Примеры задач на нахождение уравнения прямой

Общее уравнение прямой: описание, примеры, решение задач

Данная статья продолжает тему уравнения прямой на плоскости: рассмотрим такой вид уравнения, как общее уравнение прямой. Зададим теорему и приведем ее доказательство; разберемся, что такое неполное общее уравнение прямой и как осуществлять переходы от общего уравнения к другим типам уравнений прямой. Всю теорию закрепим иллюстрациями и решением практических задач.

Видео:9 класс, 7 урок, Уравнение прямойСкачать

9 класс, 7 урок, Уравнение прямой

Общее уравнение прямой: основные сведения

Пусть на плоскости задана прямоугольная система координат O x y .

Любое уравнение первой степени, имеющее вид A x + B y + C = 0 , где А , В , С – некоторые действительные числа ( А и В не равны одновременно нулю) определяет прямую линию в прямоугольной системе координат на плоскости. В свою очередь, любая прямая в прямоугольной системе координат на плоскости определяется уравнением, имеющим вид A x + B y + C = 0 при некотором наборе значений А , В , С .

указанная теорема состоит из двух пунктов, докажем каждый из них.

  1. Докажем, что уравнение A x + B y + C = 0 определяет на плоскости прямую.

Пусть существует некоторая точка М 0 ( x 0 , y 0 ) , координаты которой отвечают уравнению A x + B y + C = 0 . Таким образом: A x 0 + B y 0 + C = 0 . Вычтем из левой и правой частей уравнений A x + B y + C = 0 левую и правую части уравнения A x 0 + B y 0 + C = 0 , получим новое уравнение, имеющее вид A ( x — x 0 ) + B ( y — y 0 ) = 0 . Оно эквивалентно A x + B y + C = 0 .

Полученное уравнение A ( x — x 0 ) + B ( y — y 0 ) = 0 является необходимым и достаточным условием перпендикулярности векторов n → = ( A , B ) и M 0 M → = ( x — x 0 , y — y 0 ) . Таким образом, множество точек M ( x , y ) задает в прямоугольной системе координат прямую линию, перпендикулярную направлению вектора n → = ( A , B ) . Можем предположить, что это не так, но тогда бы векторы n → = ( A , B ) и M 0 M → = ( x — x 0 , y — y 0 ) не являлись бы перпендикулярными, и равенство A ( x — x 0 ) + B ( y — y 0 ) = 0 не было бы верным.

Примеры задач на нахождение уравнения прямой

Следовательно, уравнение A ( x — x 0 ) + B ( y — y 0 ) = 0 определяет некоторую прямую в прямоугольной системе координат на плоскости, а значит и эквивалентное ему уравнение A x + B y + C = 0 определяет ту же прямую. Так мы доказали первую часть теоремы.

  1. Приведем доказательство, что любую прямую в прямоугольной системе координат на плоскости можно задать уравнением первой степени A x + B y + C = 0 .

Зададим в прямоугольной системе координат на плоскости прямую a ; точку M 0 ( x 0 , y 0 ) , через которую проходит эта прямая, а также нормальный вектор этой прямой n → = ( A , B ) .

Пусть также существует некоторая точка M ( x , y ) – плавающая точка прямой. В таком случае, векторы n → = ( A , B ) и M 0 M → = ( x — x 0 , y — y 0 ) являются перпендикулярными друг другу, и их скалярное произведение есть нуль:

n → , M 0 M → = A ( x — x 0 ) + B ( y — y 0 ) = 0

Перепишем уравнение A x + B y — A x 0 — B y 0 = 0 , определим C : C = — A x 0 — B y 0 и в конечном результате получим уравнение A x + B y + C = 0 .

Так, мы доказали и вторую часть теоремы, и доказали всю теорему в целом.

Уравнение, имеющее вид A x + B y + C = 0 – это общее уравнение прямой на плоскости в прямоугольной системе координат O x y .

Опираясь на доказанную теорему, мы можем сделать вывод, что заданные на плоскости в фиксированной прямоугольной системе координат прямая линия и ее общее уравнение неразрывно связаны. Иначе говоря, исходной прямой соответствует ее общее уравнение; общему уравнению прямой соответствует заданная прямая.

Из доказательства теоремы также следует, что коэффициенты А и В при переменных x и y являются координатами нормального вектора прямой, которая задана общим уравнением прямой A x + B y + C = 0 .

Рассмотрим конкретный пример общего уравнения прямой.

Пусть задано уравнение 2 x + 3 y — 2 = 0 , которому соответствует прямая линия в заданной прямоугольной системе координат. Нормальный вектор этой прямой – это вектор n → = ( 2 , 3 ) . Изобразим заданную прямую линию на чертеже.

Примеры задач на нахождение уравнения прямой

Также можно утверждать и следующее: прямая, которую мы видим на чертеже, определяется общим уравнением 2 x + 3 y — 2 = 0 , поскольку координаты всех точек заданной прямой отвечают этому уравнению.

Мы можем получить уравнение λ · A x + λ · B y + λ · C = 0 , умножив обе части общего уравнения прямой на число λ , не равное нулю. Полученное уравнение является эквивалентом исходного общего уравнения, следовательно, будет описывать ту же прямую на плоскости.

Видео:Уравнение прямой на плоскости. Решение задачСкачать

Уравнение прямой на плоскости. Решение задач

Неполное уравнение общей прямой

Полное общее уравнение прямой – такое общее уравнение прямой A x + B y + C = 0 , в котором числа А , В , С отличны от нуля. В ином случае уравнение является неполным.

Разберем все вариации неполного общего уравнения прямой.

  1. Когда А = 0 , В ≠ 0 , С ≠ 0 , общее уравнение принимает вид B y + C = 0 . Такое неполное общее уравнение задает в прямоугольной системе координат O x y прямую, которая параллельна оси O x , поскольку при любом действительном значении x переменная y примет значение — C B . Иначе говоря, общее уравнение прямой A x + B y + C = 0 , когда А = 0 , В ≠ 0 , задает геометрическое место точек ( x , y ) , координаты которых равны одному и тому же числу — C B .
  2. Если А = 0 , В ≠ 0 , С = 0 , общее уравнение принимает вид y = 0 . Такое неполное уравнение определяет ось абсцисс O x .
  3. Когда А ≠ 0 , В = 0 , С ≠ 0 , получаем неполное общее уравнение A x + С = 0 , задающее прямую, параллельную оси ординат.
  4. Пусть А ≠ 0 , В = 0 , С = 0 , тогда неполное общее уравнение примет вид x = 0 , и это есть уравнение координатной прямой O y .
  5. Наконец, при А ≠ 0 , В ≠ 0 , С = 0 , неполное общее уравнение принимает вид A x + B y = 0 . И это уравнение описывает прямую, которая проходит через начало координат. В самом деле, пара чисел ( 0 , 0 ) отвечает равенству A x + B y = 0 , поскольку А · 0 + В · 0 = 0 .

Графически проиллюстрируем все вышеуказанные виды неполного общего уравнения прямой.

Примеры задач на нахождение уравнения прямой

Известно, что заданная прямая параллельна оси ординат и проходит через точку 2 7 , — 11 . Необходимо записать общее уравнение заданной прямой.

Решение

Прямая, параллельная оси ординат, задается уравнением вида A x + C = 0 , в котором А ≠ 0 . Также условием заданы координаты точки, через которую проходит прямая, и координаты этой точки отвечают условиям неполного общего уравнения A x + C = 0 , т.е. верно равенство:

Из него возможно определить C , если придать A какое-то ненулевое значение, к примеру, A = 7 . В таком случае получим: 7 · 2 7 + C = 0 ⇔ C = — 2 . Нам известны оба коэффициента A и C , подставим их в уравнение A x + C = 0 и получим требуемое уравнение прямой: 7 x — 2 = 0

Ответ: 7 x — 2 = 0

На чертеже изображена прямая, необходимо записать ее уравнение.

Примеры задач на нахождение уравнения прямой

Решение

Приведенный чертеж позволяет нам легко взять исходные данные для решения задачи. Мы видим на чертеже, что заданная прямая параллельна оси O x и проходит через точку ( 0 , 3 ) .

Прямую, которая параллельна очи абсцисс, определяет неполное общее уравнение B y + С = 0 . Найдем значения B и C . Координаты точки ( 0 , 3 ) , поскольку через нее проходит заданная прямая, будут удовлетворять уравнению прямой B y + С = 0 , тогда справедливым является равенство: В · 3 + С = 0 . Зададим для В какое-то значение, отличное от нуля. Допустим, В = 1 , в таком случае из равенства В · 3 + С = 0 можем найти С : С = — 3 . Используем известные значения В и С , получаем требуемое уравнение прямой: y — 3 = 0 .

Ответ: y — 3 = 0 .

Видео:Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Общее уравнение прямой, проходящей через заданную точку плоскости

Пусть заданная прямая проходит через точку М 0 ( x 0 , y 0 ) , тогда ее координаты отвечают общему уравнению прямой, т.е. верно равенство: A x 0 + B y 0 + C = 0 . Отнимем левую и правую части этого уравнения от левой и правой части общего полного уравнения прямой. Получим: A ( x — x 0 ) + B ( y — y 0 ) + C = 0 , это уравнение эквивалентно исходному общему, проходит через точку М 0 ( x 0 , y 0 ) и имеет нормальный вектор n → = ( A , B ) .

Результат, который мы получили, дает возможность записывать общее уравнение прямой при известных координатах нормального вектора прямой и координатах некой точки этой прямой.

Даны точка М 0 ( — 3 , 4 ) , через которую проходит прямая, и нормальный вектор этой прямой n → = ( 1 , — 2 ) . Необходимо записать уравнение заданной прямой.

Решение

Исходные условия позволяют нам получить необходимые данные для составления уравнения: А = 1 , В = — 2 , x 0 = — 3 , y 0 = 4 . Тогда:

A ( x — x 0 ) + B ( y — y 0 ) = 0 ⇔ 1 · ( x — ( — 3 ) ) — 2 · y ( y — 4 ) = 0 ⇔ ⇔ x — 2 y + 22 = 0

Задачу можно было решить иначе. Общее уравнение прямой имеет вид A x + B y + C = 0 . Заданный нормальный вектор позволяет получить значения коэффициентов A и B , тогда:

A x + B y + C = 0 ⇔ 1 · x — 2 · y + C = 0 ⇔ x — 2 · y + C = 0

Теперь найдем значение С, используя заданную условием задачи точку М 0 ( — 3 , 4 ) , через которую проходит прямая. Координаты этой точки отвечают уравнению x — 2 · y + C = 0 , т.е. — 3 — 2 · 4 + С = 0 . Отсюда С = 11 . Требуемое уравнение прямой принимает вид: x — 2 · y + 11 = 0 .

Ответ: x — 2 · y + 11 = 0 .

Задана прямая 2 3 x — y — 1 2 = 0 и точка М 0 , лежащая на этой прямой. Известна лишь абсцисса этой точки, и она равна — 3 . Необходимо определить ординату заданной точки.

Решение

Зададим обозначение координат точки М 0 как x 0 и y 0 . В исходных данных указано, что x 0 = — 3 . Поскольку точка принадлежит заданной прямой, значит ее координаты отвечают общему уравнению этой прямой. Тогда верным будет равенство:

2 3 x 0 — y 0 — 1 2 = 0

Определяем y 0 : 2 3 · ( — 3 ) — y 0 — 1 2 = 0 ⇔ — 5 2 — y 0 = 0 ⇔ y 0 = — 5 2

Ответ: — 5 2

Видео:Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.

Переход от общего уравнения прямой к прочим видам уравнений прямой и обратно

Как мы знаем, существует несколько видов уравнения одной и той же прямой на плоскости. Выбор вида уравнения зависит от условий задачи; возможно выбирать тот, который более удобен для ее решения. Здесь очень пригодится навык преобразования уравнения одного вида в уравнение другого вида.

Для начала рассмотрим переход от общего уравнения вида A x + B y + C = 0 к каноническому уравнению x — x 1 a x = y — y 1 a y .

Если А ≠ 0 , тогда переносим слагаемое B y в правую часть общего уравнения. В левой части выносим A за скобки. В итоге получаем: A x + C A = — B y .

Это равенство возможно записать как пропорцию: x + C A — B = y A .

В случае, если В ≠ 0 , оставляем в левой части общегь уравнения только слагаемое A x , прочие переносим в правую часть, получаем: A x = — B y — C . Выносим – В за скобки, тогда: A x = — B y + C B .

Перепишем равенство в виде пропорции: x — B = y + C B A .

Конечно, заучивать полученные формулы нет необходимости. Достаточно знать алгоритм действий при переходе от общего уравнения к каноническому.

Задано общее уравнение прямой 3 y — 4 = 0 . Необходимо преобразовать его в каноническое уравнение.

Решение

Запишем исходное уравнение как 3 y — 4 = 0 . Далее действуем по алгоритму: в левой части остаётся слагаемое 0 x ; а в правой части выносим — 3 за скобки; получаем: 0 x = — 3 y — 4 3 .

Запишем полученное равенство как пропорцию: x — 3 = y — 4 3 0 . Так, мы получили уравнение канонического вида.

Ответ: x — 3 = y — 4 3 0 .

Чтобы преобразовать общее уравнение прямой в параметрические, сначала осуществляют переход к каноническому виду, а затем переход от канонического уравнения прямой к параметрическим уравнениям.

Прямая задана уравнением 2 x — 5 y — 1 = 0 . Запишите параметрические уравнения этой прямой.

Решение

Осуществим переход от общего уравнения к каноническому:

2 x — 5 y — 1 = 0 ⇔ 2 x = 5 y + 1 ⇔ 2 x = 5 y + 1 5 ⇔ x 5 = y + 1 5 2

Теперь примем обе части полученного канонического уравнения равными λ , тогда:

x 5 = λ y + 1 5 2 = λ ⇔ x = 5 · λ y = — 1 5 + 2 · λ , λ ∈ R

Ответ: x = 5 · λ y = — 1 5 + 2 · λ , λ ∈ R

Общее уравнение можно преобразовать в уравнение прямой с угловым коэффициентом y = k · x + b , но только тогда, когда В ≠ 0 . Для перехода в левой части оставляем слагаемое B y , остальные переносятся в правую. Получим: B y = — A x — C . Разделим обе части полученного равенство на B , отличное от нуля: y = — A B x — C B .

Задано общее уравнение прямой: 2 x + 7 y = 0 . Необходимо преобразовать то уравнение в уравнение с угловым коэффициентом.

Решение

Произведем нужные действия по алгоритму:

2 x + 7 y = 0 ⇔ 7 y — 2 x ⇔ y = — 2 7 x

Ответ: y = — 2 7 x .

Из общего уравнения прямой достаточно просто получить уравнение в отрезках вида x a + y b = 1 . Чтобы осуществить такой переход, перенесем число C в правую часть равенства, разделим обе части полученного равенства на – С и, наконец, перенесем в знаменатели коэффициенты при переменных x и y :

A x + B y + C = 0 ⇔ A x + B y = — C ⇔ ⇔ A — C x + B — C y = 1 ⇔ x — C A + y — C B = 1

Необходимо преобразовать общее уравнение прямой x — 7 y + 1 2 = 0 в уравнение прямой в отрезках.

Решение

Перенесем 1 2 в правую часть: x — 7 y + 1 2 = 0 ⇔ x — 7 y = — 1 2 .

Разделим на -1/2 обе части равенства: x — 7 y = — 1 2 ⇔ 1 — 1 2 x — 7 — 1 2 y = 1 .

Преобразуем далее в необходимый вид: 1 — 1 2 x — 7 — 1 2 y = 1 ⇔ x — 1 2 + y 1 14 = 1 .

Ответ: x — 1 2 + y 1 14 = 1 .

В общем, несложно производится и обратный переход: от прочих видов уравнения к общему.

Уравнение прямой в отрезках и уравнение с угловым коэффициентом легко преобразовать в общее, просто собрав все слагаемые в левой части равенства:

x a + y b ⇔ 1 a x + 1 b y — 1 = 0 ⇔ A x + B y + C = 0 y = k x + b ⇔ y — k x — b = 0 ⇔ A x + B y + C = 0

Каноническое уравнение преобразуется к общему по следующей схеме:

x — x 1 a x = y — y 1 a y ⇔ a y · ( x — x 1 ) = a x ( y — y 1 ) ⇔ ⇔ a y x — a x y — a y x 1 + a x y 1 = 0 ⇔ A x + B y + C = 0

Для перехода от параметрических сначала осуществляется переход к каноническому, а затем – к общему:

x = x 1 + a x · λ y = y 1 + a y · λ ⇔ x — x 1 a x = y — y 1 a y ⇔ A x + B y + C = 0

Заданы параметрические уравнения прямой x = — 1 + 2 · λ y = 4 . Необходимо записать общее уравнение этой прямой.

Решение

Осуществим переход от параметрических уравнений к каноническому:

x = — 1 + 2 · λ y = 4 ⇔ x = — 1 + 2 · λ y = 4 + 0 · λ ⇔ λ = x + 1 2 λ = y — 4 0 ⇔ x + 1 2 = y — 4 0

Перейдем от канонического к общему:

x + 1 2 = y — 4 0 ⇔ 0 · ( x + 1 ) = 2 ( y — 4 ) ⇔ y — 4 = 0

Ответ: y — 4 = 0

Задано уравнение прямой в отрезках x 3 + y 1 2 = 1 . Необходимо осуществить переход к общему виду уравнения.

Решение:

Просто перепишем уравнение в необходимом виде:

x 3 + y 1 2 = 1 ⇔ 1 3 x + 2 y — 1 = 0

Ответ: 1 3 x + 2 y — 1 = 0 .

Видео:12. Уравнения прямой в пространстве Решение задачСкачать

12. Уравнения прямой в пространстве Решение задач

Составление общего уравнения прямой

Выше мы говорили о том, что общее уравнение возможно записать при известных координатах нормального вектора и координатах точки, через которую проходит прямая. Такая прямая определяется уравнением A ( x — x 0 ) + B ( y — y 0 ) = 0 . Там же мы разобрали соответствующий пример.

Сейчас рассмотрим более сложные примеры, в которых для начала необходимо определить координаты нормального вектора.

Задана прямая, параллельная прямой 2 x — 3 y + 3 3 = 0 . Также известна точка M 0 ( 4 , 1 ) , через которую проходит заданная прямая. Необходимо записать уравнение заданной прямой.

Решение

Исходные условия говорят нам о том, что прямые параллельны, тогда, как нормальный вектор прямой, уравнение которой требуется записать, возьмем направляющий вектор прямой n → = ( 2 , — 3 ) : 2 x — 3 y + 3 3 = 0 . Теперь нам известны все необходимые данные, чтобы составить общее уравнение прямой:

A ( x — x 0 ) + B ( y — y 0 ) = 0 ⇔ 2 ( x — 4 ) — 3 ( y — 1 ) = 0 ⇔ 2 x — 3 y — 5 = 0

Ответ: 2 x — 3 y — 5 = 0 .

Заданная прямая проходит через начало координат перпендикулярно прямой x — 2 3 = y + 4 5 . Необходимо составить общее уравнение заданной прямой.

Решение

Нормальный вектором заданной прямой будет направляющий вектор прямой x — 2 3 = y + 4 5 .

Тогда n → = ( 3 , 5 ) . Прямая проходит через начало координат, т.е. через точку О ( 0 , 0 ) . Составим общее уравнение заданной прямой:

A ( x — x 0 ) + B ( y — y 0 ) = 0 ⇔ 3 ( x — 0 ) + 5 ( y — 0 ) = 0 ⇔ 3 x + 5 y = 0

Видео:УРАВНЕНИЕ ПРЯМОЙСкачать

УРАВНЕНИЕ ПРЯМОЙ

4.1.8. Примеры решения задач по теме «Уравнение прямой на плоскости»

Даны уравнения двух сторон параллелограмма: 2Х + У + 3 = 0 и 2Х – 5У + 9 = 0 и уравнение одной из его диагоналей: 2Х – у — 3 = 0. Найти координаты вершин этого параллелограмма.

Выясните, уравнения каких сторон даны в условии задачи: параллельных или

Смежных, и как расположена данная диагональ по отношению к данным сторонам.

Примеры задач на нахождение уравнения прямой

Выясним, уравнения каких сторон даны в условии задачи: параллельных или

Примеры задач на нахождение уравнения прямой

Следовательно, прямые пересекаются, то есть даны уравнения смежных сторон параллелограмма.

Условие параллельности прямых

Примеры задач на нахождение уравнения прямой.

Пусть даны уравнения сторон АВ и AD. Тогда координаты точки А будут решением системы уравнений:

Примеры задач на нахождение уравнения прямой

Теперь определим, уравнение какой диагонали: АС или BD – нам известно. Если это диагональ АС, то на ней лежит точка А, следовательно, координаты этой точки должны удовлетворять уравнению диагонали. Проверим:

Примеры задач на нахождение уравнения прямой

Значит, точка А не лежит на данной прямой, то есть дано уравнение диагонали BD.

Тогда вершина В лежит на прямых АВ и BD, значит, ее координаты найдем из системы:

Примеры задач на нахождение уравнения прямой

Система уравнений для определения координат точки D составлена из уравнений прямых AD И BD:

Примеры задач на нахождение уравнения прямой

Остается найти координаты точки С. Составим уравнения прямых ВС и DC.

Поскольку ВС параллельна AD, их угловые коэффициенты равны. Найдем угловой коэффициент прямой AD:

Примеры задач на нахождение уравнения прямой

Тогда ВС можно задать уравнением

Примеры задач на нахождение уравнения прямой

Найдем координаты точки С, решив систему из двух полученных уравнений:

Примеры задач на нахождение уравнения прямой

Найти точку, симметричную точке А(2; 1) относительно прямой, проходящей через точки В(-1; 7) и С(1; 8).

Представьте себе, что вам нужно Построить искомую точку на плоскости. Последовательность действий при этом можно задать так:

1) провести прямую ВС;

2) провести через точку А прямую, перпендикулярную ВС;

3) найти точку О пересечения этих прямых и отложить на прямой АО по другую сторону прямой ВС отрезок ОА1 = АО.

Примеры задач на нахождение уравнения прямой

Представим себе, что нам нужно Построить искомую точку на плоскости. Последовательность действий при этом можно задать так:

4) провести прямую ВС;

5) провести через точку А прямую, перпендикулярную ВС;

6) найти точку О пересечения этих прямых и отложить на прямой АО по другую сторону прямой ВС отрезок ОА1 = АО.

Тогда точка А1 будет симметричной точке А относительно прямой ВС.

Теперь заменим каждое из действий составлением уравнений и вычислением координат точек.

1) Найдем уравнение прямой ВС в виде:

Примеры задач на нахождение уравнения прямой

2) Найдем угловой коэффициент прямой ВС:

Примеры задач на нахождение уравнения прямой

Прямая АО Перпендикулярна прямой ВС, поэтому

Примеры задач на нахождение уравнения прямой

Составим уравнение прямой АО:

Примеры задач на нахождение уравнения прямой

3) Найдем координаты точки О как решение системы:

Примеры задач на нахождение уравнения прямой

4) Точка О – середина отрезка АА1, поэтому

Примеры задач на нахождение уравнения прямой

Найти угол между прямыми L1: 3Х – у + 5 = 0 и L2: 2Х + У – 7 = 0.

Если J – угол между прямыми L1 и L2, то J = A2 — A1, где A2 и A1 – углы, образованные прямыми L1 и L2 с положительной полуосью Ох. Тогда

Примеры задач на нахождение уравнения прямой

Где K1 и K2 – угловые коэффициенты прямых L1 и L2.

Примеры задач на нахождение уравнения прямой

Если J – угол между прямыми L1 и L2, то J = A2 — A1, где A2 и A1 – углы, образованные прямыми L1 и L2 с положительной полуосью Ох. Тогда

Примеры задач на нахождение уравнения прямой

Где K1 и K2 – угловые коэффициенты прямых L1 и L2. Найдем K1 и K2: для L1

Y = 3X + 5, K1 = 3; для второй: Y = -2X + 7, K2 = -2. Следовательно,

Примеры задач на нахождение уравнения прямой

Для прямых А+ В1У + С1 = 0 И А2Х + В2У + С2 = 0

Примеры задач на нахождение уравнения прямой.

Определить, лежит ли точка М(2; 3) внутри или вне треугольника, стороны которого заданы уравнениями 4Х – у – 7 = 0, Х + 3У – 31 = 0, Х + 5У – 7 = 0.

Если точка М расположена внутри треугольника АВС, то ее отклонение δ от каждой стороны треугольника имеет тот же знак, что и для вершины, не лежащей на этой стороне, а если точка М лежит вне треугольника, то по крайней мере с одной из вершин она окажется в разных полуплоскостях относительно стороны треугольника.

Примеры задач на нахождение уравнения прямой

Пусть первое уравнение задает сторону АВ, второе – ВС, третье – АС. Найдем координаты точек А, В и С:

Примеры задач на нахождение уравнения прямой

Для ответа на вопрос задачи отметим, что:

1) если точка М расположена внутри треугольника АВС, то ее отклонение δ от каждой стороны треугольника имеет тот же знак, что и для вершины, не лежащей на этой стороне (т. е. точка М расположена относительно каждой стороны треугольника в одной полуплоскости с третьей вершиной);

2) если точка М лежит вне треугольника, то по крайней мере с одной из вершин она окажется в разных полуплоскостях относительно стороны треугольника (на рисунке: точки М1 и В расположены по разные стороны от прямой АС).

Составим нормальные уравнения сторон треугольника АВС:

Примеры задач на нахождение уравнения прямой

Вычислим соответствующие отклонения:

1) для точек М и А относительно прямой ВС:

Примеры задач на нахождение уравнения прямой

2) для точек М и В относительно прямой АС:

Примеры задач на нахождение уравнения прямой

3) для точек М и С относительно прямой АВ:

Примеры задач на нахождение уравнения прямой

Итак, точки М И С лежат по разные стороны от прямой АВ. Следовательно, точка М расположена вне треугольника АВС.

Ответ: Точка М расположена вне треугольника АВС.

Для треугольника АВС с вершинами А(-3; -1), В(1; 5), С(7; 3) составить уравнения медианы и высоты, выходящих из вершины В.

Составьте уравнение медианы как прямой, проходящей через точки В и М – середину стороны АС, а высоты – как прямой, проходящей через точку В и перпендикулярной стороне АС.

Примеры задач на нахождение уравнения прямой

1) Медиана ВМ проходит через точку В и точку М – середину отрезка АС. Найдем координаты точки М:

Примеры задач на нахождение уравнения прямой

Тогда уравнение медианы можно записать в виде:

Примеры задач на нахождение уравнения прямой

2) Высота ВН перпендикулярна стороне АС. Составим уравнение АС:

Примеры задач на нахождение уравнения прямой

Ответ: медиана ВМ: 4Х + У – 9 = 0; высота ВН: 5Х + 2У – 15 = 0.

Определить, при каком значении А прямая

Параллельна оси ординат. Написать уравнение прямой.

Если прямая параллельна оси ординат, то в уравнении Ах + Ву + С = 0

Если прямая параллельна оси ординат, то в уравнении Ах + Ву + С = 0

В = 0, С ≠ 0. Из условия В = 0 получаем: А2 – 1 = 0, А = ± 1.

При А = 1 С = 2 + 7 – 9 = 0 – второе условие не выполняется (получившаяся при этом прямая -4Х = 0 не параллельна оси Оу, а совпадает с ней).

При А = -1 получим: -6Х – 14 = 0, 3Х + 7 = 0.

Составить уравнения всех прямых, проходящих через точку М(2; 3) и отсекающих от координатного угла треугольник площадью 12.

Составьте уравнение искомой прямой «в отрезках»:

Примеры задач на нахождение уравнения прямой

Где |A| и |B| — длины отрезков, отсекаемых прямой на координатных осях. Тогда

Примеры задач на нахождение уравнения прямой

Откуда |Ab| = 24. Кроме того, координаты точки М(2; 3) должны удовлетворять уравнению «в отрезках».

Примеры задач на нахождение уравнения прямой

Составим уравнение искомой прямой «в отрезках»:

Примеры задач на нахождение уравнения прямой

Где |A| и |B| — длины отрезков, отсекаемых прямой на координатных осях. Тогда

Примеры задач на нахождение уравнения прямой

Откуда |Ab| = 24. Кроме того, координаты точки М(2; 3) должны удовлетворять уравнению «в отрезках». Таким образом, для А и B можно составить систему уравнений:

Примеры задач на нахождение уравнения прямой

Примеры задач на нахождение уравнения прямой

Примеры задач на нахождение уравнения прямой

Следовательно, условию задачи удовлетворяют три прямые:

Видео:Как составить уравнение прямой, проходящей через две точки на плоскости | МатематикаСкачать

Как составить уравнение прямой, проходящей через две точки на плоскости | Математика

Примеры задач с прямыми на плоскости

Видео:УРАВНЕНИЕ ПРЯМОЙ на плоскости 8 и 9 классСкачать

УРАВНЕНИЕ ПРЯМОЙ на плоскости 8 и 9 класс

Составление уравнений прямых

Разнообразие видов уравнений прямых на плоскости порождается многообразием геометрических способов задания прямых. По любому набору геометрических данных, однозначно определяющих прямую на плоскости, можно составить уравнение этой прямой, причем геометрические данные будут отражены в коэффициентах уравнения. И наоборот, коэффициенты любого уравнения прямой имеют геометрический смысл, соответствующий способу задания прямой на плоскости.

Для удобства решения типовых задач, связанных с прямыми на плоскости, все основные типы уравнений прямых и соответствующие геометрические способы задания этих прямых отражены в таблице 3.1.

Примеры составления прямых по геометрическим данным, указанным в таблице 3.1, разбирались в предыдущих разделах. Рассмотрим примеры нахождения уравнений прямых, заданных как геометрические места точек.

Пример 3.14. По сторонам и равнобедренного треугольника перемещаются точки и так, (рис.3.28). Найти геометрическое место точек — середин отрезков .

Решение. Введем аффинную систему координат с базисными векторами и (рис.3.28). Вершины и треугольника имеют координаты и , а точки и – координаты и , где — параметр, принимающий значения .

Середина отрезка имеет координаты , т.е. . Это означает, что при изменении параметра координаты точки изменяются по закону

Получили параметрическое уравнение прямой. Поскольку параметр изменяется в пределах , то при имеем и , точка совпадает с серединой стороны ; при имеем и , точка совпадает с серединой стороны . Поэтому искомое геометрическое место точек — отрезок , а именно средняя линия треугольника , параллельная стороне .

Таблица 3.1. Основные типы уравнений прямых на плоскости

Пример 3.15. Найти геометрическое место точек плоскости, разность квадратов расстояний от каждой из которых до двух заданных точек плоскости постоянна (равна ).

Решение. Пусть и — заданные точки. Введем прямоугольную систему координат (рис.3.29): начало координат совпадает с серединой отрезка , ось абсцисс совпадает с прямой (направление на оси абсцисс выберем от точки к точке , т.е. ), тогда ось ординат совпадает с серединным перпендикуляром к отрезку (направление на оси ординат выбирается так, чтобы система координат была правой, хотя для решения задачи это не важно). Обозначим через 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAADkAAAAQBAMAAABelcpIAAAAMFBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlTPQ5AAAAD3RSTlMAAUQlwKGE4BFh0PAKcbGSEyCqAAABEUlEQVQY02NgwA8YlbGLCxmCyHTvImySTGXhBgwMnIEc9QZYZO0VeHcwMIgUM8x3gAkxJ8NlwxkYvzEwiP9l0N8IExJQCYa5ZgsD4y4BBuYLDPoFDMwhyQpgUZVHEFmOLwyM/gIMjAwM+QkM8xWyF0D0mDpBHAWRBSrb1cD8jaE/AKJJ0HSlAESWASzLtYJB5AeD/gSY5aaLkGVDBRj6HRny4d4yA8kyQ01mDWB8oJ/A4A7XCjaZESj7HUhPZZRw0Ffg+MoFlYS4iuE5A+NXYFh9cal/YH1B9JsqxEdOAhBZfQPOzwwM3P///0/gLFv0yhksCQsNBs696UB3MgoKCjIwSDAwNwCFhIMRAW2pwcAAABqxPLC/M2j1AAAAAElFTkSuQmCC» /> длину отрезка , тогда точки и имеют координаты и . Пусть произвольная точка искомого множества. По условию задачи или . Запишем равенство в координатной форме:

Раскрывая скобки и приводя подобные члены, получаем , это уравнение определяет пару прямых, перпендикулярных оси абсцисс (или ось ординат при ). Следовательно, искомое геометрическое место точек – серединный перпендикуляр к отрезку, соединяющему заданные точки (при ), или два перпендикуляра и к прямой, проходящей через заданные точки.

Видео:Аналитическая геометрия, 6 урок, Уравнение прямойСкачать

Аналитическая геометрия, 6 урок, Уравнение прямой

Метрические приложения уравнений прямых на плоскости

Перечислим формулы для вычисления длин отрезков (расстояний) и величин углов по уравнениям образующих их прямых.

1. Расстояние от точки до прямой вычисляется по формуле:

2. Расстояние между параллельными прямыми и находится как расстояние отточки , координаты которой удовлетворяют уравнению , до прямой no формуле:

3. Острый угол между двумя прямыми и находится по формулам:

а) , если и — направляющие векторы прямых и соответственно (в случае задания прямых каноническими или параметрическими уравнениями);

б) , если и — нормали к прямым и соответственно (в случае задания прямых общими уравнениями);

в) , если и — угловые коэффициенты прямых и соответственно (в случае задания прямых уравнениями с угловыми коэффициентами).

При решении задач свойства 1-3 используются наряду с метрическими приложениями векторной алгебры (см. [url]p[/url]).

Пример 3.16. Катеты прямоугольного треугольника равны 9 см и 12 см. Найти расстояние от точки пересечения медиан до центра вписанной в треугольник окружности.

Решение. Пусть — заданный треугольник с катетами см и см. Введем прямоугольную систему координат (рис.3.30): начало координат совпадает с вершиной прямого угла треугольника ; ось абсцисс содержит катет , ось ординат — катет . Тогда вершины треугольника имеют координаты и . По координатам вершин треугольника находим координаты точки пересечения его медиан: , т.е. (см. [url]разд.2.1.1[/url]). Найдем координаты центра вписанной окружности. Поскольку центр принадлежит биссектрисе прямого угла, уравнение которой , то абсцисса и ордината точки равны, т.е. , где — радиус вписанной окружности. Выразим радиус как расстояние от точки до гипотенузы . Уравнение прямой, содержащей гипотенузу, имеет вид

Это уравнение прямой «в отрезках». Запишем его как общее уравнение прямой , и по свойству 1 выразим расстояние от точки до гипотенузы:

то есть (радиус вписанной окружности) или (радиус вневписанной окружности с центром , касающейся гипотенузы). Следовательно, точка имеет координаты . Осталось найти искомое расстояние

🌟 Видео

Лекция 23. Виды уравнений прямой на плоскости.Скачать

Лекция 23. Виды уравнений прямой на плоскости.

Уравнения прямой на плоскости | Векторная алгебраСкачать

Уравнения прямой на плоскости | Векторная алгебра

Видеоурок "Нормальное уравнение прямой"Скачать

Видеоурок "Нормальное уравнение прямой"

Составляем уравнение прямой по точкамСкачать

Составляем уравнение прямой по точкам

11. Прямая в пространстве и ее уравненияСкачать

11. Прямая в пространстве и ее уравнения

Видеоурок "Канонические уравнения прямой"Скачать

Видеоурок "Канонические уравнения прямой"

Уравнение прямой по графику. ПримерыСкачать

Уравнение прямой по графику. Примеры

Записать уравнение прямой параллельной или перпендикулярной данной.Скачать

Записать уравнение прямой параллельной или перпендикулярной данной.

Уравнение прямой на плоскостиСкачать

Уравнение прямой на плоскости

Прямая и уравнение прямойСкачать

Прямая и уравнение прямой

Видеоурок "Уравнение прямой с угловым коэффициентом"Скачать

Видеоурок "Уравнение прямой с угловым коэффициентом"
Поделиться или сохранить к себе: