все количества теплоты подставить в уравнение для теплового баланса:

[large boxed < Q_+ Q_ + Q_ + ldots + Q_ = 0 > ]

  • Q для каждого нагреваемого тела будет обладать знаком «+»,
  • Q для каждого охлаждаемого тела — знаком «-».

Видео:10 класс, 11 урок, Уравнение теплового баланса с учетом изменения агрегатного состояния веществаСкачать

10 класс, 11 урок, Уравнение теплового баланса с учетом изменения агрегатного состояния вещества

Пример расчетов для теплообмена между холодным и горячим телом

К горячей воде, массой 200 грамм, имеющей температуру +80 градусов Цельсия, добавили холодную воду, в количестве 100 грамм при температуре +15 градусов Цельсия. Какую температуру будет иметь смесь после установления теплового равновесия? Считать, что окружающая среда в теплообмене не участвует.

Примечание: Здесь мы рассматриваем упрощенную задачу, для того, чтобы облегчить понимание закона сохранения энергии. Мы не учитываем в этой задаче, что вода содержится в емкости. И часть тепловой энергии будет затрачиваться на то, чтобы изменить температуру емкости.

При решении других задач обязательно учитывайте, что емкость, в которой будет содержаться вещество, имеет массу. И часть тепловой энергии будет затрачиваться на то, чтобы изменить температуру емкости.

Решение:

В условии сказано, что окружающая среда в теплообмене не участвует. Поэтому, будем считать рассматриваемую систему замкнутой. А в замкнутых системах выполняются законы сохранения. Например, закон сохранения энергии.

Иными словами, с сосудом и окружающим воздухом теплообмен не происходит и, все тепловая энергия, отданная горячей водой, будет получена холодной водой.

1). Запишем уравнение теплового баланса, в правой части которого можно записать ноль:

2). Теперь запишем формулу для каждого количества теплоты:

Примечания:

  1. (large c_<text> ) – удельную теплоемкость воды находим в справочнике;
  2. Массу воды переводим в килограммы;
  3. Горячая вода остывает и отдает тепловую энергию. Поэтому, разность (large (t_<text> — t_<text> ) ) будет иметь знак «минус», потому, что конечная температура горячей воды меньше ее начальной температуры;
  4. Холодная вода получает тепловую энергию и нагревается. Из-за этого, разность (large (t_<text> — t_<text> ) ) будет иметь знак «плюс», потому, что конечная температура холодной воды больше ее начальной температуры;

3). Подставим выражения для каждого Q в уравнение баланса:

4). Для удобства, заменим символы числами:

[large 4200 cdot 0,2 cdot (t_<text> — 80 ) + 4200 cdot 0,1 cdot (t_<text> — 15 ) = 0 ]

[large 840 cdot (t_<text> — 80 ) + 420 cdot (t_<text> — 15 ) = 0 ]

Раскрыв скобки и решив это уравнение, получим ответ:

Ответ: Температура смеси после прекращения теплообмена будет равна 58,33 градуса Цельсия.

Задача для самостоятельного решения:

В алюминиевом калориметре массой 100 грамм находится керосин массой 250 грамм при температуре +80 градусов Цельсия. В керосин поместили свинцовый шарик, массой 300 грамм. Начальная температура шарика +20 градусов Цельсия. Найдите температуру тел после установления теплового равновесия. Внешняя среда в теплообмене не участвует.

Примечание к решению: В левой части уравнения теплового баланса теперь будут находиться три слагаемых. Потому, что мы учитываем три количества теплоты:

  • (large Q_ ) – охлаждение алюминия от температуры +80 градусов до конечной температуры;
  • (large Q_ ) – охлаждение керосина от температуры +80 градусов до конечной температуры;
  • (large Q_ ) – нагревание свинца от температуры +20 градусов до конечной температуры;

А справа в уравнение теплового баланса запишем ноль. Так как внешняя среда в теплообмене не участвует.

Видео:Урок 175. Уравнение теплового балансаСкачать

Урок 175. Уравнение теплового баланса

Уравнение теплового баланса — формула, суть и примеры решений

Принципы составления уравнений тепловых балансов

Видео:Решение задач на уравнение теплового баланса. Физика 8 классСкачать

Решение задач на уравнение теплового баланса. Физика 8 класс

Общие сведения

Баланс в переводе на русский язык означает равновесие. Когда теплоизолированная система приходит в состояние теплового равновесия, то температура всех тел, образующих эту совокупность, становится одинаковой. Такую ситуацию называют законом теплового равновесия или нулевым уравнением термодинамики.

Впервые с уравнением теплового баланса знакомят в средней школе на уроке физики. Ученикам в седьмом классе предлагается решить несколько простых заданий, используя равенство. Формула и определение даётся без доказательства, так как для понимания процесса нужно знать понятия, которые разбираются в выпускных классах школы. Например, то, что теплоёмкость не является характеристикой вещества, при этом она может быть разной в зависимости от проходящих процессов.

Принципы составления уравнений тепловых балансов

Закон теплового баланса позволяет утверждать, что когда в изолированной системе физических тел происходит только теплообмен, то часть тепла, переданного телами, внутреннее состояние энергии которых уменьшается, численно равняется теплу, полученному объектами с возрастающей внутренней энергии. Математически уравнение записывается в виде следующей формулы: Q 1 + Q 2 + Q 3 + …+ Qn = 0, где:

  • n — число тел, находящихся в теплоизолированной системе;
  • Q — полученное количество теплоты.

Если предположить, что имеется совокупность, состоящая из двух тел, из которых одно отдаёт тепло, а другое принимает его, то справедливо будет записать: Q1 = Q2. Таким образом, теплоотдача всегда равняется теплоприёму. Поэтому этот закон и называют правилом сохранения энергии в тепловых процессах.

Когда тела два, то понять, какое из них отдаёт тепло, а какое получает, несложно. То, что имеет большее нагревание, — будет отдавать. Если же объектов три и более, и некоторые из них имеют промежуточную температуру, определить, какие из них принимают тепло, довольно сложно. Вот тут на помощь и приходит уравнение термодинамики.

Изменение внутренней энергии объясняется теплопередачей, то есть случаем, когда работа не совершается. Поэтому в физике уравнение теплового баланса используется при анализе процессов теплопередачи, нахождении КПД. Это равенство можно применять как при рассмотрении твёрдых тел, так и жидкости.

Видео:Урок 127 (осн). Задачи на уравнение теплового баланса - 1Скачать

Урок 127 (осн). Задачи на уравнение теплового баланса - 1

Суть уравнения

Следует рассмотреть процесс установления теплового равновесия в теплоизолированной системе. Это такая совокупность, в которой объекты взаимодействуют только друг с другом. Простейшая система будет состоять из двух тел. Например, в термос налит сок и в него вброшен лёд. В этом случае термос является изолятором от внешнего воздействия. Пусть первое тело имеет температуру t1, а второе t2. Допустим, что t1 больше t2. Это допущение не является принципиальным, поэтому его можно использовать.

Принципы составления уравнений тепловых балансов

В начальный момент времени тела находятся далеко друг от друга и теплообмен между ними не происходит. Как только, они соприкоснутся — начнётся взаимодействие. Так как температура первого тела больше, то оно начнёт остывать, а второе нагреваться. Происходит теплопередача. В какой-то момент времени она прекратится и наступит тепловое равновесие. То есть температура двух тел станет одинаковой: t1 = t2.

Получившаяся температура называется равновесной. Обозначается она греческой буквой тета — θ. Так как раньше первое тело имело большую температуру, то получается, что в процессе взаимодействия оно отдало тепло. Записать это можно как Q1 — — количество теплоты, отданное первым телом. Второй же объект в процессе подогрелся — увеличил температуру. Обозначить это можно как +Q2 — количество теплоты, полученное вторым телом.

Получить тепло второй объект мог только от первого тела, так как рассматриваемая система изолированная. Соответственно, и отдать определённое количество теплоты первое тело могло только второму. Отсюда можно сделать вывод, что если система теплоизолированная, то эти два количества теплоты одинаковы: Q1 — = +Q2. Фактически это есть уравнение баланса.

Такая запись даётся в школьных учебниках. Но профессиональные физики записывают его в другой форме. Для термодинамики неважно, какой объект отдаёт, а какой получает тепло. Наука изучает только количество теплоты, полученное в процессе. Взяв простую аналогию с весом, когда о похудевшем человеке на два килограмма можно сказать, что он поправился на минус два кило, будет верным записать: Q1 — = -Q1 или -Q1 = Q2.

Принципы составления уравнений тепловых балансов

Если собрать два слагаемых таким образом, чтобы они находились с одной стороны знака равенства, то можно записать: Q1 + Q2 = 0.

Суммарное количество теплоты, образуемое при теплообмене тел в теплоизолированной системе, равно нулю. При этом это правило будет справедливо и для энного количества объектов.

Видео:ИЗИ Физика. Уравнение теплового баланса. Фазовые переходыСкачать

ИЗИ Физика. Уравнение теплового баланса. Фазовые переходы

Доказательство закона

Пусть имеется теплоизолированная система, состоящая из нескольких помещённых в неё объектов. Сами тела могут обмениваться теплом только друг с другом. Первый закон термодинамики для системы в целом можно записать как Q = А’ + Δ‎ U. То есть количество теплоты, полученное всей системой, равняется суммарной работе, совершённой всеми телами в совокупности над внешним миром, складывающейся с изменением энергии всех тел внутри системы.

По условию задачи внутренняя энергия меняется не за счёт совершения работы. Поэтому А’ = 0. С другой же стороны, теплоизоляция обозначает, что Q = 0. Иными словами, количество энергии, поступающее из окружения Земли, равняется нулю. Следовательно, изменение внутренней энергии всех тел в системе будет нулевым: Δ‎ U = 0.

Принципы составления уравнений тепловых балансов

Энергия системы состоит из внутренних энергий каждого из входящих в неё тел: U = U1 + U2 +…+ Un. Изменение же её Δ‎ U = Δ‎ U 1 + Δ‎ U 2 + … + Δ‎ Un. Отсюда следует, что если внутренняя энергия остаётся неизменной, то сумма Δ‎ U будет нулевой: Δ‎ U 1 + Δ‎ U 2 + … + Δ‎ Un = 0.

Первый закон термодинамики персонально для каждого из тел входящих в систему можно записать как следующую систему:

Все уравнения, входящие в неё, можно сложить почленно. При этом распределив слагаемые для удобства дальнейшего анализирования: Q1 + Q2 +…+ Q n = (А n1′ + А n2′ + … + А n’) + (Δ‎ U1 + Δ‎ U2 + … + Δ‎ Un). Из полученного выражения можно сделать вывод, что сумма дельт второго члена в правой части равняется нулю. В первом же члене с правой стороны каждое слагаемое также равняется нулю. Поэтому можно записать: Q1 + Q2 +…+ Q n = 0. Что и следовало доказать.

Для решения задач полезно вспомнить, на что может идти полученное тепло. К таким частным случаям относят:

Принципы составления уравнений тепловых балансов

  1. Процессы, при которых нет фазовых переходов. В таком случае полученное количество идёт на увеличение теплоты потенциальной и кинетической энергии: Q = c * m * Δ‎T (изохорная теплоёмкость).
  2. Плавление. Например, есть тающий лёд, к которому подводят тепло, при этом кинетическая энергия остаётся постоянной. Значит, изменяется только потенциальная мощность. В этом случае происходит превращение льда в воду. Это действие называют плавлением — переход кристаллического вещества из твёрдого состояния в жидкое: Q = λ * m.
  3. Парообразование. Выделение из жидкости пара: Q = L * m.

Видео:Урок 113 (осн). Задачи на уравнение теплового балансаСкачать

Урок 113 (осн). Задачи на уравнение теплового баланса

Типовое задание

Явление теплового баланса используется как в изучении процессов при переходе из одного агрегатного состояния в другое, так и для твёрдых или жидких тел, не изменяющих решётку. Существуют типовые задания, входящие в школьную программу. Ученик, решая их, научится находить удельные параметры и сможет понять всю важность выражения теплового баланса.

Принципы составления уравнений тепловых балансов

В латунный котёл массой 128 граммов, содержащий 240 граммов воды, при 8,4 градусах опущено металлическое тело массой 192 грамма, нагретое до 120 градусов Цельсия. Окончательная установившаяся температура составила 21,5 градус. Определить удельную теплоёмкость рассматриваемого тела. Для решения задачи необходимо из справочника взять значение энергетической теплоёмкости латуни. Она составляет 400 Дж/ кг *С 0 . При этом нужно учитывать, что котёл теплоизолирован.

Температуру, которая установилась через время, обозначают буквой θ. Решение подобных задач начинают с установления количества тел, участвующих в теплообмене. В этом примере их три: вода, котёл, испытываемое тело. Количество тепла, полученное всеми тремя объектами, согласно закону, будет равняться нулю: Qв + Qк +Qт = 0. Теперь следует каждое слагаемое расписать отдельно:

  1. Qв = mв * cв * Св (θ — Tв).
  2. Qк = mк * cл * (θ — Tв).
  3. Qт = mт * cт * (θ — Tк).

Полученные формулы нужно подставить в исходное уравнение. При этом следует обратить внимание, что при подстановке образуется общий множитель (θ — T в), который можно вынести за скобки: (m в * c в + m к * c л) * (θ — T в) + m т * c т * (θ — T к) = 0.

Из условия задачи известно, что у тела температура 100 градусов, а равновесная температура меньше. Поэтому последняя скобка будет отрицательной. Значит, есть смысл перенести это слагаемое вправо, поменяв местами вычитаемое и уменьшаемое: (m в * c в + m к * c л) * (θ — T в) = m т * c т * (T к — θ). Отсюда можно выразить удельную теплоёмкость массы тела. Она будет равняться: C т = (m в * c в + m к * c л) * (θ — T в) / m т * (T к — θ) .

Все данные, используемые в формуле, известны. Остаётся только провести расчёты, подставив значения: Cт = (0,24 кг * 4,2 кДж/кг*С + 0,128 кг * 0,4 кДж/кг*С *(21,5 — 8,4) С) / 0,192 кг * (100 — 21,5)С = 0,921 кДж/ кг *С 0 . Полученное вещество является алюминием.

Видео:Теплообмен. Уравнение теплового баланса 8-10 класс | Физика TutorOnlineСкачать

Теплообмен. Уравнение теплового баланса 8-10 класс | Физика TutorOnline

Примеры высокого уровня

Эти задачи рассчитаны на подготовленных учащихся, понимающих суть процессов и знающих уравнение баланса. Например, электрическая установка с мощностью P = 350 Вт не может нагреть воду массой 0,6 кг до кипения. Убедившись в этом, её выключают. Нужно определить, каким останется конечный нагрев воды через 15 секунд.

Из условия можно утверждать, что мощность теплопотерь равняется мощности нагревателя: Pпот = P. По сути, мощность теплопотерь это количество тепла, отдаваемое телом в единицу времени. То есть: P пот = Q — / Δ‎T. С другой стороны, отданное тепло находится из формулы: Q — = c * m * (-Δ‎T). Отсюда можно записать: P = — c * m * Δ‎T / Δ‎t. Из последнего выражения легко выразить искомый параметр: Δ‎T = -(P * Δ‎t) / (c * m). Все необходимые данные есть в условии и их необходимо просто подставить: Δ‎T = — 350 Вт * 15 с / 4200 Дж * 0,6 кг = — 2,1 С 0 . Минус в ответе показывает, что температура понижается. Задача решена.

Принципы составления уравнений тепловых балансов

Вот ещё одна задача, для решения которой необходимо вначале исследовать ситуацию. В ёмкость поместили смесь, состоящую из пяти килограммов воды и трёх килограммов льда. Затем туда пустили 0,2 кг водяного пара при температуре 100 0 С. Нужно определить, что произойдёт.

По условию задачи даны три массы mв, mл, mп. Можно предположить, что при смешении в момент запуска пара температура в системе была нулевой. Это исходит из того, что в ёмкости одновременно находится лёд и вода. Поступающий пар конденсирует, и из него образуется вода. Через время она остывает до нуля. Поэтому в начальный момент выделившаяся энергия идёт только на таяние льда. Cуществует три варианта развития события:

  1. Лёд не растает ( θ =0 0 С).
  2. Лёд полностью растает (0 0 С).
  3. Вода начнёт кипеть ( θ = 100 0 С) .

Для того чтобы выяснить, какой вариант верный, нужно найти выделившуюся энергию: Qпл = λ * m = 330 * 3 = 990 кДж. Получается, чтобы растопить лёд, нужно 990 кДж теплоты. Пар, вступая в реакцию, отдаёт: Q- = L* m + cв * mв (Tпар – Tпл) = 2300 + 0,2 + 4,2 * 0,2 * 100 = 544 кДж. Учитывая два полученных результата, можно утверждать, что при конденсации основного пара выделившейся теплоты будет недостаточно для расплавления льда. Следовательно θ = 0 0 С.

Видео:Задача на Тепловой обмен. физика 8 классСкачать

Задача на Тепловой обмен. физика 8 класс

Фазовые переходы и уравнение теплового баланса

теория по физике 🧲 термодинамика

Фазовые переходы — это термодинамические процессы, приводящие к изменению агрегатного состояния вещества.

Видео:Уравнение теплового баланса, термодинамика в изопроцессах | Физика ЕГЭ 10 класс | УмскулСкачать

Уравнение теплового баланса, термодинамика в изопроцессах | Физика ЕГЭ 10 класс | Умскул

Плавление и отвердевание

Для расчета количества теплоты, необходимого для процесса плавления, следует применять формулу:

m — масса вещества, λ (Дж/кг) — удельная теплота плавления.

Плавление каждого вещества происходит при определенной температуре, которую называют температурой плавления. Все проводимое тепло идет на разрушение кристаллической решетки, при этом увеличивается потенциальная энергия молекул. Кинетическая энергия остается без изменения и температура в процессе плавления не изменяется.

Удельная теплота плавления показывает, какое количество теплоты необходимо сообщить 1 кг данного вещества, чтобы перевести его из твердого состояния в жидкое при условии, что оно уже нагрето до температуры плавления. В процессе отвердевания 1 кг данной жидкости, охлажденной до температуры отвердевания, выделится такое же количество теплоты.

Внимание! Удельная теплота плавления — табличная величина.

Определение Отвердевание, или кристаллизация — переход состояния из жидкого состояния в твердое (это процесс, обратный плавлению).

Отвердевание происходит при той же температуре, что и плавление. В процессе отвердевания температура также не изменяется. Количество теплоты, выделяемое в процессе отвердевания:

Видео:Урок 176. Задачи на уравнение теплового балансаСкачать

Урок 176. Задачи на уравнение теплового баланса

Парообразование и конденсация

Количество теплоты, необходимое для процесса кипения, вычисляют по формуле:

m — масса вещества, r (Дж/кг) — удельная теплота парообразования.

Парообразование происходит при определенной температуре, которую называют температурой кипения. В отличие от испарения, процесс парообразования идет со всего объема жидкости. Несмотря на то, что к кипящему веществу подводят тепло, температура не изменяется. Все затраты энергии идут на увеличение промежутком между молекулами. Температура кипения зависит от рода вещества и внешнего атмосферного давления.

Удельная теплота парообразования показывает, какое количество теплоты необходимо затратить, чтобы перевести в пар 1 кг жидкости, нагретой до температуры кипения. Такое же количество теплоты выделится в процессе конденсации 1 кг пара, охлажденного до температуры конденсации.

Внимание! Удельная теплота парообразования — табличная величина.

Определение Конденсация — процесс, обратный кипению. Это переход вещества из газообразного состояния в жидкое.

Конденсация происходит при температуре кипения, которая также не изменяется во время всего процесса. Количество теплоты, выделяемое в процессе конденсации:

Видео:Уравнение теплового балансаСкачать

Уравнение теплового баланса

Тепловые процессы при нагревании и охлаждении

Все фазовые переходы, а также процессы нагревания и остывания вещества можно отобразить графически. Посмотрите на график фазовых переходов вещества:

Принципы составления уравнений тепловых балансов

Он показывает зависимость температуры вещества от времени в процессе его нагревания и остывания. Опишем процессы, отображаемые на графике, в таблице.

Q = c т m ( t п л − t 0 )

ст — удельная теплоемкость вещества в твердом состоянии.

Q = c ж m ( t к и п − t п л )

сж — удельная теплоемкость вещества в жидком состоянии.

Q = c п m ( t − t к и п )

сп — удельная теплоемкость вещества в газообразном состоянии.

Q = c п m ( t к и п − t )

Q = c ж m ( t п д − t к и п )

Q = c т m ( t 0 − t п л )

Внимание! На участках 2–3 и 9–10 вещество частично находится в жидком и твердом состояниях, а на 4–5 и 7–8 — в жидком и газообразном.

Частные случаи тепловых процессов

ПроцессЧто происходитКоличество выделенной теплоты
1–2Нагревание твердого тела
2–3Плавление при температуре плавления (tпл)
3–4Нагревание жидкости
4–5Кипение при температуре кипения (tкип)
5–6Нагревание пара
6–7Охлаждение пара
7–8Кипение при температуре кипения (tкип)
8–9Охлаждение жидкости
9–10Отвердевание при температуре плавления (tпл)
10–11Охлаждение твердого тела

Q = c л m ( t п л − t л ) + λ m

cл — удельная теплоемкость льда, tл — начальная температура льда.

Q = c л m ( t п л − t л ) + λ m + c в m ( t в − t п л )

cв — удельная теплоемкость воды.

Q = λ m + c в m ( t к и п − t п л ) + r m

Q = c в m ( t к и п − t в ) + r m 2 . .

Подсказки к задачам

Что происходитГрафикФормула количества теплоты
Полностью растопили лед, имеющий отрицательную температуру.Принципы составления уравнений тепловых балансов
Лед, взятый при отрицательной температуре, превратили в воду при комнатной температуре.Принципы составления уравнений тепловых балансов
Взяли лед при температуре 0 о С и полностью испарили.Принципы составления уравнений тепловых балансов
Взяли воду при комнатной температуре и половину превратили в пар.Принципы составления уравнений тепловых балансов
Единицы измеренияТемпературу можно оставлять в градусах Цельсия, так как изменение температуры в градусах Цельсия равно изменению температуры в Кельвинах.
КипятокВода, которая при нормальном атмосферном давлении имеет температуру в 100 о С.
Объем воды 5 лm = 5 кг, так как:

m = ρ V =10 3 · 5 · 10 − 3 м 3 = 5 к г

Внимание! Равенство V (л) = m (кг) справедливо только для воды.

Пример №1. Какое количество теплоты нужно сообщить льду массой 2 кг, находящемуся при температуре –10 о С, чтобы превратить его в воду и нагреть ее до температуры +30 о С?

Можно выделить три тепловых процесса:

  1. Нагревание льда до температуры плавления.
  2. Плавление льда.
  3. Нагревание воды до указанной температуры.

Поэтому количество теплоты будет равно сумме количеств теплоты для каждого из этих процессов:

Q = Q 1 + Q 2 + Q 3

Q = c л m ( 0 − t 1 ) + λ m + c в m ( t 2 − 0 )

Удельные теплоемкости и удельную теплоту плавления смотрим в таблицах:

  • Удельная теплоемкость льда = 2050 Дж/(кг∙К).
  • Удельная теплоемкость воды = 4200 Дж/(кг∙К).
  • Удельная теплота плавления льда = 333,5∙10 3 Дж/кг.

Q = 2050 · 2 ( 0 − ( − 10 ) ) + 333 , 5 · 10 3 · 2 + 4220 · 2 · 30 = 961200 ( д ж ) = 961 , 2 ( к Д ж )

Видео:Тепловые явления - Урок 7 - Уравнение теплового балансаСкачать

Тепловые явления - Урок 7 - Уравнение теплового баланса

Уравнение теплового баланса

Суммарное количество теплоты, которое выделяется в теплоизолированной системе равно количеству теплоты (суммарному), которое в этой системе поглощается.

Математически уравнение теплового баланса с учетом знаков количества теплоты записывается так:

Q о т д = − Q п о л

Отданное количество теплоты меньше нуля (Qотд 0).

Подсказки к задачам на уравнение теплового баланса

Теплообмен происходит в калориметреПотерями энергии можно пренебречь.
Жидкость нагревают в некотором сосудеНачальные и конечные температуры жидкости и сосуда совпадают.
В жидкость опускают термометрЧерез некоторое время он покажет конечную температуру жидкости и термометра.
Мокрый снегСодержит воду и лед при 0 о С. Учтите, что лед плавится, если он находится при температуре 0 о С и получает энергию от более нагретого тела. Вода кристаллизируется при температуре 0 о С, если она отдает энергию более холодному телу. Если лед и вода находятся при температуре 0 о С, то никаких агрегатных переходов между ними не происходит.

Частные случаи теплообмена

В воду комнатной температуры бросили ком снега, содержащий некоторое количество воды, после чего установилась некоторая положительная температура. Принципы составления уравнений тепловых балансовУравнение теплового баланса:

Q 1 + Q 2 + Q 3 = 0

c в m в 1 ( t − t в 1 ) + c в m в 2 ( t − 0 ) + λ m л + c в m л ( t − 0 ) = 0

Для получения некоторой положительной температуры воды используют горячую воду и лед, имеющий отрицательную температуру. Принципы составления уравнений тепловых балансовУравнение теплового баланса:

c в m в ( t − t в ) + c л m л ( 0 − t л ) + λ m л + c в m л ( t − 0 ) = 0

В воду комнатной температуры бросают раскаленное твердое тело, в результате часть воды испаряется. Принципы составления уравнений тепловых балансовУравнение теплового баланса:

c т m т ( 100 − t т ) + c в m в ( 100 − t в ) + r m п = 0

Воду комнатной температуры нагревают до кипения, вводя пар при t = 100 о С. Принципы составления уравнений тепловых балансовУравнение теплового баланса:

− r m п + c в m в ( 100 − t в ) = 0

Лед, имеющий температуру плавления, нагревают до положительной температуры, вводя пар при t = 100 о С. Принципы составления уравнений тепловых балансовУравнение теплового баланса:

− r m п + c в m п ( t − t к и п ) + λ m л + c в m л ( t − t п л ) = 0

Пример №2. В кастрюлю, где находится вода объемом 2 л при температуре 25 о С, долили 3 л кипятка. Какая температура воды установилась?

Количество теплоты, отданное кипятком, равно количеству теплоты, принятому более прохладной водой. Поэтому:

c m 1 ( t − t 0 ) = − c m 2 ( t − t к и п )

m 1 ( t − t 0 ) = − m 2 ( t − t к и п )

m 1 t + m 2 t = m 1 t 0 + m 2 t к и п

( m 1 + m 2 ) t = m 1 t 0 + m 2 t к и п

t = m 1 t 0 + m 2 t к и п m 1 + m 2 . .

t = 2 · 25 + 3 · 100 2 + 3 . . = 350 5 . . = 70 ( ° C )

Видео:Урок 128 (осн). Задачи на уравнение теплового баланса - 2Скачать

Урок 128 (осн). Задачи на уравнение теплового баланса - 2

Взаимные превращения механической и внутренней энергии

Если в тексте задачи указан процент одного вида энергии, перешедший в другой, то он указывается в виде десятичной дроби перед этой энергией, которой тело обладало вначале.

Частные случаи закона сохранения энергии

m v 2 2 . . = c m Δ t

0 , 5 ( m v 2 0 2 . . − m v 2 2 . . ) = c m Δ t

m v 2 2 . . = c m Δ t + λ m

0 , 6 m g h = c m Δ t + r m

q m т о п = m р g h

0 , 25 q m т о п m с v 2 2 . .

Пример №3. Свинцовая дробинка, летящая со скоростью 100 м/с, попадает в доску и входит в нее. 52% кинетической энергии дробинки идет на ее нагревание. На сколько градусов нагрелась дробинка? Удельная теплоемкость свинца 130 Дж/(кг∙К).

Запишем закон сохранения энергии для этого случая:

0 , 52 m v 2 2 . . = c m Δ t

Δ t = 0 , 52 v 2 2 c . . = 0 , 52 · 100 2 2 · 130 . . = 20 ( К )

Примеры КПД

При неупругом ударе о стенку пуля нагрелась
Тело падает с некоторой высоты и в момент падения нагревается
В результате того, что пуля пробивает стену, ее скорость уменьшается, 50% выделившейся при этом энергии идет на нагревание пули
Летящая пуля при ударе о стенку расплавилась. Начальная температура пули меньше температуры плавления
Капля воды, падая с некоторой высоты, в момент удара испарилась. Температура капли у поверхности земли меньше температуры кипения. На нагрев пошло 60% выделившейся механической энергии
Вследствие сгорания топлива ракета поднялась на некоторую высоту
Вследствие сгорания топлива снаряд приобрел некоторую скорость, и на это было затрачено 25% энергии

Q п о л е з н = c m Δ T

Q п о л е з н = c m Δ T + r m

( п р о и з в е д е н и е м о щ н о с т и н а в р е м я )

η = c m Δ T P t . . 100 %

Q п о л е з н = c m Δ T

Q з а т р = q m т о п

η = c m Δ T q m т о п . . 100 %

A п о л е з н = N t = N s v . .

Q з а т р = q m т о п

η = c m Δ T v q m т о п . . 100

E п о л е з н = m v 2 2 . .

Q з а т р = q m п о р

η = m v 2 2 q m п о р . . 100

Внимание! Если в задаче указано время, в течение которого происходит один тепловой процесс, а спрашивают о времени протекания другого, то считайте, что мощность нагревателя или холодильника постоянна:

Q 1 t 1 . . = Q 2 t 2 . .

Пример №4. Для нагревания на электроплитке некоторого количества воды от 20 до 100 о С потребовалась 21 минута. Сколько времени после этого необходимо для полного испарения воды? Удельная теплоемкость воды 4200 Дж (кг∙К), удельная теплота парообразования 2,24 МДж/кг.

Будем считать, что мощность электроплитки постоянна. Поэтому:

Q 1 t 1 . . = Q 2 t 2 . .

Количество теплоты, сообщенное воде при нагревании:

Q 1 = с m ( t 2 − t 1 )

Количество теплоты, которое нужно сообщить, чтобы вода полностью испарилась:

с m ( t 2 − t 1 ) t 1 . . = r m t 2 . .

Принципы составления уравнений тепловых балансов

Кусок льда, имеющий температуру 0°С, помещён в калориметр с электронагревателем. Чтобы превратить этот лёд в воду с температурой 12°С, требуется количество теплоты 80 кДж. Какая температура установится внутри калориметра, если лёд получит от нагревателя количество теплоты 60 кДж? Теплоёмкостью калориметра и теплообменом с внешней средой пренебречь.

Алгоритм решения

Решение

Запишем исходные данные:

Составим уравнение теплового баланса для первого случая:

Q 1 = λ m + c m t 1

Внимание! Вместо разности температур используется значение только конечной температуры, так как начальная температура равна 0.

Найдем массу льда из уравнения теплового баланса для первого случая. Учтем что:

Принципы составления уравнений тепловых балансов

Чтобы расплавить кусок льда массой 0,5 кг, нужно затратить следующее количество теплоты:

Принципы составления уравнений тепловых балансов

Лед не расплавится весь, так как ему будет сообщено лишь 60 кДж теплоты. Поэтому в калориметре температура будет равна 0 о С.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Внимательно прочитайте текст задания и выберите верный ответ из списка

Принципы составления уравнений тепловых балансовНа рисунке представлены графики зависимости температуры t двух тел одинаковой массы от сообщённого им количества теплоты Q. Первоначально тела находились в твёрдом агрегатном состоянии.

Используя данные графиков, выберите из предложенного перечня два верных утверждения и укажите их номера. Ответ: а) Температура плавления первого тела в 1,5 раза больше, чем второго. б) Тела имеют одинаковую удельную теплоёмкость в твёрдом агрегатном состоянии. в) Удельная теплоёмкость второго тела в твёрдом агрегатном состоянии в 3 раза больше, чем первого. г) Оба тела имеют одинаковую удельную теплоту плавления. д) Тела имеют одинаковую удельную теплоёмкость в жидком агрегатном состоянии.

Алгоритм решения

  1. Проанализировать каждое из утверждений.
  2. Проверить истинность утверждений с помощью графика.
  3. Выбрать и записать верные утверждения.

Решение

Проверим первое утверждение, согласно которому, температура плавления первого тела в 1,5 раза больше, чем второго.

Если это было бы так, то количество клеток до горизонтального участка графика 1 относилось к количеству клеток до горизонтального участка графика 2 как 3 к 2. Но мы видим, что до 1 графика 4 клетки, до 1 — 2. Следовательно, температура плавления первого тела в 2 раза больше, чем второго.

Первое утверждение неверно.

Проверим второе утверждение, согласно которому тела имеют одинаковую удельную теплоёмкость в твёрдом агрегатном состоянии.

Если бы это было так, то соответствующие участки графиков совпадали бы. Только в таком случае температура тел увеличивалась на одну и ту же температуру при получении одного и того же количества теплоты. Но мы видим, что это не так.

Второе утверждение неверно.

Проверим третье утверждение, согласно которому удельная теплоёмкость второго тела в твёрдом агрегатном состоянии в 3 раза больше, чем первого.

Если это было бы так, то первое тело при сообщении телам одинакового количества теплоты нагревалось бы втрое быстрее второго. И это действительно так, потому что температура второго во время нагревания в твердом состоянии увеличилась только на 1 клетку, в то время как температура первого тела — на 2 клетки.

Третье утверждение верно.

Проверим четвертое утверждение, согласно которому оба тела имеют одинаковую удельную теплоту плавления.

Если это было бы так, то протяженность горизонтальных участков обоих графиков была бы одинаковой. Но это не так. Протяженность этого участка для тела 1 составляет 3 клетки, для тела 2 — 2 клетки.

Четвертое утверждение верно.

Проверим пятое утверждение, согласно которому тела имеют одинаковую удельную теплоёмкость в жидком агрегатном состоянии.

Если бы это было так, то соответствующие участки графиков были параллельными. Только при таком условии при повышении температуры на одно и то же количество градусов тела бы получли одинаковое количество теплоты. И это действительно так.

Пятое утверждение верно.

Вывод: верным утверждения «в» и «д».

pазбирался: Алиса Никитина | обсудить разбор | оценить

В сосуде лежит кусок льда. Температура льда t 1 = 0 «> t 1 = 0 °C. Если сообщить ему количество теплоты Q = 50 «> Q = 50 кДж, то 3/4 льда растает. Какое количество теплоты q надо после этого сообщить содержимому сосуда дополнительно, чтобы весь лёд растаял и образовавшаяся вода нагрелась до температуры t 2 = 20 «> t 2 = 20 °C? Тепловыми потерями на нагрев сосуда пренебречь.

💥 Видео

❗ Количество теплоты ❗ Уравнение теплового баланса + РЕШЕНИЕ задачСкачать

❗ Количество теплоты ❗ Уравнение теплового баланса + РЕШЕНИЕ задач

Формы записи уравнения теплового балансаСкачать

Формы записи уравнения теплового баланса

89 НЕ ЗНАЮТ этого в Физике: Что такое Количество Теплоты, Теплоемкость, Уравнение Теплового БалансаСкачать

89 НЕ ЗНАЮТ этого в Физике: Что такое Количество Теплоты, Теплоемкость, Уравнение Теплового Баланса

🔴 ЕГЭ-2022 по физике. Уравнение теплового балансаСкачать

🔴 ЕГЭ-2022 по физике. Уравнение теплового баланса

Закон сохранения превращения энергии в тепловых процессах. 8 класс.Скачать

Закон сохранения превращения энергии в тепловых процессах. 8 класс.
Поделиться или сохранить к себе:
УстройствоПолезная энергия (работа), затраченная энергия (полная работа)КПД
Электронагреватель, электроплитка, электрочайник, кипятильник.
Газовая горелка, паровая турбина, спиртовка, плавильная печь.
Двигатель автомобиля, самолета.
Ружье с пороховым зарядом, пушка