Примеры решений квадратных уравнений со скобками

Квадратное уравнение
Содержание
  1. Что такое квадратное уравнение и как его решать?
  2. Формулы корней квадратного уравнения
  3. Примеры решения квадратных уравнений
  4. Примеры решения задач
  5. Как решать квадратные уравнения
  6. Понятие квадратного уравнения
  7. Приведенные и неприведенные квадратные уравнения
  8. Полные и неполные квадратные уравнения
  9. Решение неполных квадратных уравнений
  10. Как решить уравнение ax 2 = 0
  11. Как решить уравнение ax 2 + с = 0
  12. Как решить уравнение ax 2 + bx = 0
  13. Как разложить квадратное уравнение
  14. Дискриминант: формула корней квадратного уравнения
  15. Алгоритм решения квадратных уравнений по формулам корней
  16. Примеры решения квадратных уравнений
  17. Формула корней для четных вторых коэффициентов
  18. Формула Виета
  19. Упрощаем вид квадратных уравнений
  20. Связь между корнями и коэффициентами
  21. Квадратные уравнения (8 класс)
  22. Уравнение называют квадратным, если его можно записать в виде (ax^2+bx+c=0), где (x) неизвестная, (a), (b) и (с) коэффициенты (то есть, некоторые числа, причем (a≠0)).
  23. Коэффициент (a) называют первым или старшим коэффициентом, (b) – вторым коэффициентом, (c) – свободным членом уравнения.
  24. Виды квадратных уравнений
  25. Если в квадратном уравнении присутствуют все три его члена, его называют полным. В ином случае уравнение называется неполным.
  26. Как решать квадратные уравнения
  27. 🎦 Видео

Видео:Решение квадратных уравнений. Метод разложения на множители. 8 класс.Скачать

Решение квадратных уравнений. Метод разложения на множители. 8 класс.

Что такое квадратное уравнение и как его решать?

Мы помним, что уравнение это равенство, содержащее в себе переменную, значение которой нужно найти.

Если переменная, входящая в уравнение, возведенá во вторую степень (в квадрат), то такое уравнение называют уравнением второй степени или квадратным уравнением.

Например, следующие уравнения являются квадратными:

Примеры решений квадратных уравнений со скобками

Решим первое из этих уравнений, а именно x 2 − 4 = 0 .

Все тождественные преобразования, которые мы применяли при решении обычных линейных уравнений, можно применять и при решении квадратных.

Итак, в уравнении x 2 − 4 = 0 перенесем член −4 из левой части в правую часть, изменив знак:

Примеры решений квадратных уравнений со скобками

Получили уравнение x 2 = 4 . Ранее мы говорили, что уравнение считается решённым, если в одной части переменная записана в первой степени и её коэффициент равен единице, а другая часть равна какому-нибудь числу. То есть чтобы решить уравнение, его следует привести к виду x = a , где a — корень уравнения.

У нас переменная x всё ещё во второй степени, поэтому решение необходимо продолжить.

Чтобы решить уравнение x 2 = 4 , нужно ответить на вопрос при каком значении x левая часть станет равна 4 . Очевидно, что при значениях 2 и −2 . Чтобы вывести эти значения воспользуемся определением квадратного корня.

Число b называется квадратным корнем из числа a , если b 2 = a и обозначается как Примеры решений квадратных уравнений со скобками

У нас сейчас похожая ситуация. Ведь, что такое x 2 = 4 ? Переменная x в данном случае это квадратный корень из числа 4, поскольку вторая степень x прирáвнена к 4.

Тогда можно записать, что Примеры решений квадратных уравнений со скобками. Вычисление правой части позвóлит узнать чему равно x . Квадратный корень имеет два значения: положительное и отрицательное. Тогда получаем x = 2 и x = −2 .

Обычно записывают так: перед квадратным корнем ставят знак «плюс-минус», затем находят арифметическое значение квадратного корня. В нашем случае на этапе когда записано выражение Примеры решений квадратных уравнений со скобками, перед Примеры решений квадратных уравнений со скобкамиследует поставить знак ±

Примеры решений квадратных уравнений со скобками

Затем найти арифметическое значение квадратного корня Примеры решений квадратных уравнений со скобками

Примеры решений квадратных уравнений со скобками

Выражение x = ± 2 означает, что x = 2 и x = −2 . То есть корнями уравнения x 2 − 4 = 0 являются числа 2 и −2 . Запишем полностью решение данного уравнения:

Примеры решений квадратных уравнений со скобками

Выполним проверку. Подставим корни 2 и −2 в исходное уравнение и выполним соответствующие вычисления. Если при значениях 2 и −2 левая часть равна нулю, то это будет означать, что уравнение решено верно:

Примеры решений квадратных уравнений со скобками

В обоих случаях левая часть равна нулю. Значит уравнение решено верно.

Решим ещё одно уравнение. Пусть требуется решить квадратное уравнение (x + 2) 2 = 25

Для начала проанализируем данное уравнение. Левая часть возведенá в квадрат и она равна 25 . Какое число в квадрате равно 25 ? Очевидно, что числа 5 и −5

Примеры решений квадратных уравнений со скобками

То есть наша задача найти x, при которых выражение x + 2 будет равно числам 5 и −5 . Запишем эти два уравнения:

Примеры решений квадратных уравнений со скобками

Решим оба уравнения. Это обычные линейные уравнения, которые решаются легко:

Примеры решений квадратных уравнений со скобками

Значит корнями уравнения (x + 2) 2 = 25 являются числа 3 и −7 .

В данном примере как и в прошлом можно использовать определение квадратного корня. Так, в уравнения (x + 2) 2 = 25 выражение (x + 2) представляет собой квадратный корень из числа 25 . Поэтому можно cначала записать, что Примеры решений квадратных уравнений со скобками.

Тогда правая часть станет равна ±5 . Полýчится два уравнения: x + 2 = 5 и x + 2 = −5. Решив по отдельности каждое из этих уравнений мы придём к корням 3 и −7 .

Запишем полностью решение уравнения (x + 2) 2 = 25

Примеры решений квадратных уравнений со скобками

Из рассмотренных примеров видно, что квадратное уравнение имеет два корня. Чтобы не забыть о найденных корнях, переменную x можно подписывать нижними индексами. Так, корень 3 можно обозначить через x1 , а корень −7 через x2

Примеры решений квадратных уравнений со скобками

В предыдущем примере тоже можно было сделать так. Уравнение x 2 − 4 = 0 имело корни 2 и −2 . Эти корни можно было обозначить как x1 = 2 и x2 = −2.

Бывает и так, что квадратное уравнение имеет только один корень или вовсе не имеет корней. Такие уравнения мы рассмотрим позже.

Сделаем проверку для уравнения (x + 2) 2 = 25 . Подставим в него корни 3 и −7 . Если при значениях 3 и −7 левая часть равна 25 , то это будет означать, что уравнение решено верно:

Примеры решений квадратных уравнений со скобками

В обоих случаях левая часть равна 25 . Значит уравнение решено верно.

Квадратное уравнение бывает дано в разном виде. Наиболее его распространенная форма выглядит так:

ax 2 + bx + c = 0 ,
где a, b, c — некоторые числа, x — неизвестное.

Это так называемый общий вид квадратного уравнения. В таком уравнении все члены собраны в общем месте (в одной части), а другая часть равна нулю. По другому такой вид уравнения называют нормальным видом квадратного уравнения.

Пусть дано уравнение 3x 2 + 2x = 16 . В нём переменная x возведенá во вторую степень, значит уравнение является квадратным. Приведём данное уравнение к общему виду.

Итак, нам нужно получить уравнение, которое будет похоже на уравнение ax 2 + bx + c = 0 . Для этого в уравнении 3x 2 + 2x = 16 перенесем 16 из правой части в левую часть, изменив знак:

Получили уравнение 3x 2 + 2x − 16 = 0 . В этом уравнении a = 3 , b = 2 , c = −16 .

В квадратном уравнении вида ax 2 + bx + c = 0 числа a , b и c имеют собственные названия. Так, число a называют первым или старшим коэффициентом; число b называют вторым коэффициентом; число c называют свободным членом.

В нашем случае для уравнения 3x 2 + 2x − 16 = 0 первым или старшим коэффициентом является 3 ; вторым коэффициентом является число 2 ; свободным членом является число −16 . Есть ещё другое общее название для чисел a, b и cпараметры.

Так, в уравнении 3x 2 + 2x − 16 = 0 параметрами являются числа 3 , 2 и −16 .

В квадратном уравнении желательно упорядочивать члены так, чтобы они располагались в таком же порядке как у нормального вида квадратного уравнения.

Например, если дано уравнение −5 + 4x 2 + x = 0 , то его желательно записать в нормальном виде, то есть в виде ax 2 + bx + c = 0.

В уравнении −5 + 4x 2 + x = 0 видно, что свободным членом является −5 , он должен располагаться в конце левой части. Член 4x 2 содержит старший коэффициент, он должен располагаться первым. Член x соответственно будет располагаться вторым:

Примеры решений квадратных уравнений со скобками

Квадратное уравнение в зависимости от случая может принимать различный вид. Всё зависит от того, чему равны значения a , b и с .

Если коэффициенты a , b и c не равны нулю, то квадратное уравнение называют полным. Например, полным является квадратное уравнение 2x 2 + 6x − 8 = 0 .

Если какой-то из коэффициентов равен нулю (то есть отсутствует), то уравнение значительно уменьшается и принимает более простой вид. Такое квадратное уравнение называют неполным. Например, неполным является квадратное уравнение 2x 2 + 6x = 0, в нём имеются коэффициенты a и b (числа 2 и 6 ), но отсутствует свободный член c.

Рассмотрим каждый из этих видов уравнений, и для каждого из этих видов определим свой способ решения.

Пусть дано квадратное уравнение 2x 2 + 6x − 8 = 0 . В этом уравнении a = 2 , b = 6 , c = −8 . Если b сделать равным нулю, то уравнение примет вид:

Примеры решений квадратных уравнений со скобками

Получилось уравнение 2x 2 − 8 = 0 . Чтобы его решить перенесем −8 в правую часть, изменив знак:

Для дальнейшего упрощения уравнения воспользуемся ранее изученными тождественными преобразованиями. В данном случае можно разделить обе части на 2

Примеры решений квадратных уравнений со скобками

У нас получилось уравнение, которое мы решали в начале данного урока. Чтобы решить уравнение x 2 = 4 , следует воспользоваться определением квадратного корня. Если x 2 = 4 , то Примеры решений квадратных уравнений со скобками. Отсюда x = 2 и x = −2 .

Значит корнями уравнения 2x 2 − 8 = 0 являются числа 2 и −2 . Запишем полностью решение данного уравнения:

Примеры решений квадратных уравнений со скобками

Выполним проверку. Подставим корни 2 и −2 в исходное уравнение и выполним соответствующие вычисления. Если при значениях 2 и −2 левая часть равна нулю, то это будет означать, что уравнение решено верно:

Примеры решений квадратных уравнений со скобками

В обоих случаях левая часть равна нулю, значит уравнение решено верно.

Уравнение, которое мы сейчас решили, является неполным квадратным уравнением. Название говорит само за себя. Если полное квадратное уравнение выглядит как ax 2 + bx + c = 0 , то сделав коэффициент b нулём получится неполное квадратное уравнение ax 2 + c = 0 .

У нас тоже сначала было полное квадратное уравнение 2x 2 + 6x − 4 = 0 . Но мы сделали коэффициент b нулем, то есть вместо числа 6 поставили 0 . В результате уравнение обратилось в неполное квадратное уравнение 2x 2 − 4 = 0 .

В начале данного урока мы решили квадратное уравнение x 2 − 4 = 0 . Оно тоже является уравнением вида ax 2 + c = 0 , то есть неполным. В нем a = 1 , b = 0 , с = −4 .

Также, неполным будет квадратное уравнение, если коэффициент c равен нулю.

Рассмотрим полное квадратное уравнение 2x 2 + 6x − 4 = 0 . Сделаем коэффициент c нулём. То есть вместо числа 4 поставим 0

Примеры решений квадратных уравнений со скобками

Получили квадратное уравнение 2x 2 + 6x=0 , которое является неполным. Чтобы решить такое уравнение, переменную x выносят за скобки:

Примеры решений квадратных уравнений со скобками

Получилось уравнение x(2x + 6) = 0 в котором нужно найти x, при котором левая часть станет равна нулю. Заметим, что в этом уравнении выражения x и (2x + 6) являются сомножителями. Одно из свойств умножения говорит, что произведение равно нулю, если хотя бы один из сомножителей равен нулю (или первый сомножитель или второй).

В нашем случае равенство будет достигаться, если x будет равно нулю или (2x + 6) будет равно нулю. Так и запишем для начала:

Примеры решений квадратных уравнений со скобками

Получилось два уравнения: x = 0 и 2x + 6 = 0 . Первое уравнение решать не нужно — оно уже решено. То есть первый корень равен нулю.

Чтобы найти второй корень, решим уравнение 2x + 6 = 0 . Это обычное линейное уравнение, которое решается легко:

Примеры решений квадратных уравнений со скобками

Видим, что второй корень равен −3.

Значит корнями уравнения 2x 2 + 6x = 0 являются числа 0 и −3 . Запишем полностью решение данного уравнения:

Примеры решений квадратных уравнений со скобками

Выполним проверку. Подставим корни 0 и −3 в исходное уравнение и выполним соответствующие вычисления. Если при значениях 0 и −3 левая часть равна нулю, то это будет означать, что уравнение решено верно:

Примеры решений квадратных уравнений со скобками

Следующий случай это когда числа b и с равны нулю. Рассмотрим полное квадратное уравнение 2x 2 + 6x − 4 = 0 . Сделаем коэффициенты b и c нулями. Тогда уравнение примет вид:

Примеры решений квадратных уравнений со скобками

Получили уравнение 2x 2 = 0 . Левая часть является произведением, а правая часть равна нулю. Произведение равно нулю, если хотя бы один из сомножителей равен нулю. Очевидно, что x = 0 . Действительно, 2 × 0 2 = 0 . Отсюда, 0 = 0 . При других значениях x равенства достигаться не будет.

Проще говоря, если в квадратном уравнении вида ax 2 + bx + c = 0 числа b и с равны нулю, то корень такого уравнения равен нулю.

Отметим, что когда употребляются словосочетания « b равно нулю » или « с равно нулю «, то подразумевается, что параметры b или c вовсе отсутствуют в уравнении.

Например, если дано уравнение 2x 2 − 32 = 0 , то мы говорим, что b = 0 . Потому что если сравнить с полным уравнением ax 2 + bx + c = 0 , то можно заметить, что в уравнении 2x 2 − 32 = 0 присутствует старший коэффициент a , равный 2; присутствует свободный член −32 ; но отсутствует коэффициент b .

Наконец, рассмотрим полное квадратное уравнение ax 2 + bx + c = 0 . В качестве примера решим квадратное уравнение x 2 − 2x + 1 = 0 .

Итак, требуется найти x , при котором левая часть станет равна нулю. Воспользуемся изученными ранее тождественными преобразованиями.

Прежде всего заметим, что левая часть уравнения представляет собой квадрат разности двух выражений. Если мы вспомним как раскладывать многочлен на множители, то получим в левой части (x − 1) 2 .

Примеры решений квадратных уравнений со скобками

Рассуждаем дальше. Левая часть возведенá в квадрат и она равна нулю. Какое число в квадрате равно нулю? Очевидно, что только 0 . Поэтому наша задача найти x , при котором выражение x − 1 равно нулю. Решив простейшее уравнение x − 1 = 0 , можно узнать чему равно x

Примеры решений квадратных уравнений со скобками

Этот же результат можно получить, если воспользоваться квадратным корнем. В уравнении (x − 1) 2 = 0 выражение (x − 1) представляет собой квадратный корень из нуля. Тогда можно записать, что Примеры решений квадратных уравнений со скобками. В этом примере записывать перед корнем знак ± не нужно, поскольку корень из нуля имеет только одно значение — ноль. Тогда получается x − 1 = 0 . Отсюда x = 1 .

Значит корнем уравнения x 2 − 2x + 1 = 0 является единица. Других корней у данного уравнения нет. В данном случае мы решили квадратное уравнение, имеющее только один корень. Такое тоже бывает.

Не всегда бывают даны простые уравнения. Рассмотрим например уравнение x 2 + 2x − 3 = 0 .

В данном случае левая часть уже не является квадратом суммы или разности. Поэтому нужно искать другие пути решения.

Заметим, что левая часть уравнения представляет собой квадратный трехчлен. Тогда можно попробовать выделить полный квадрат из этого трёхчлена и посмотреть что это нам даст.

Выделим полный квадрат из квадратного трёхчлена, располагающего в левой части уравнения:

Примеры решений квадратных уравнений со скобками

В получившемся уравнении перенесем −4 в правую часть, изменив знак:

Примеры решений квадратных уравнений со скобками

Теперь воспользуемся квадратным корнем. В уравнении (x + 1) 2 = 4 выражение (x + 1) представляет собой квадратный корень из числа 4 . Тогда можно записать, что Примеры решений квадратных уравнений со скобками. Вычисление правой части даст выражение x + 1 = ±2 . Отсюда полýчится два уравнения: x + 1 = 2 и x + 1 = −2 , корнями которых являются числа 1 и −3

Примеры решений квадратных уравнений со скобками

Значит корнями уравнения x 2 + 2x − 3 = 0 являются числа 1 и −3 .

Примеры решений квадратных уравнений со скобками

Пример 3. Решить уравнение x 2 − 6x + 9 = 0 , выделив полный квадрат.

Выделим полный квадрат из левой части:

Примеры решений квадратных уравнений со скобками

Далее воспользуемся квадратным корнем и узнáем чему равно x

Примеры решений квадратных уравнений со скобками

Значит корнем уравнения x 2 − 6x + 9 = 0 является 3. Выполним проверку:

Примеры решений квадратных уравнений со скобками

Пример 4. Решить квадратное уравнение 4x 2 + 28x − 72 = 0 , выделив полный квадрат:

Выделим полный квадрат из левой части:

Примеры решений квадратных уравнений со скобками

Перенесём −121 из левой части в правую часть, изменив знак:

Примеры решений квадратных уравнений со скобками

Воспользуемся квадратным корнем:

Примеры решений квадратных уравнений со скобками

Получили два простых уравнения: 2x + 7 = 11 и 2x + 7 = −11. Решим их:

Примеры решений квадратных уравнений со скобками

Пример 5. Решить уравнение 2x 2 + 3x − 27 = 0

Это уравнение немного посложнее. Когда мы выделяем полный квадрат, первый член квадратного трёхчлена мы представляем в виде квадрата какого-нибудь выражения.

Так, в прошлом примере первым членом уравнения был 4x 2 . Его можно было представить в виде квадрата выражения 2x , то есть (2x) 2 = 2 2 x 2 = 4x 2 . Чтобы убедиться что это правильно, можно извлечь квадратный корень из выражения 4x 2 . Это квадратный корень из произведения — он равен произведению корней:

Примеры решений квадратных уравнений со скобками

В уравнении 2x 2 + 3x − 27 = 0 первый член это 2x 2 . Его нельзя представить в виде квадрата какого-нибудь выражения. Потому что нет числá, квадрат которого равен 2. Если бы такое число было, то этим числом был бы квадратный корень из числа 2. Но квадратный корень из числа 2 извлекается только приближённо. А приближённое значение не годится для представления числá 2 в виде квадрата.

Если обе части исходного уравнения умножить или разделить на одно и то же число, то полýчится уравнение равносильное исходному. Это правило сохраняется и для квадратного уравнения.

Тогда можно разделить обе части нашего уравнения на 2 . Это позвóлит избавиться от двойки перед x 2 что впоследствии даст нам возможность выделить полный квадрат:

Примеры решений квадратных уравнений со скобками

Перепишем левую часть в виде трёх дробей со знаменателем 2

Примеры решений квадратных уравнений со скобками

Сократим первую дробь на 2. Остальные члены левой части перепишем без изменений. Правая часть по-прежнему станет равна нулю:

Примеры решений квадратных уравнений со скобками

Выделим полный квадрат.

Примеры решений квадратных уравнений со скобками

При представлении члена Примеры решений квадратных уравнений со скобкамив виде удвоенного произведения, появление множителя 2 привело бы к тому, что этот множитель и знаменатель дроби Примеры решений квадратных уравнений со скобкамисократились бы. Чтобы этого не произошло, удвоенное произведение было домножено на Примеры решений квадратных уравнений со скобками. При выделении полного квадрата всегда нужно стараться сделать так, чтобы значение изначального выражения не изменилось.

Свернём полученный полный квадрат:

Примеры решений квадратных уравнений со скобками

Приведём подобные члены:

Примеры решений квадратных уравнений со скобками

Перенесём дробь Примеры решений квадратных уравнений со скобкамив правую часть, изменив знак:

Примеры решений квадратных уравнений со скобками

Воспользуемся квадратным корнем. Выражение Примеры решений квадратных уравнений со скобкамипредставляет собой квадратный корень из числа Примеры решений квадратных уравнений со скобками

Примеры решений квадратных уравнений со скобками

Для вычисления правой части воспользуемся правилом извлечения квадратного корня из дроби:

Примеры решений квадратных уравнений со скобками

Тогда наше уравнение примет вид:

Примеры решений квадратных уравнений со скобками

Полýчим два уравнения:

Примеры решений квадратных уравнений со скобками

Примеры решений квадратных уравнений со скобками

Значит корнями уравнения 2x 2 + 3x − 27 = 0 являются числа 3 и Примеры решений квадратных уравнений со скобками.

Корень Примеры решений квадратных уравнений со скобкамиудобнее оставить в таком виде, не выполняя деления числителя на знаменатель. Так проще будет выполнять проверку.

Выполним проверку. Подставим найденные корни в исходное уравнение:

Примеры решений квадратных уравнений со скобками

В обоих случаях левая часть равна нулю, значит уравнение 2x 2 + 3x − 27 = 0 решено верно.

Решая уравнение 2x 2 + 3x − 27 = 0 , в самом начале мы разделили обе его части на 2 . В результате получили квадратное уравнение, в котором коэффициент перед x 2 равен единице:

Примеры решений квадратных уравнений со скобками

Такой вид квадратного уравнения называют приведённым квадратным уравнением.

Любое квадратное уравнение вида ax 2 + bx + c = 0 можно сделать приведённым. Для этого нужно разделить обе его части на коэффициент, который располагается перед x². В данном случае обе части уравнения ax 2 + bx + c = 0 нужно разделить на a

Примеры решений квадратных уравнений со скобками

Пример 6. Решить квадратное уравнение 2x 2 + x + 2 = 0

Сделаем данное уравнение приведённым:

Примеры решений квадратных уравнений со скобками

Выделим полный квадрат:

Примеры решений квадратных уравнений со скобками

Получили уравнение Примеры решений квадратных уравнений со скобками, в котором квадрат выражения Примеры решений квадратных уравнений со скобкамиравен отрицательному числу Примеры решений квадратных уравнений со скобками. Такого быть не может, поскольку квадрат любого числа или выражения всегда положителен.

Следовательно, нет такого значения x , при котором левая часть стала бы равна Примеры решений квадратных уравнений со скобками. Значит уравнение Примеры решений квадратных уравнений со скобкамине имеет корней.

А поскольку уравнение Примеры решений квадратных уравнений со скобкамиравносильно исходному уравнению 2x 2 + x + 2 = 0 , то и оно (исходное уравнение) не имеет корней.

Видео:5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

Формулы корней квадратного уравнения

Выделять полный квадрат для каждого решаемого квадратного уравнения не очень удобно.

Можно ли создать универсальные формулы для решения квадратных уравнений? Оказывается можно. Сейчас мы этим и займёмся.

Взяв за основу буквенное уравнение ax 2 + bx + c = 0 , и выполнив некоторые тождественные преобразования, мы сможем получить формулы для вывода корней квадратного уравнения ax 2 + bx + c = 0 . В эти формулы можно будет подставлять коэффициенты a , b , с и получать готовые решения.

Итак, выделим полный квадрат из левой части уравнения ax 2 + bx + c = 0. Сначала сделаем данное уравнение приведённым. Разделим обе его части на a

Примеры решений квадратных уравнений со скобками

Теперь в получившемся уравнении выделим полный квадрат:

Примеры решений квадратных уравнений со скобками

Перенесем члены Примеры решений квадратных уравнений со скобкамии Примеры решений квадратных уравнений со скобкамив правую часть, изменив знак:

Примеры решений квадратных уравнений со скобками

Приведём правую часть к общему знаменателю. Дроби, состоящие из букв, привóдят к общему знаменателю методом «крест-нáкрест». То есть знаменатель первой дроби станóвится дополнительным множителем второй дроби, а знаменатель второй дроби станóвится дополнительным множителем первой дроби:

Примеры решений квадратных уравнений со скобками

В числителе правой части вынесем за скобки a

Примеры решений квадратных уравнений со скобками

Сократим правую часть на a

Примеры решений квадратных уравнений со скобками

Поскольку все преобразования были тождественными, то получившееся уравнение Примеры решений квадратных уравнений со скобкамиимеет те же корни, что и исходное уравнение ax 2 + bx + c = 0.

Уравнение Примеры решений квадратных уравнений со скобкамибудет иметь корни только тогда, если правая часть больше нуля или равна нулю. Это потому что в левой части выполнено возведéние в квадрат, а квадрат любого числа положителен или равен нулю (если в этот квадрат возвóдится ноль). А чему будет равна правая часть зависит от того, что будет подставлено вместо переменных a , b и c .

Поскольку при любом a не рáвным нулю, знаменатель правой части уравнения Примеры решений квадратных уравнений со скобкамивсегда будет положительным, то знак дроби Примеры решений квадратных уравнений со скобкамибудет зависеть от знака её числителя, то есть от выражения b 2 − 4ac .

Выражение b 2 − 4ac называют дискриминантом квадратного уравнения. Дискриминант это латинское слово, означающее различитель . Дискриминант квадратного уравнения обозначается через букву D

Дискриминант позволяет заранее узнать имеет ли уравнение корни или нет. Так, в предыдущем задании мы долго решали уравнение 2x 2 + x + 2 = 0 и оказалось, что оно не имеет корней. Дискриминант же позволил бы нам заранее узнать, что корней нет. В уравнении 2x 2 + x + 2 = 0 коэффициенты a , b и c равны 2, 1 и 2 соответственно. Подставим их в формулу D = b 2 −4ac

D = b 2 − 4ac = 1 2 − 4 × 2 × 2 = 1 − 16 = −15.

Видим, что D (оно же b 2 − 4ac ) является отрицательным числом. Тогда нет смысла решать уравнение 2x 2 + x + 2 = 0, выделяя в нём полный квадрат, потому что когда мы дойдем до уравнения вида Примеры решений квадратных уравнений со скобками, окажется что правая часть станет меньше нуля (из-за отрицательного дискриминанта). А квадрат числа не может быть отрицательным. Следовательно, корней у данного уравнения не будет.

Станóвится понятно почему древние люди считали выражение b 2 − 4ac различителем. Это выражение подобно индикатору позволяет различить уравнение имеющего корни от уравнения, не имеющего корней.

Итак, D равно b 2 − 4ac . Подставим в уравнении Примеры решений квадратных уравнений со скобкамивместо выражения b 2 − 4ac букву D

Примеры решений квадратных уравнений со скобками

Если дискриминант исходного уравнения окажется меньше нуля (D , то уравнение примет вид:

Примеры решений квадратных уравнений со скобками

В этом случае говорят, что у исходного уравнения корней нет, поскольку квадрат любого числа не должен быть отрицательным.

Если дискриминант исходного уравнения окажется больше нуля (D > 0) , то уравнение примет вид:

Примеры решений квадратных уравнений со скобками

В этом случае уравнение будет иметь два корня. Для их вывода воспользуемся квадратным корнем:

Примеры решений квадратных уравнений со скобками

Получили уравнение Примеры решений квадратных уравнений со скобками. Из него полýчится два уравнения: Примеры решений квадратных уравнений со скобкамии Примеры решений квадратных уравнений со скобками. Выразим x в каждом из уравнений:

Примеры решений квадратных уравнений со скобками

Получившиеся два равенства это и есть универсальные формулы для решения квадратного уравнения ax 2 + bx + c = 0. Их называют формулами корней квадратного уравнения .

Чаще всего эти формулы обозначаются как x1 и x2 . То есть для вычисления первого корня используется формула c индексом 1; для вывода второго корня — формула с индексом 2. Обозначим свои формулы так же:

Примеры решений квадратных уравнений со скобками

Очерёдность применения формул не важнá.

Решим например квадратное уравнение x 2 + 2x − 8 = 0 с помощью формул корней квадратного уравнения. Коэффициенты данного квадратного уравнения это числа 1 , 2 и −8 . То есть, a = 1 , b = 2 , c = −8 .

Прежде чем использовать формулы корней квадратного уравнения, нужно найти дискриминант этого уравнения.

Найдём дискриминант квадратного уравнения. Для этого воспользуемся формулой D = b 2 4 ac . Вместо переменных a, b и c у нас будут коэффициенты уравнения x 2 + 2x − 8 = 0

D = b 2 4ac = 2 2 − 4 × 1 × (−8) = 4 + 32 = 36

Дискриминант больше нуля. Значит уравнение имеет два корня. Теперь можно воспользоваться формулами корней квадратного уравнения:

Примеры решений квадратных уравнений со скобками

Значит корнями уравнения x 2 + 2x − 8 = 0 являются числа 2 и −4 . Проверкой убеждаемся, что корни найдены верно:

Примеры решений квадратных уравнений со скобками

Наконец, рассмотрим случай когда дискриминант квадратного уравнения равен нулю. Вернёмся к уравнению Примеры решений квадратных уравнений со скобками. Если дискриминант равен нулю, то правая часть уравнения примет вид:

Примеры решений квадратных уравнений со скобками

И в этом случае квадратное уравнение будет иметь только один корень. Воспользуемся квадратным корнем:

Примеры решений квадратных уравнений со скобками

Далее выражаем x

Примеры решений квадратных уравнений со скобками

Это ещё одна формула для вывода корня квадратного корня. Рассмотрим её применение. Ранее мы решили уравнение x 2 − 6x + 9 = 0 , имеющее один корень 3. Решили мы его методом выделения полного квадрата. Теперь попробуем решить с помощью формул.

Найдём дискриминант квадратного уравнения. В этом уравнении a = 1 , b = −6 , c = 9 . Тогда по формуле дискриминанта имеем:

D = b 2 4ac = (−6) 2 − 4 × 1 × 9 = 36 − 36 = 0

Дискриминант равен нулю (D = 0) . Это означает, что уравнение имеет только один корень, и вычисляется он по формуле Примеры решений квадратных уравнений со скобками

Примеры решений квадратных уравнений со скобками

Значит корнем уравнения x 2 − 6x + 9 = 0 является число 3.

Для квадратного уравнения, имеющего один корень также применимы формулы Примеры решений квадратных уравнений со скобкамии Примеры решений квадратных уравнений со скобками. Но применение каждой из них будет давать один и тот же результат.

Применим эти две формулы для предыдущего уравнения. В обоих случаях получим один и тот же ответ 3

Примеры решений квадратных уравнений со скобками

Если квадратное уравнение имеет только один корень, то желательно применять формулу Примеры решений квадратных уравнений со скобками, а не формулы Примеры решений квадратных уравнений со скобкамии Примеры решений квадратных уравнений со скобками. Это позволяет сэкономить время и место.

Пример 3. Решить уравнение 5x 2 − 6x + 1 = 0

Найдём дискриминант квадратного уравнения:

Примеры решений квадратных уравнений со скобками

Дискриминант больше нуля. Значит уравнение имеет два корня. Воспользуемся формулами корней квадратного уравнения:

Примеры решений квадратных уравнений со скобками

Значит корнями уравнения 5x 2 − 6x + 1 = 0 являются числа 1 и Примеры решений квадратных уравнений со скобками.

Ответ: 1; Примеры решений квадратных уравнений со скобками.

Пример 4. Решить уравнение x 2 + 4x + 4 = 0

Найдём дискриминант квадратного уравнения:

Примеры решений квадратных уравнений со скобками

Дискриминант равен нулю. Значит уравнение имеет только один корень. Он вычисляется по формуле Примеры решений квадратных уравнений со скобками

Примеры решений квадратных уравнений со скобками

Значит корнем уравнения x 2 + 4x + 4 = 0 является число −2 .

Пример 5. Решить уравнение 3x 2 + 2x + 4 = 0

Найдём дискриминант квадратного уравнения:

Примеры решений квадратных уравнений со скобками

Дискриминант меньше нуля. Значит корней у данного уравнения нет.

Ответ: корней нет.

Пример 6. Решить уравнение (x + 4) 2 = 3x + 40

Приведём данное уравнение к нормальному виду. В левой части располагается квадрата суммы двух выражений. Раскрóем его:

Примеры решений квадратных уравнений со скобками

Перенесём все члены из правой части в левую часть, изменив их знаки. В правой части останется ноль:

Примеры решений квадратных уравнений со скобками

Приведём подобные члены в левой части:

Примеры решений квадратных уравнений со скобками

В получившемся уравнении найдём дискриминант:

Примеры решений квадратных уравнений со скобками

Дискриминант больше нуля. Значит уравнение имеет два корня. Воспользуемся формулами корней квадратного уравнения:

Примеры решений квадратных уравнений со скобками

Значит корнями уравнения (x + 4) 2 = 3x + 40 являются числа 3 и −8 .

Ответ: 3 ; −8.

Пример 7. Решить уравнение Примеры решений квадратных уравнений со скобками

Умнóжим обе части данного уравнения на 2 . Это позвóлит нам избавиться от дроби в левой части:

Примеры решений квадратных уравнений со скобками

В получившемся уравнении перенесём 22 из правой части в левую часть, изменив знак. В правой части останется 0

Примеры решений квадратных уравнений со скобками

Приведём подобные члены в левой части:

Примеры решений квадратных уравнений со скобками

В получившемся уравнении найдём дискриминант:

Примеры решений квадратных уравнений со скобками

Дискриминант больше нуля. Значит уравнение имеет два корня. Воспользуемся формулами корней квадратного уравнения:

Примеры решений квадратных уравнений со скобками

Значит корнями уравнения Примеры решений квадратных уравнений со скобкамиявляются числа 23 и −1 .

Ответ: 23; −1.

Пример 8. Решить уравнение Примеры решений квадратных уравнений со скобками

Умнóжим обе части на наименьшее общее кратное знаменателей обеих дробей. Это позвóлит избавиться от дробей в обеих частях. Наименьшее общее кратное чисел 2 и 3 это число 6 . Тогда получим:

Примеры решений квадратных уравнений со скобками

В получившемся уравнении раскроем скобки в обеих частях:

Примеры решений квадратных уравнений со скобками

Теперь перенесём все члены из правой части в левую часть, изменив у них знаки. В правой части останется 0

Примеры решений квадратных уравнений со скобками

Приведём подобные члены в левой части:

Примеры решений квадратных уравнений со скобками

В получившемся уравнении найдём дискриминант:

Примеры решений квадратных уравнений со скобками

Дискриминант больше нуля. Значит уравнение имеет два корня. Воспользуемся формулами корней квадратного уравнения:

Примеры решений квадратных уравнений со скобками

Значит корнями уравнения Примеры решений квадратных уравнений со скобкамиявляются числа Примеры решений квадратных уравнений со скобкамии 2.

Видео:№2 Квадратное уравнение со скобками (х-1)(x-2)=-6х Как избавиться от скобок в уравнении Как решить уСкачать

№2 Квадратное уравнение со скобками (х-1)(x-2)=-6х Как избавиться от скобок в уравнении Как решить у

Примеры решения квадратных уравнений

Пример 1. Решить уравнение x 2 = 81

Это простейшее квадратное уравнение, в котором надо определить число, квадрат которого равен 81. Таковыми являются числа 9 и −9. Воспользуемся квадратным корнем для их вывода:

Примеры решений квадратных уравнений со скобками

Ответ: 9, −9 .

Пример 2. Решить уравнение x 2 − 9 = 0

Это неполное квадратное уравнение. Для его решения нужно перенести член −9 в правую часть, изменив знак. Тогда получим:

Примеры решений квадратных уравнений со скобками

Ответ: 3, −3.

Пример 3. Решить уравнение x 2 − 9x = 0

Это неполное квадратное уравнение. Для его решения сначала нужно вынести x за скобки:

Примеры решений квадратных уравнений со скобками

Левая часть уравнения является произведением. Произведение равно нулю, если хотя один из сомножителей равен нулю.

Левая часть станет равна нулю, если отдельно x равно нулю, или если выражение x − 9 равно нулю. Получится два уравнения, одно из которых уже решено:

Примеры решений квадратных уравнений со скобками

Ответ: 0, 9 .

Пример 4. Решить уравнение x 2 + 4x − 5 = 0

Это полное квадратное уравнение. Его можно решить методом выделения полного квадрата или с помощью формул корней квадратного уравнения.

Решим данное уравнение с помощью формул. Сначала найдём дискриминант:

D = b 2 − 4ac = 4 2 − 4 × 1 × (−5) = 16 + 20 = 36

Дискриминант больше нуля. Значит уравнение имеет два корня. Вычислим их:

Примеры решений квадратных уравнений со скобками

Ответ: 1, −5 .

Пример 5. Решить уравнение Примеры решений квадратных уравнений со скобками

Умнóжим обе части на наименьшее общее кратное чисел 5, 3 и 6. Это позвóлит избавиться от дробей в обеих частях:

Примеры решений квадратных уравнений со скобками

В получившемся уравнении перенесём все члены из правой части в левую часть, изменив знак. В правой части останется ноль:

Примеры решений квадратных уравнений со скобками

Приведём подобные члены:

Примеры решений квадратных уравнений со скобками

Решим получившееся уравнение с помощью формул:

Примеры решений квадратных уравнений со скобками

Ответ: 5 , Примеры решений квадратных уравнений со скобками.

Пример 6. Решить уравнение x 2 = 6

В данном примере как и в первом нужно воспользоваться квадратным корнем:

Примеры решений квадратных уравнений со скобками

Однако, квадратный корень из числа 6 не извлекается. Он извлекается только приближённо. Корень можно извлечь с определённой точностью. Извлечём его с точностью до сотых:

Примеры решений квадратных уравнений со скобками

Но чаще всего корень оставляют в виде радикала:

Примеры решений квадратных уравнений со скобками

Ответ: Примеры решений квадратных уравнений со скобками

Пример 7. Решить уравнение (2x + 3) 2 + (x − 2) 2 = 13

Раскроем скобки в левой части уравнения:

Примеры решений квадратных уравнений со скобками

В получившемся уравнении перенесём 13 из правой части в левую часть, изменив знак. Затем приведём подобные члены:

Примеры решений квадратных уравнений со скобками

Получили неполное квадратное уравнение. Решим его:

Примеры решений квадратных уравнений со скобками

Ответ: 0 , −1,6 .

Пример 8. Решить уравнение (5 + 7x)(4 − 3x) = 0

Данное уравнение можно решить двумя способами. Рассмотрим каждый из них.

Первый способ. Раскрыть скобки и получить нормальный вид квадратного уравнения.

Примеры решений квадратных уравнений со скобками

Приведём подобные члены:

Примеры решений квадратных уравнений со скобками

Перепишем получившееся уравнение так, чтобы член со старшим коэффициентом располагался первым, член со вторым коэффициентом — вторым, а свободный член располагался третьим:

Примеры решений квадратных уравнений со скобками

Чтобы старший член стал положительным, умнóжим обе части уравнения на −1. Тогда все члены уравнения поменяют свои знаки на противоположные:

Примеры решений квадратных уравнений со скобками

Решим получившееся уравнение с помощью формул корней квадратного уравнения:

Примеры решений квадратных уравнений со скобками

Второй способ. Найти значения x , при которых сомножители левой части уравнения равны нулю. Этот способ удобнее и намного короче.

Произведение равно нулю, если хотя бы один из сомножителей равен нулю. В данном случае равенство в уравнении (5 + 7x)(4 − 3x) = 0 будет достигаться, если выражение (5 + 7x) равно нулю, или же выражение (4 − 3x) равно нулю. Наша задача выяснить при каких x это происходит:

Примеры решений квадратных уравнений со скобками

Видео:Уравнения со скобками - 5 класс (примеры)Скачать

Уравнения со скобками - 5 класс (примеры)

Примеры решения задач

Предстáвим, что возникла необходимость построить небольшую комнату, площадь которой 8 м 2 . При этом длина комнаты должна быть в два раза больше её ширины. Как определить длину и ширину такой комнаты?

Сделаем примерный рисунок этой комнаты, который иллюстрирует вид сверху:

Примеры решений квадратных уравнений со скобками

Обозначим ширину комнаты через x . А длину комнаты через 2x , потому что по условию задачи длина должна быть в два раза больше ширины. Множитель 2 и выполнит это требование:

Примеры решений квадратных уравнений со скобками

Поверхность комнаты (её пол) является прямоугольником. Для вычисления площади прямоугольника, нужно длину данного прямоугольника умножить на его ширину. Сделаем это:

По условию задачи площадь должна быть 8 м 2 . Значит выражение 2x × x следует приравнять к 8

Получилось уравнение. Если решить его, то можно найти длину и ширину комнаты.

Первое что можно сделать это выполнить умножение в левой части уравнения:

В результате этого преобразования переменная x перешла во вторую степень. А мы говорили, что если переменная, входящая в уравнение, возведенá во вторую степень (в квадрат), то такое уравнение является уравнением второй степени или квадратным уравнением.

Для решения нашего квадратного уравнения воспользуемся изученными ранее тождественными преобразованиями. В данном случае можно разделить обе части на 2

Примеры решений квадратных уравнений со скобками

Теперь воспользуемся квадратным корнем. Если x 2 = 4 , то Примеры решений квадратных уравнений со скобками. Отсюда x = 2 и x = −2 .

Через x была обозначена ширина комнаты. Ширина не должна быть отрицательной, поэтому в расчёт берём только значение 2 . Такое часто бывает при решении задачи, в которых применяется квадратное уравнение. В ответе получаются два корня, но условию задачи удовлетворяет только один из них.

А длина была обозначена через 2x . Значение x теперь известно, подставим его в выражение 2x и вычислим длину:

Значит длина равна 4 м , а ширина 2 м . Это решение удовлетворяет условию задачи, поскольку площадь комнаты равна 8 м 2

Ответ: длина комнаты составляет 4 м , а ширина 2 м .

Пример 2. Огородный участок, имеющий форму прямоугольника, одна сторона которого на 10 м больше другой, требуется обнести изгородью. Определить длину изгороди, если известно, что площадь участка равна 1200 м 2

Решение

Длина прямоугольника, как правило, больше его ширины. Пусть ширина участка x метров, а длина (x + 10) метров. Площадь участка составляет 1200 м 2 . Умножим длину участка на его ширину и приравняем к 1200 , получим уравнение:

Решим данное уравнение. Для начала раскроем скобки в левой части:

Примеры решений квадратных уравнений со скобками

Перенесём 1200 из правой части в левую часть, изменив знак. В правой части останется 0

Примеры решений квадратных уравнений со скобками

Решим получившееся уравнение с помощью формул:

Примеры решений квадратных уравнений со скобками

Несмотря на то, что квадратное уравнение имеет два корня, в расчёт берём только значение 30 . Потому что ширина не может выражаться отрицательным числом.

Итак, через x была обозначена ширина участка. Она равна тридцати метрам. А длина была обозначена через выражение x + 10 . Подставим в него найденное значение x и вычислим длину:

x + 10 = 30 + 10 = 40 м

Значит длина участка составляет сорок метров, а ширина тридцать метров. Эти значения удовлетворяют условию задачи, поскольку если перемножить длину и ширину (числа 40 и 30 ) получится 1200 м 2

40 × 30 = 1200 м 2

Теперь ответим на вопрос задачи. Какова длина изгороди? Чтобы её вычислить нужно найти периметр участка.

Периметр прямоугольника это сумма всех его сторон. Тогда:

P = 2(a + b) = 2 × (40 + 30) = 2 × 70 = 140 м.

Ответ: длина изгороди огородного участка составляет 140 м.

Видео:Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

Как решать квадратные уравнения

Примеры решений квадратных уравнений со скобками

О чем эта статья:

Видео:Неполные квадратные уравнения. Алгебра, 8 классСкачать

Неполные квадратные уравнения. Алгебра, 8 класс

Понятие квадратного уравнения

Уравнение — это равенство, содержащее переменную, значение которой нужно найти.

Например, х + 8 = 12 — это уравнение, которое содержит переменную х.

Корень уравнения — это такое значение переменной, которое при подстановке в уравнение обращает его в верное числовое равенство.

Например, если х = 5, то при подстановке в уравнение мы получим 5 + 8 = 12. 13 = 12 — противоречие. Значит, х = 5 не является корнем уравнения.

А вот если х = 4, то при подстановке в уравнение мы получим 4 + 8 = 12. 12 = 12 — верное равенство. Значит, х = 4 является корнем уравнения.

Решить уравнение — значит найти все его корни или доказать, что их не существует.

Квадратное уравнение — это уравнение вида ax 2 + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Чтобы запомнить месторасположение коэффициентов, давайте потренируемся определять их.

Квадратные уравнения могут иметь два корня, один корень или не иметь корней.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b 2 − 4ac. А вот свойства дискриминанта:

  • если D 0, есть два различных корня.

С этим разобрались. А сейчас посмотрим подробнее на различные виды квадратных уравнений.

Разобраться в теме еще быстрее с помощью опытного преподавателя можно на курсах по математике в онлайн-школе Skysmart.

Видео:Производная: секретные методы решения. Готовимся к ЕГЭ | Математика TutorOnlineСкачать

Производная: секретные методы решения. Готовимся к ЕГЭ | Математика TutorOnline

Приведенные и неприведенные квадратные уравнения

Квадратное уравнение может быть приведенным или неприведенным — все зависит от от значения первого коэффициента.

Приведенное квадратное уравнение — это уравнение, где старший коэффициент, тот который стоит при одночлене высшей степени, равен единице.

Неприведенным называют квадратное уравнение, где старший коэффициент отличается от единицы.

Давайте-ка на примерах — вот у нас есть два уравнения:

  • x 2 — 2x + 6 = 0
  • x 2 — x — 1/4 = 0

В каждом из них старший коэффициент равен единице (которую мы мысленно представляем при x 2 ), а значит уравнение называется приведенным.

  • 2x 2 − 4x — 12 = 0 — первый коэффициент отличен от единицы (2), значит это неприведенное квадратное уравнение.

Каждое неприведенное квадратное уравнение можно преобразовать в приведенное, если произвести равносильное преобразование — разделить обе его части на первый коэффициент.

Пример 1. Превратим неприведенное уравнение: 8x 2 + 20x — 9 = 0 — в приведенное.

Для этого разделим обе части исходного уравнения на старший коэффициент 8:

Примеры решений квадратных уравнений со скобками

Ответ: равносильное данному приведенное уравнение x 2 + 2,5x — 1,125 = 0.

Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.

Полные и неполные квадратные уравнения

В определении квадратного уравнения есть условие: a ≠ 0. Оно нужно, чтобы уравнение ax 2 + bx + c = 0 было именно квадратным. Если a = 0, то уравнение обретет вид линейного: bx + c = 0.

Что касается коэффициентов b и c, то они могут быть равны нулю, как по отдельности, так и вместе. В таком случае квадратное уравнение принято называть неполным.

Неполное квадратное уравнение —— это квадратное уравнение вида ax 2 + bx + c = 0, где оба или хотя бы один из коэффициентов b и c равен нулю.

Полное квадратное уравнение — это уравнение, у которого все коэффициенты отличны от нуля.

Для самых любопытных объясняем откуда появились такие названия:
  • Если b = 0, то квадратное уравнение принимает вид ax 2 + 0x+c=0 и оно равносильно ax 2 + c = 0.
  • Если c = 0, то квадратное уравнение выглядит так ax 2 + bx + 0 = 0, иначе его можно написать как ax 2 + bx = 0.
  • Если b = 0 и c = 0, то квадратное уравнение выглядит так ax 2 = 0.

Такие уравнения отличны от полного квадратного тем, что их левые части не содержат либо слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

Видео:Сложные уравнения. Как решить сложное уравнение?Скачать

Сложные уравнения. Как решить сложное уравнение?

Решение неполных квадратных уравнений

Как мы уже знаем, есть три вида неполных квадратных уравнений:

  • ax 2 = 0, ему отвечают коэффициенты b = 0 и c = 0;
  • ax 2 + c = 0, при b = 0;
  • ax 2 + bx = 0, при c = 0.

Давайте рассмотрим по шагам, как решать неполные квадратные уравнения по видам.

Как решить уравнение ax 2 = 0

Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax 2 = 0.

Уравнение ax 2 = 0 равносильно x 2 = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x 2 = 0 является нуль, так как 0 2 = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

Таким образом, неполное квадратное уравнение ax 2 = 0 имеет единственный корень x = 0.

Пример 1. Решить −6x 2 = 0.

  1. Замечаем, что данному уравнению равносильно x 2 = 0, значит исходное уравнение имеет единственный корень — нуль.
  2. По шагам решение выглядит так:

Как решить уравнение ax 2 + с = 0

Обратим внимание на неполные квадратные уравнения вида ax 2 + c = 0, в которых b = 0, c ≠ 0. Мы давно знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. Ну есть одно и то же, только с другими цифрами.

Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax 2 + c = 0:

  • перенесем c в правую часть: ax 2 = — c,
  • разделим обе части на a: x 2 = — c/а.

Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.

Если — c/а 2 = — c/а не имеет корней. Все потому, что квадрат любого числа всегда равен неотрицательному числу. Из этого следует, что при — c/а 0, то корни уравнения x 2 = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а) 2 = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а) 2 = — c/а. Ура, больше у этого уравнения нет корней.

Неполное квадратное уравнение ax 2 + c = 0 равносильно уравнению х 2 = -c/a, которое:

  • не имеет корней при — c/а 0.
В двух словах

Пример 1. Найти решение уравнения 8x 2 + 5 = 0.

    Перенесем свободный член в правую часть:

Разделим обе части на 8:

  • В правой части осталось число со знаком минус, значит у данного уравнения нет корней.
  • Ответ: уравнение 8x 2 + 5 = 0 не имеет корней.

    Как решить уравнение ax 2 + bx = 0

    Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

    Неполное квадратное уравнение ax 2 + bx = 0 можно решить методом разложения на множители. Как разложить квадратное уравнение:

    Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.

    Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

    Таким образом, неполное квадратное уравнение ax 2 + bx = 0 имеет два корня:

    Пример 1. Решить уравнение 0,5x 2 + 0,125x = 0

  • Это уравнение равносильно х = 0 и 0,5x + 0,125 = 0.
  • Решить линейное уравнение:

    0,5x = 0,125,
    х = 0,125/0,5

  • Значит корни исходного уравнения — 0 и 0,25.
  • Ответ: х = 0 и х = 0,25.

    Как разложить квадратное уравнение

    С помощью теоремы Виета можно получить формулу разложения квадратного трехчлена на множители. Выглядит она так:

    Формула разложения квадратного трехчлена

    Если x1 и x2 — корни квадратного трехчлена ax 2 + bx + c, то справедливо равенство ax 2 + bx + c = a (x − x1) (x − x2).

    Видео:Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать

    Как решать уравнения с модулем или Математический торт с кремом (часть 1) | Математика

    Дискриминант: формула корней квадратного уравнения

    Чтобы найти результат квадратного уравнения, придумали формулу корней. Выглядит она так:

    Примеры решений квадратных уравнений со скобками

    где D = b 2 − 4ac — дискриминант квадратного уравнения.

    Эта запись означает:

    Чтобы легко применять эту формулу, нужно понять, как она получилась. Давайте разбираться.

    Алгоритм решения квадратных уравнений по формулам корней

    Теперь мы знаем, что при решении квадратных уравнения можно использовать универсальную формулу корней — это помогает находить комплексные корни.

    В 8 классе на алгебре можно встретить задачу по поиску действительных корней квадратного уравнения. Для этого важно перед использованием формул найти дискриминант и убедиться, что он неотрицательный, и только после этого вычислять значения корней. Если дискриминант отрицательный, значит уравнение не имеет действительных корней.

    Алгоритм решения квадратного уравнения ax 2 + bx + c = 0:

    • вычислить его значение дискриминанта по формуле D = b 2 −4ac;
    • если дискриминант отрицательный, зафиксировать, что действительных корней нет;
    • если дискриминант равен нулю, вычислить единственный корень уравнения по формуле х = −b/2a;
    • если дискриминант положительный, найти два действительных корня квадратного уравнения по формуле корней Примеры решений квадратных уравнений со скобками

    Чтобы запомнить алгоритм решения квадратных уравнений и с легкостью его использовать, давайте тренироваться!

    Примеры решения квадратных уравнений

    Как решать квадратные уравнения мы уже знаем, осталось закрепить знания на практике.

    Пример 1. Решить уравнение −4x 2 + 28x — 49 = 0.

    1. Найдем дискриминант: D = 28 2 — 4(-4)(-49) = 784 — 784 = 0
    2. Так как дискриминант равен нулю, значит это квадратное уравнение имеет единственный корень
    3. Найдем корень

    Ответ: единственный корень 3,5.

    Пример 2. Решить уравнение 54 — 6x 2 = 0.

      Произведем равносильные преобразования. Умножим обе части на −1

    Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 3 и — 3.

    Пример 3. Решить уравнение x 2 — х = 0.

      Преобразуем уравнение так, чтобы появились множители

    Ответ: два корня 0 и 1.

    Пример 4. Решить уравнение x 2 — 10 = 39.

      Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 7 и −7.

    Пример 5. Решить уравнение 3x 2 — 4x+94 = 0.

      Найдем дискриминант по формуле

    D = (-4) 2 — 4 * 3 * 94 = 16 — 1128 = −1112

  • Дискриминант отрицательный, поэтому корней нет.
  • Ответ: корней нет.

    В школьной программе за 8 класс нет обязательного требования искать комплексные корни, но такой подход может ускорить ход решения. Если дискриминант отрицательный — сразу пишем ответ, что действительных корней нет и не мучаемся.

    Видео:Старая вступительная задача в ОксфордСкачать

    Старая вступительная задача в Оксфорд

    Формула корней для четных вторых коэффициентов

    Рассмотрим частный случай. Формула решения корней квадратного уравнения Примеры решений квадратных уравнений со скобками, где D = b 2 — 4ac, помогает получить еще одну формулу, более компактную, при помощи которой можно решать квадратные уравнения с четным коэффициентом при x. Рассмотрим, как появилась эта формула.

    Например, нам нужно решить квадратное уравнение ax 2 + 2nx + c = 0. Сначала найдем его корни по известной нам формуле. Вычислим дискриминант D = (2n) 2 — 4ac = 4n 2 — 4ac = 4(n 2 — ac) и подставим в формулу корней:

    2 + 2nx + c = 0″ height=»705″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc11a460e2f8354381151.png» width=»588″>

    Для удобства вычислений обозначим выражение n 2 -ac как D1. Тогда формула корней квадратного уравнения со вторым коэффициентом 2·n примет вид:

    Примеры решений квадратных уравнений со скобками

    где D1 = n 2 — ac.

    Самые внимательные уже заметили, что D = 4D1, или D1= D/4. Проще говоря, D1 — это четверть дискриминанта. И получается, что знак D1 является индикатором наличия или отсутствия корней квадратного уравнения.

    Сформулируем правило. Чтобы найти решение квадратного уравнения со вторым коэффициентом 2n, нужно:

    • вычислить D1= n 2 — ac;
    • если D1 0, значит можно найти два действительных корня по формуле

    Примеры решений квадратных уравнений со скобками

    Видео:Раскрытие скобок. 6 класс.Скачать

    Раскрытие скобок. 6 класс.

    Формула Виета

    Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:

    Сумма корней x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

    Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:

    Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

    Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.

    Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:

    Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:
    Примеры решений квадратных уравнений со скобками

    Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:
    2 + 4x + 3 = 0″ height=»215″ src=»https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE» width=»393″>

    Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG» width=»125″>

    Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo» width=»112″>

    Результат проделанных вычислений в том, что мы убедились в справедливости выражения:

    Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Вот она:

    Обратная теорема Виета

    Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа и есть корни x 2 + bx + c = 0.

    Обычно вся суть обратных теорем в том самом выводе, которое дает первая теорема. Так, при доказательстве теоремы Виета стало понятно, что сумма x1 и x2 равна −b, а их произведение равно c. В обратной теореме это и есть утверждение.

    Пример 1. Решить при помощи теоремы Виета: x 2 − 6x + 8 = 0.

      Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.

    2 − 6x + 8 = 0″ height=»59″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc101ce2e346034751939.png» width=»117″>

    Когда у нас есть эти два равенства, можно подобрать подходящие корни, которые будут удовлетворять обоим равенствам системы.

    Чтобы проще подобрать корни, нужно их перемножить. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

    Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x1 + x2 = 6. А значения 4 и 2 подходят обоим равенствам:

    Примеры решений квадратных уравнений со скобками

    Значит числа 4 и 2 — корни уравнения x 2 − 6x + 8 = 0. p>Примеры решений квадратных уравнений со скобками

    Упрощаем вид квадратных уравнений

    Если мы ходили в школу всегда одной тропинкой, а потом вдруг обнаружили путь короче — это значит теперь у нас есть выбор: упростить себе задачу и сократить время на дорогу или прогуляться по привычному маршруту.

    Так же и при вычислении корней квадратного уравнения. Ведь проще посчитать уравнение 11x 2 — 4 x — 6 = 0, чем 1100x 2 — 400x — 600 = 0.

    Часто упрощение вида квадратного уравнения можно получить через умножение или деление обеих частей на некоторое число. Например, в предыдущем абзаце мы упростили уравнение 1100x 2 — 400x — 600 = 0, просто разделив обе части на 100.

    Такое преобразование возможно, когда коэффициенты не являются взаимно простыми числами. Тогда принято делить обе части уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

    Покажем, как это работает на примере 12x 2 — 42x + 48 = 0. Найдем наибольший общий делитель абсолютных величин его коэффициентов: НОД (12, 42, 48) = 6. Разделим обе части исходного квадратного уравнения на 6, и придем к равносильному уравнению 2x 2 — 7x + 8 = 0. Вот так просто.

    А умножение обеих частей квадратного уравнения отлично помогает избавиться от дробных коэффициентов. Умножать в данном случае лучше на наименьшее общее кратное знаменателей его коэффициентов. Например, если обе части квадратного уравнения

    Примеры решений квадратных уравнений со скобками

    умножить на НОК (6, 3, 1) = 6, то оно примет более простой вид x 2 + 4x — 18 = 0.

    Также для удобства вычислений можно избавиться от минуса при старшем коэффициенте квадратного уравнения — для этого умножим или разделим обе части на −1. Например, удобно от квадратного уравнения −2x 2 — 3x + 7 = 0 перейти к решению 2x 2 + 3x — 7 = 0.

    Связь между корнями и коэффициентами

    Мы уже запомнили, что формула корней квадратного уравнения выражает корни уравнения через его коэффициенты:

    Примеры решений квадратных уравнений со скобками

    Из этой формулы, можно получить другие зависимости между корнями и коэффициентами.

    Например, можно применить формулы из теоремы Виета:

    Для приведенного квадратного уравнения сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней — свободному члену. Например, по виду уравнения 3x 2 — 7x + 22 = 0 можно сразу сказать, что сумма его корней равна 7/3, а произведение корней равно 22/3.

    Можно активно использовать уже записанные формулы и с их помощью получить ряд других связей между корнями и коэффициентами квадратного уравнения. Таким образом можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты:

    Видео:Задание 20 ОГЭ математика 2024 2 часть. Кубические уравненияСкачать

    Задание 20 ОГЭ математика 2024 2 часть. Кубические уравнения

    Квадратные уравнения (8 класс)

    Уравнение называют квадратным, если его можно записать в виде (ax^2+bx+c=0), где (x) неизвестная, (a), (b) и (с) коэффициенты (то есть, некоторые числа, причем (a≠0)).

    В первом примере (a=3), (b=-26), (c=5). В двух других (a),(b) и (c) не выражены явно. Но если эти уравнения преобразовать к виду (ax^2+bx+c=0), они обязательно появятся.

    Коэффициент (a) называют первым или старшим коэффициентом, (b) – вторым коэффициентом, (c) – свободным членом уравнения.

    Видео:Решение задач с помощью квадратных уравнений. Алгебра, 8 классСкачать

    Решение задач с помощью квадратных уравнений. Алгебра, 8 класс

    Виды квадратных уравнений

    Если в квадратном уравнении присутствуют все три его члена, его называют полным. В ином случае уравнение называется неполным.

    Видео:Как решить квадратное уравнение за 30 секунд#математика #алгебра #уравнение #дискриминант #репетиторСкачать

    Как решить квадратное уравнение за 30 секунд#математика #алгебра #уравнение #дискриминант #репетитор

    Как решать квадратные уравнения

    В данной статье мы рассмотрим вопрос решения полных квадратных уравнений. Про решение неполных — смотрите здесь .

    Итак, стандартный алгоритм решения полного квадратного уравнения:

      Преобразовать уравнение к виду (ax^2+bx+c=0).

      Выписать значения коэффициентов (a), (b) и (c).
      Пока не отработали решение квадратных уравнений до автоматизма, не пропускайте этот этап! Особенно обратите внимание, что знак перед членом берется в коэффициент. То есть, для уравнения (2x^2-3x+5=0), коэффициент (b=-3), а не (3).

      Вычислить значение дискриминанта по формуле (D=b^2-4ac).

      Решите квадратное уравнение (2x(1+x)=3(x+5))
      Решение:

      Теперь переносим все слагаемые влево, меняя знак.

      Уравнение приняло нужный нам вид. Выпишем коэффициенты.

      Найдем дискриминант по формуле (D=b^2-4ac).

      Найдем корни уравнения по формулам (x_1=frac<-b + sqrt>) и (x_2=frac<-b — sqrt>).

      Решите квадратное уравнение (x^2+9=6x)
      Решение:

      Тождественными преобразованиями приведем уравнение к виду (ax^2+bx+c=0).

      Найдем дискриминант по формуле (D=b^2-4ac).

      Найдем корни уравнения по формулам (x_1=frac<-b + sqrt>) и (x_1=frac<-b — sqrt>).

      В обоих корнях получилось одинаковое значение. Нет смысла писать его в ответ два раза.

      Решите квадратное уравнение (3x^2+x+2=0)
      Решение:

      Уравнение сразу дано в виде (ax^2+bx+c=0), преобразования не нужны. Выписываем коэффициенты.

      Найдем дискриминант по формуле (D=b^2-4ac).

      Найдем корни уравнения по формулам (x_1=frac<-b + sqrt>) и (x_1=frac<-b — sqrt>).

      Оба корня невычислимы, так как арифметический квадратный корень из отрицательного числа не извлекается.

      Обратите внимание, в первом уравнении у нас два корня, во втором – один, а в третьем – вообще нет корней. Это связано со знаком дискриминанта (подробнее смотри тут ).

      Также многие квадратные уравнения могут быть решены с помощью обратной теоремы Виета . Это быстрее, но требует определенного навыка.

      Пример. Решить уравнение (x^2-7x+6=0).
      Решение: Согласно обратной теореме Виета, корнями уравнения будут такие числа, которые в произведении дадут (6), а в сумме (7). Простым подбором получаем, что эти числа: (1) и (6). Это и есть наши корни (можете проверить решением через дискриминант).
      Ответ: (x_1=1), (x_2=6).

      Данную теорему удобно использовать с приведенными квадратными уравнениями, имеющими целые коэффициенты (b) и (c).

      🎦 Видео

      Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполныеСкачать

      Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполные

      Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

      Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

      Сложные уравнения со скобками. Как решать уравнения в несколько действий в 5 классе.Скачать

      Сложные уравнения со скобками. Как решать уравнения в несколько действий в 5 классе.

      Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

      Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?

      Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать

      Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | Математика
      Поделиться или сохранить к себе: