Пример . Рассмотрим модель зависимости общей величины расходов на питание от располагаемого личного дохода (х) и цены продуктов питания (р):у = а0 + а1х + а2р + ε. Определим класс модели и вид переменных модели: регрессионная модель с одним уравнением; эндогенная переменная — расходы на питание, экзогенные переменные — располагаемый личный доход и цена продуктов питания.
Принципиальные сложности применения систем эконометрических уравнений связаны с ошибками спецификации модели.
Система уравнений в эконометрических исследованиях может быть построена по-разному. Выделяют следующие 3 вида систем уравнений.
- Система независимых уравнений, когда каждая зависимая переменная (y ) рассматривается как функция только от предопределенных переменных (х):
- Система рекурсивных уравнений, когда в каждом последующем уравнении системы зависимая переменная представляет функцию от зависимых и предопределенных переменных предшествующих уравнений:
От структурной формы легко перейти к так называемой приведенной форме модели. Число уравнений в приведенной форме равно числу эндогенных переменных модели. В каждом уравнении приведенной формы эндогенная переменная выражается через все предопределенные переменные модели:
Так как правая часть каждого из уравнений приведенной формы содержит только предопределенные переменные и остатки, а левая часть только одну из эндогенных переменных, то такая система является системой независимых уравнений. Поэтому параметры каждого из уравнений системы в приведенной форме можно определить независимо обычным МНК.
Зная оценки этих приведенных коэффициентов можно определить параметры структурной формы модели. Но не всегда, а только если модель является идентифицируемой.
- Проблема идентификации
- Правила идентификации
- Системы эконометрических уравнений
- 7. Системы эконометрических уравнений
- 7.1. Виды систем регрессионных уравнений
- 7.2. Приведенная форма модели
- 7.3. Проблема идентификации
- 7.4. Условия идентифицируемости уравнений структурной модели
- 7.5. Методы оценки параметров структурной формы модели
- 7.6. Инструментальные переменные
- Примерф решения эконометрических задач в Statistica
- Задача 1. Построение и анализ линейной множественной регре с сии
- 🎬 Видео
Видео:Урок по теме РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ СИСТЕМЫ УРАВНЕНИЙ 7 КЛАСССкачать
Проблема идентификации
Количество структурных и приведенных коэффициентов одинаково в модели идентифицируемой.
Видео:Алгоритм решения задач с помощью систем уравнений. Практическая часть. 9 класс.Скачать
Правила идентификации
Ранг данной матрицы равен 1, что меньше К-1=2, следовательно, 1-ое уравнение модели неидентифицированно.
Составим матрицу А для 2-ого уравнения системы. Во 2-ом уравнении отсутствуют переменные y3, x2, х3:
y3 x 2 x3
b13 a 13 0 — в 1-ом уравнении
1 a32 a33 — в 3-ем уравнении
Ранг данной матрицы равен 2, что равно К-1=2, следовательно, 2-ое уравнение модели точно идентифицированно.
Составим матрицу А для 3-его уравнения системы. В 3-ем уравнении отсутствуют переменные y1, x2:
y 1 x 2
1 a12 — в 1-ом уравнении
b21 0 — во 2-ом уравнении
Ранг данной матрицы равен 1, что меньше К-1=2, следовательно, 3-е уравнение модели неидентифицированно.
Сделаем выводы: 1-ое и 3-е уравнения системы неидентифицированны (т.к. не выполняются достаточные условия идентификации, а в случае 1-ого уравнения и необходимое условие также). 2-ое уравнение системы сверхидентифицированно. Следовательно, система в целом является неидентифицируемой.
Для оценки параметров 2-ого уравнения можно применить двухшаговый МНК. Параметры 1-ого и 3-его уравнений определить по коэффициентам приведенной формы нельзя. Поэтому модель должна быть модифицирована.
Видео:Алгоритм решения задач с помощью систем уравнений. Практическая часть. 9 класс.Скачать
Системы эконометрических уравнений
Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
7. Системы эконометрических уравнений
Видео:Алгебра 7 класс (Урок№44 - Решение задач с помощью линейных уравнений.)Скачать
7.1. Виды систем регрессионных уравнений
Любая экономическая система – это сложная система с множеством входов, выходов и сложной структурой взаимосвязей показателей, характеризующих деятельность этой системы. Поэтому для описания механизма функционирования таких систем обычно изолированных уравнений регрессии недостаточно.
Практически изменение какого-либо показателя в экономической системе, как правило, вызывает изменение целого ряда других. Так изменение производительности труда влияет на затраты труда, а, следовательно на себестоимость, прибыль, рентабельность производства и пр.
Все это вызывает потребность использования при описании сложных экономических явлений и процессов систем взаимосвязанных регрессионных уравнений и тождеств. Особенно актуальна необходимость в применении таких систем при моделировании на макроуровне, так как макроэкономические показатели, являясь обобщающими показателями состояния экономики, чаще всего взаимозависимы. Например, при построении модели национальной экономики необходимо рассмотреть уравнения, описывающие потребление, инвестиции, прирост капиталовложений, воспроизводство трудовых ресурсов, производство продукта и пр.
Переменные, входящие в систему уравнений подразделяют на экзогенные, эндогенные и лаговые (эндогенные переменные, влияние которых характеризуется некоторым запаздыванием, временным лагом ).
Экзогенные и лаговые переменные называют предопределенными, т. е. определенными заранее.
Классификация переменных на эндогенные и экзогенные зависит от принятой теоретической концепции модели. Экономические показатели могут выступать в одних моделях как эндогенные, а в других как экзогенные переменные. Внеэкономические переменные (например, климатические условия, социальное положение, пол, возраст) входят в систему только как экзогенные переменные. В качестве экзогенных переменных могут рассматриваться значения эндогенных переменных за предшествующий период времени (лаговые переменные).
Рассмотрим типы систем эконометрических уравнений.
1. Система независимых регрессионных уравнений (внешне не связанных)
В данном случае каждая зависимая переменная рассматривается как функция некоторого е набора факторов.
. (7.1)
Набор факторов в уравнениях (1) может варьировать. Каждое уравнение системы независимых уравнений может рассматриваться самостоятельно, а его параметры могут быть найдены на основе традиционного метода наименьших квадратов (МНК).
2. Система рекурсивных уравнений
В таких системах в одном из уравнений содержится единственная зависимая переменная , которая в следующем уравнении присутствует в качестве факторной переменной. В третье уравнение эти эндогенные переменные из предыдущих уравнений могут быть включены как факторные и т. д.
(7.2)
В данной системе каждое последующее уравнение наряду с факторными переменными включает в качестве факторов все зависимые переменные предшествующих уравнений. Каждое уравнение этой системы может рассматриваться самостоятельно, и его параметры определяются методом наименьших квадратов (МНК).
3. Система взаимозависимых (одновременных) уравнений
Наибольшее распространение в эконометрических исследованиях получила система взаимозависимых уравнений. В ней одни и те же зависимые (эндогенные) переменные в одних уравнениях входят в левую часть (т. е. выступают в роли результативных признаков), а в других уравнениях – в правую часть системы (т. е. выступают в качестве факторных переменных). Система взаимозависимых уравнений получила название системы совместных, одновременных уравнений. Тем самым подчеркивается, что в системе одни и те же переменные одновременно рассматриваются как зависимые в одних уравнениях и как независимые в других. В эконометрике эта система уравнений также называется структурной формой модели (СФМ).
Система одновременных уравнений в структурной форме и при отсутствии лаговых переменных может быть записана:
(7.3)
Кроме регрессионных уравнений (они называются также поведенческими уравнениями) модель может содержать тождества, которые представляют собой алгебраические соотношения между эндогенными переменными. Тождества позволяют исключать некоторые эндогенные переменные и рассматривать систему регрессионных уравнений меньшей размерности Параметры модели в структурной форме называют ее структурными коэффициентами
Система одновременных уравнений в структурной форме позволяет увидеть влияние изменений любой экзогенной переменной на значения эндогенной переменной. Целесообразно в качестве экзогенных переменных выбирать такие переменные, которые могут быть объектом регулирования. Меняя их и управляя ими, можно заранее иметь целевые значения эндогенных переменных.
В отличие от предыдущих систем каждое уравнение системы одновременных уравнений не может рассматриваться самостоятельно, и для нахождения его параметров традиционный МНК неприменим, т. к. нарушаются предпосылки, лежащие в основе МНК (например, предпосылка о некоррелированности факторных переменных с остатками). Эндогенные переменные являются случайными величинами, зависящими от . В том случае, когда эндогенная переменная входит в некоторое уравнение как факторная происходит нарушение названной предпосылки МНК. Таким образом, для нахождения структурных коэффициентов традиционный МНК неприменим. С этой целью используются специальные приемы оценивания.
Видео:Алгоритм решения задач с помощью систем уравнений. Практическая часть. 9 класс.Скачать
7.2. Приведенная форма модели
Для определения структурных коэффициентов на основе структурной модели формируют приведенную форму модели.
Приведенная форма модели представляет собой систему линейных функций эндогенных переменных от экзогенных:
(7.4)
где – коэффициенты приведенной формы модели, – случайные остатки для приведенной формы.
По своему виду приведенная форма модели ничем не отличается от системы независимых уравнений, параметры которой оцениваются традиционным МНК. Применяя МНК, можно оценить , а затем оценить значения эндогенных переменных через экзогенные.
Можно показать, что коэффициенты приведенной формы модели представляют собой нелинейные функции коэффициентов структурной формы модели. Рассмотрим структурную модель с двумя эндогенными переменными.
. (7.5)
Запишем соответствующую приведенную форму модели:
. (7.6)
Выразим коэффициенты приведенной формы модели через коэффициенты структурной модели.
Из первого уравнения (7.5) можно выразить (ради упрощения опускаем случайную величину): .
Подставим во второе уравнение (7.5):
(7.7)
Выразим из (7.7) : .
Поступая аналогично со вторым уравнением системы (7.5), получим
, т. е. система (7.5) принимает вид:
Таким образом, коэффициенты приведенной формы модели выражаются через коэффициенты структурной формы следующим образом:
Следует заметить, что приведенная форма модели хотя и позволяет получить значения эндогенных переменных через значения экзогенных, но аналитически она уступает структурной форме модели, так как в ней отсутствуют взаимосвязи между эндогенными переменными.
Видео:Решение задач с помощью уравнений.Скачать
7.3. Проблема идентификации
При правильной спецификации модели задача идентификация системы уравнений сводится к корректной и однозначной оценке ее коэффициентов. Непосредственная оценка коэффициентов уравнения возможна лишь в системах внешне не связанных уравнений, для которых выполняются основные предпосылки построения регрессионной модели, в частности, условие некоррелированности факторных переменных с остатками.
В рекурсивных системах всегда возможно избавление от проблемы коррелированности остатков с факторными переменными путем подстановки в качестве значений факторных переменных не фактических, а модельных значений эндогенных переменных, выступающих в качестве факторных переменных. Процесс идентификации осуществляется следующим образом:
1. Идентифицируется уравнение, в котором в качестве факторных не содержатся эндогенные переменные. Находится расчетное значение эндогенной переменной этого уравнения.
2. Рассматривается следующее уравнение, в котором в качестве факторной включена эндогенная переменная, найденная на предыдущем шаге. Модельные (расчетные) значения этой эндогенной переменной обеспечивают возможность идентификации этого уравнения и т. д.
В системе уравнений в приведенной форме проблема коррелированности факторных переменных с отклонениями не возникает, так как в каждом уравнении в качестве факторных переменных используются лишь предопределенные переменные. Таким образом, при выполнении других предпосылок рекурсивная система всегда идентифицируема.
При рассмотрении системы одновременных уравнений возникает проблема идентификации.
Идентификация в данном случае означает определение возможности однозначного пересчета коэффициентов системы в приведенной форме в структурные коэффициенты.
Структурная модель (7.3) в полном виде содержит параметров, которые необходимо определить. Приведенная форма модели в полном виде содержит параметров. Следовательно, для определения неизвестных параметров структурной модели можно составить уравнений. Такие системы являются неопределенными и параметры структурной модели в общем случае не могут быть однозначно определены.
Чтобы получить единственно возможное решение необходимо предположить, что некоторые из структурных коэффициентов модели ввиду слабой их взаимосвязи с эндогенной переменной из левой части системы равны нулю. Тем самым уменьшится число структурных коэффициентов модели. Уменьшение числа структурных коэффициентов модели возможно и другими путями: например, путем приравнивания некоторых коэффициентов друг к другу, т. е. путем предположений, что их воздействие на формируемую эндогенную переменную одинаково и пр.
С позиции идентифицируемости структурные модели можно подразделить на три вида:
Модель идентифицируема, если все структурные ее коэффициенты определяются однозначно, единственным образом по коэффициентам приведенной формы модели, т. е. если число параметров структурной модели равно числу параметров приведенной формы модели.
Модель неидентифицируема, если число коэффициентов приведенной модели меньше числа структурных коэффициентов, и в результате структурные коэффициенты не могут быть оценены через коэффициенты приведенной формы модели.
Модель сверхидентифицируема, если число коэффициентов приведенной модели больше числа структурных коэффициентов. В этом случае на основе коэффициентов приведенной формы можно получить два или более значений одного структурного коэффициента. Сверхидентифицируемая модель в отличие от неидентифицируемой модели практически решаема, но требует для этого специальных методов нахождения параметров.
Чтобы определить тип структурной модели необходимо каждое ее уравнение проверить на идентифицируемость.
Модель считается идентифицируемой, если каждое уравнение системы идентифицируемо. Если хотя бы одно из уравнений системы неидентифицируемо, то и вся модель считается неидентифицируемой. Сверхидентифицируемая модель кроме идентифицируемых содержит хотя бы одно сверхидентифицируемое уравнение.
Видео:РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ УРАВНЕНИЙ. §3 алгебра 7 классСкачать
7.4. Условия идентифицируемости уравнений структурной модели
1. Необходимое условие идентифицируемости
Чтобы уравнение было идентифицируемо, необходимо, чтобы число предопределенных переменных, отсутствующих в данном уравнении, но присутствующих в системе, было равно числу эндогенных переменных в данном уравнении без одного.
Введем следующие обозначения:
М – число предопределенных переменных в модели;
m— число предопределенных переменных в данном уравнении;
— число эндогенных переменных в модели;
— число эндогенных переменных в данном уравнении;
Обозначим число экзогенных (предопределенных) переменных, которые содержатся в системе, но не входят в данное уравнение через , .
Тогда условие идентифицируемости каждого уравнения модели может быть записано в виде следующего счетного правила:
Для оценки параметров структурной модели система должна быть идентифицируема или сверхидентифицируема.
Рассмотренное счетное правило отражает необходимое, но недостаточное условие идентификации.
Достаточное условие идентификации
Уравнение идентифицируемо, если по отсутствующим в нем переменным (эндогенным и экзогенным) можно из коэффициентов при них в других уравнениях системы получить матрицу, определитель которой не равен нулю, а ранг матрицы не меньше, чем число эндогенных переменных в системе без одного.
Целесообразность проверки условия идентификации модели через определитель матрицы коэффициентов, отсутствующих в данном уравнении, но присутствующих в других, объясняется тем, что возможна ситуация, когда для каждого уравнения системы выполнено счетное правило, а определитель матрицы названных коэффициентов равен нулю. В этом случае соблюдается лишь необходимое, но не достаточное условие идентификации.
В эконометрических моделях часто наряду с уравнениями, параметры которых должны быть статистически оценены, используются балансовые тождества переменных, коэффициенты при которых равны . В этом случае, хотя само тождество и не требует проверки на идентификацию, ибо коэффициенты при переменных в тождестве известны, в проверке на идентификацию структурных уравнений системы тождества участвуют..
Изучается модель (одна из версий модели Кейнса):
(7.8)
где – потребление в период ; – ВВП в период ; — ВВП в период (); – валовые инвестиции в период ; – государственные расходы в период .
Первое уравнение – функция потребления, второе уравнение – функция инвестиций, третье уравнение –тождество ВВП. Модель представляет собой систему одновременных уравнений. Проверим каждое ее уравнение на идентификацию.
Модель включает три эндогенные переменные и две предопределенные переменные (одна экзогенная переменная – и одна лаговая переменная –).
Проверим необходимое условие идентификации для каждого из уравнений модели.
тождество, не подлежит проверке
Например, первое уравнение содержит две эндогенные переменные и и одну предопределенную переменную .
Таким образом, ; D=2-1=1. Условие условие выполняется, т. е. уравнение идентифицируемо.
Проверим для каждого уравнения достаточное условие идентификации. Для этого составим матрицу коэффициентов при переменных модели.
В соответствии с достаточным условием идентификации ранг матрицы коэффициентов при переменных, не входящих в исследуемое уравнение, должен быть равен числу эндогенных переменных модели без одного.
Первое уравнение: матрица коэффициентов при переменных, не входящих в уравнение, имеет вид:. Ее определитель не равен нулю, поэтому ранг матрицы равен 2, т. е равняется числу эндогенных переменных без одного. Достаточное условие идентификации выполняется.
Второе уравнение: матрица коэффициентов при переменных, не входящих в уравнение, имеет вид: . Ранг данной матрицы равен 2, так как существут определитель второго порядка не равный нулю:. Следовательно, достаточное условие идентификации для данного уравнения также выполняется Но в соответствии с необходимым условием считаем это уравнение сверхидентифицируемым.
Таким образом, эта система уравнений является сверхидентифицируемой.
Видео:2. Уравнение плоскости примеры решения задач #1Скачать
7.5. Методы оценки параметров структурной формы модели
Коэффициенты структурной модели могут быть оценены разными способами в зависимости от вида системы одновременных уравнений. Наибольшее распространение в литературе получили следующие методы оценивания коэффициентов структурной модели:
1) косвенный метод наименьших квадратов;
2) двухшаговый метод наименьших квадратов;
3) трехшаговый метод наименьших квадратов;
4) метод максимального правдоподобия с полной информацией;
5) метод максимального правдоподобия при ограниченной информации.
Рассмотрим сущность некоторых из этих методов.
Косвенный метод наименьших квадратов (КМНК) применяется в случае точно идентифицируемой структурной модели. Процедура применения КМНК предполагает выполнение следующих этапов:
1. Для структурной модели строится приведенная форма модели.
2. Для каждого уравнения приведенной формы традиционным МНК оцениваются приведенные коэффициенты .
3. На основе коэффициентов приведенной формы находятся путем алгебраических преобразований параметры структурной модели.
Двухшаговый метод наименьших квадратов (ДМНК)
Если система сверхидентифицируема, то КМНК не используется, ибо он не дает однозначных оценок для параметров структурной модели. В этом случае могут использоваться разные методы оценивания, среди которых наиболее распространенным и простым является двухшаговый метод (ДМНК).
Основная идея ДМНК состоит в следующем:
· на основе приведенной формы модели получить для сверхидентифицируемого уравнения расчетные значения эндогенных переменных, содержащихся в правой части этого уравнения;
· подставляя найденные расчетные значения эндогенных переменных вместо фактических значений, можно применить обычный МНК к структурной форме сверхидентифицируемого уравнения.
Метод получил название двухшагового МНК, ибо дважды используется МНК:
· на первом шаге при определении параметров приведенной формы модели и нахождении на их основе оценок расчетных значений эндогенных переменных ; ;
· на втором шаге применительно к структурному сверхидентифицируемому уравнению, когда вместо фактических значений эндогенных переменных рассматриваются их расчетные значения, найденные на предыдущем шаге.
Сверхидентифицируемая структурная модель может быть двух типов:
· все уравнения системы сверхидентифицируемы;
· система содержит наряду со сверхидентифицируемыми точно идентифицируемые уравнения.
Если все уравнения системы сверхидентифицируемые, то для оценки структурных коэффициентов каждого уравнения используется ДМНК. Если в системе есть точно идентифицируемые уравнения, то структурные коэффициенты по ним можно найти на основе косвенного МНК. Двухшаговый метод, примененный к точно идентифицированным уравнениям дает такой же результат, что и косвенный МНК.
Продолжение примера 15.
Продолжим рассмотрение примера 15.
Система является сверхидентифицируемой: первое уравнение идентифицируемо, а второе уравнение сверхидентифицируемо. Поэтому для определения коэффициентов первого уравнения можно применить косвенный МНК, а для второго уравнении двухшаговый МНК.
Построим приведенную форму модели:
(7.9)
Исходные данные задачи (в млрд. руб.)
Предсказанное
Найдем параметры модели (7.9), применяя МНК к каждому уравнению,
используем « Пакет анализа» EXCEL):
(7.10)
Каждое уравнение статистически значимо (– статистики: =1302,55;
=281,956; =847,65). Коэффициенты детерминации свидетельствуют о хорошей связи между эндогенными и предопределенными переменными:=0,9977; =0,989; =0,996.
На основе уравнений модели (7.10) найдем структурные коэффициенты первого уравнения.
Выразим из третьего уравнения (7.10) переменную и подставим в первое уравнение. Получим первое структурное уравнение:
Так как второе уравнение сверхидентифицировано, то применим двухшаговый МНК. Найдем на основе третьего уравнения (7.10) расчетные значения переменной ( столбец «предсказанное » табл.23) и используем их для нахождения параметров второго структурного уравнения.
Получим: 4; .
В результате получим следующую систему структурных уравнений:
Трехшаговый метод наименьших квадратов (ТМНК)
Трехшаговый метод наименьших квадратов применяется для оценки параметров системы одновременных уравнений в целом. Сначала к каждому уравнению применяется двухшаговый метод с целью оценить коэффициенты и случайные остатки каждого уравнения. Затем строится ковариационная матрица остатков и проводится ее оценка. После этого для оценивания коэффициентов всей системы применяется обобщенный метод наименьших квадратов. ТМНК является достаточно эффективным, но требует существенно больших вычислительных затрат. Более подробное описание можно найти в работе[1][1]
Видео:Решение задач с помощью систем уравнений второй степени. Алгебра, 9 классСкачать
7.6. Инструментальные переменные
Метод инструментальных переменных (МИП) применяется для оценивания уравнений, в которых регрессоры (факторы) коррелируют со свободными членами. Коррелированность между факторными переменными и случайными ошибками может быть вызвана разными причинами:
· пропущенными переменными, которые находятся в корреляционной связи с факторными переменными;
· ошибками измерений факторных переменных;
· включением лагированной зависимой переменной при наличии автокоррелированности ошибок. В этом случае лаговые переменные скорее всего будут коррелировать с ошибками;
· одновременные взаимосвязи между переменными (эндогенность переменных, включенных в правые части регрессионных уравнений).
Именно это явление оказывается характерным для систем одновременных уравнений;
Если между факторными переменными и случайными остатками имеется корреляционная зависимость (,), то нарушаются условия классической модели и оценки параметров, найденные по МНК будут смещенными и не состоятельными.
Идея МИП заключается в том, чтобы подобрать новые переменные , которые бы тесно коррелировали с и не коррелировали со случайными остатками . Такие переменные называют инструментальными или просто инструментами). Включение их в модель обеспечивает состоятельность оценок МНК.
Набор переменных может включать факторные переменные, которые не коррелируют с остатками, а также другие внешние величины, не входящие в состав факторных переменных модели. Важно, чтобы число инструментов было не меньше, чем число независимых переменных.
Рассмотрим случай парной регрессии: . Предположим, что между факторными переменными и остатками имеется корреляционная зависимость, т. е. . Рассмотрим систему нормальных уравнений для линейной парной регрессии:
, (7.11)
тогда . (7.12)
Можно показать, что . Так как , оценка параметра будет смещенной и не состоятельной.
Предположим, что можно найти такую переменную , которая была бы коррелированна с ( ), но не коррелированна с ( ). Выберем эту переменную в качестве иструментальной переменной.
Заменим второе уравнение системы (7.11) на следующее: и рассмотрим систему:
. (7.13)
Решение системы (7.13) будет, очевидно, отличается от решения предыдущей системы. Обозначим новые оценки соответственно.
В этом случае оценка . (7.14)
Покажем, что она является несмещенной и состоятельной при условии, что при увеличивающемся числе наблюдений стремится к конечному, отличному от нуля пределу, который мы обозначим, как .
, здесь , так как – постоянная величина.
Тогда . (7.15)
Так как , а , то в больших выборках стремится к истинному значению .
Сравним (формула (7.14) с оценкой МНК (формула 7.12). Очевидно, что оценку , можно получить путем подстановки инструментальной переменной вместо в числителе и вместо одного (но не обоих) в знаменателе в формуле (7.12) для оценки .
Чем теснее корреляция между и Z, тем меньше будет их дисперсия и, следовательно, тем меньше будет дисперсия . Следовательно, если мы стоим перед выбором между несколькими возможными инструментальными переменными, то следует выбрать наиболее тесно коррелированную с , потому что при прочих равных условиях она даст наиболее эффективные оценки. Вместе с тем не рекомендуется использовать инструментальную переменную, имеющую функциональную зависимость с , даже если бы ее удалось найти, потому что тогда она автоматически оказалась бы коррелированной с остатками и оценки по-прежнему были бы не состоятельны.
Нетрудно понять, что метод оценивания с помощью инструментальных переменных является обобщением обычного метода наименьших квадратов.
Пусть — матрица значений инструментальных переменных размерности (), а — матрица значений факторных переменных размерности (),. Здесь— матрица факторных переменных, которые включены в состав инструментов, — инструменты, которые не входят в число факторных переменных. В этом случае матрица оценок параметров находится следующим образом:
, где , (7.16)
здесь , а метод ИП называют обобщенным методом инструментальных переменны (ОМИП).
Если число инструментальных переменных равняется числу факторных переменных (), то матрица ) будет квадратной размерности (). Метод ИП в этом случае называется простым, а оценки вычисляются следующим образом:
=
=[2] . (7.17)
Самая трудная проблема метода ИП – это поиск подходящих инструментов. Требуется, чтобы инструменты были тесно связаны с факторными переменными, но сами не были бы эндогенными переменными.
Решение этой проблемы зависит от конкретной ситуации. Например, это могут быть: лаговые значения факторных переменных; показатели, близкие по экономическому смыслу и приближенно отражающие рассматриваемую факторную переменную и пр.
Метод инструментальных переменных используется при оценке СОУ при использовании двухшагового МНК. В качестве инструментов здесь рассматриваются расчетные значения эндогенных переменных, найденные на первом шаге с использованием обычного МНК для приведенной системы уравнений.
Рассмотрим упрощенную кейнсианскую модель формирования доходов в закрытой экономике без государственного вмешательства:
(7.18)
где — представляют совокупный выпуск, объем потребления и объем инвестиций соответственно, . Здесь мы имеем случай одновременных взаимосвязей между переменными: в качестве одной из составляющих содержит ошибку модели, а так как зависит от , то также корреллирует с ошибками модели.
Первое уравнение идентифицируемо ( и матрица коэффициентов при переменных, не входящих в уравнение состоит из одного элемента 1, т. е. ее ранг равен 1, что равняется числу эндогенных переменных без одного). Следовательно выполняютя необходимое и достаточное условие идентифицируемости. Второе уравнение тождество, не подлежит проверке на идентификацию.
Рассмотрим следующие статистические данные:
Видео:АЛГЕБРА 7 класс. Решение задач с помощью систем уравненийСкачать
Примерф решения эконометрических задач в Statistica
Ниже приведено условия задач и текстовая часть решения. Закачка полного решения, в архиве rar, начнется автоматически через 10 секунд.
Видео:Решение задач с помощью систем уравненийСкачать
Задача 1. Построение и анализ линейной множественной регре с сии
В таблице 1.1. приведены ежегодные данные о совокупных личных расходах ; располагаемых личных доходах ; расходах на табак для США на период с 1959 по 1983 годы. Оцените множественную регрессию между регрессандом (эндогенной пер е менной) Var 1 и регрессорами (экзогенными пер е менными) Var 2, Var 3 и Var 4 используя данные за 25 лет. Дайте интерпретацию коэффициентам ре г рессии. Исследуйте степень корреляционной зависимости между переменными. Проверьте остатки на н а личие автокорреляции и гетероскедастичность.
Ежегодные данные о потребительских расходах и
располагаемых личных д о ходах для США на период с 1959 по 1983 годы
Используем пакет Statistica 6.0, модуль Множественная регрессия .
Создадим новый документ с данными, введем число переменных – 4 и число регис т ров – 25. Введем наименования переменных и исходные данные.
Вызовем модуль Множественная регрессия . (Команда Статист и ка Множественная регрессия). Выберем переменные (кнопка ( Variables ). Зависимая ( Dependent ) – Var 1 ; независ и мые ( Independent ) – Var 2 , Var 3 , Var 4 .
Нажмем кнопку ОК в правом углу стартовой панели.
Появится окно результатов множественной регрессии.
Результаты множественной регрессии в численном виде представлены в табл. 1.2.
В первом столбце таблицы 1.2 . даны значения коэффициентов beta — стандартизованные коэффициенты регрессионно го урав нения , во втором — стандартные ошибки beta , в третьем – В – точечные оценки пар а метров модели.
Далее, стандартные ошибки для коэффициентов модели В, значения ст а тис тик t-критерия и т.д.
Из таблицы 1.2 . мы видим, что оцененная модель имеет вид:
Var 1 = 347,2 + 25,018∙ Var 2 – 0,0765∙ Var 3 – 3 ,755 ∙ Var 4 (1.1)
TPE = 347,2 + 25,018 ∙ TIME – 0,0 765 ∙ PI – 3,755 ∙ TOB (1.2)
( t ) ( 0,738 ) (1, 073 ) ( 0,1074) (-0,107 )
В верхней части таблицы 1.2 . и в таблице 1.3 . (а также в информационном окне) прив е дены следующие данные:
Коэффициент множественно й корреляции Multiple R = 0, 9633 ;
Коэффициент детерминации R-square = 0, 9279 ;
Скорректированный на поте рю степеней свободы коэффициент множественной д е термина ции Adjusted R 2 = 0, 9 176 ;
Критерий Фишера F = 90,107 ;
Уровень значимости модели р
Стандартная ошибка оценки Std. Error of estimate = 59,293 .
Проанализируем данные множественной регрессии.
Табличное значение критерия Стьюдента, соответствующее доверител ь ной вероятности = 0,95 и числу степеней свободы v = n – m – 1 = 21 ; t кр. = t 0,025;21 = 2,080.
Сравнивая расчетную t -статистику коэффициентов уравнения с табличным значением, заключаем, что все полученные коэффициенты стат и стически не значимы.
Уравнение (1.2 . ) выражает зависимость совокупных личных расходов ( TPE ) от времени ( TIME ), личного дохода ( PI ) и расходов на табак ( TOB ). Коэффициенты уравнения пок а зывают количественное воздействие каждого фактора на результативный показатель при неизменности других. В нашем случае совокупные личные расходы увеличиваются на 25,017 ден. ед. при увеличении времени на 1 ед. при неизменности показателей личного дохода и расходов на табак ; совокупные личные расходы увеличиваются на 0,0765 ден. ед. при увеличении показателя личного дохода на 1 ед. и неизменности показателей времени и расходов на табак ; совокупные личные расходы уменьшаются 3,755 ден. ед. при увеличении ра с ходов на табак на 1 ед. и неизменности показателей времени и личного дох о да.
Множественный коэффициент корреляции построенной модели (Multiple R) R = 0,9633 очень близок к единице, что говорит о высокой степени связи между исследуемыми факт о рами.
Коэффициент детерминации (R Square) R 2 = 0,9279, что говорит о том, что 92,79 % вари а ции переменной TPE объясняется вариацией переменных TIME , PI , TOB и только 7, 21 % приходятся на долю других неучтенных факторов.
Критическое (табличное) значение критерия Фишера для доверительной вероятн о сти = 0,95 и числа степеней свободы v 1 = 25 – 3 = 22 и v 2 = 25 – 1 = 24: F кр . = F 0,05;22;24 = 2,01.
Расчетное значение критерия Фишера F = 90,107 намного превышает табличное значение критерия F табл. = 2,01, что говорит о хорошем качестве п о строенной модели (модель адекватна экспериментальным данным). Уровень значимости p = 0,00000 показывает, что построенная регрессия высоко знач и ма.
Исследуем степень корреляционной зависимости между переменными. Для этого п о строим корреляционную матрицу. Чтобы корреляционная матрица была построена при множественной регрессии, нужно установить флажок в строке Review descriptive statistics , correlations matrix в окне Multiple Regre s sions .
Корреляционная матрица приведена в таблице 1.4.
Из корреляционной матрицы следует, что на расходы на отдых все и с следуемые факторы оказывают значительное и примерно одинаковое влияние (коэффициенты корреляции между Var 1 и Var 2, Var 3, Var 4 равны соответственно 0,9 9975 ; 0,9 4192 ; 0, 96325 ). Из корреляционной матрицы также следует, что между факторами им е ется мультиколлинеарность (коэффициенты корр е ляции между регрессорами Var 2, Var 3, Var 4 также высоки и примерно одинаковы).
Проведем анализ остатков от регрессии.
Остатки представляю т собой разности между наблюдае мыми значениями и модел ь ными, то есть значениями, под считанными по модели с оцененными параметрами.
По кнопке Observed v s . residuals появится график (рис.1.1. ), который г о ворит о неслучайном р азбросе стандартных отклонений .
Рис. 1.1. Наблюдаемые переменные-остатки
Проверим остатки на наличие автокорреляции. Для этого вычислим ст а тистику Дарбина-Уотсона ( Darbin-Watson Stat ). Результаты вычисления статистики Дарбина-Уотсона привед е ны в табл. 1.5.
Из табл. 1.5 определяем наблюдаемое значение критерия Дарбина-Уотсона:
По таблице приложения 4 [1] определяем значащие точки d L и d U для 5% уровня зн а чимости.
Для m = 3 и n = 25 d L = 1,123; d U = 1,654.
Так как 4 — d U DW 4 — d L ( 2,346 2,469 ), то гипотезу об отсутствии автокорреляции мы не можем принять и не можем опровергнуть, так как значение статистики попало в зону неопределенности критерия .
Для проверки наличия гетероскедастичности воспользуемся тестом Па р ка. В Excel рассчитаем логарифмы значений e 2 , Var 2 , Var 3 и Var 4 (см. табл. 1.6).
🎬 Видео
АЛГЕБРА 7 класс : Решение задач с помощью уравнений | ВидеоурокСкачать
Математика 6 класс. Решение задач на составление уравненийСкачать
Решение задач с помощью уравнений. Алгебра 7 классСкачать
Решение задач с помощью квадратных уравнений. Алгебра, 8 классСкачать
Уравнение. Практическая часть - решение задачи. 1 часть. 5 класс.Скачать
9 класс, 11 урок, Методы решения систем уравненийСкачать
Решение систем уравнений методом подстановкиСкачать
Способы решения систем нелинейных уравнений. Практическая часть. 9 класс.Скачать