Пример №1 . Привести уравнение второго порядка к каноническому виду с помощью поворота и параллельного переноса осей координат. Построить кривую.
Пример №2 . Выполнив последовательно преобразования координат: поворот, а затем параллельный перенос координатных осей, преобразовать к каноническому виду уравнение кривой второго порядка и построить ее в исходной системе координат, а также найти параметры кривой.
Видео:Семинар №9 "Приведение уравнения второго порядка к каноническому виду"Скачать

Алгоритм перехода кривой второго порядка к каноническому виду
Пример №1 . 4y=-6-sqrt(4x-x 2 )
sqrt(4x-x 2 ) = -(4y+6)
Возведем в квадрат
4x-x 2 = (4y+6) 2
Раскрывая скобки, получаем:
16y 2 +48y + 36 +x 2 -4x = 0
Далее решается калькулятором. Если самостоятельно решать, то получим:
4x-x 2 = (4y+6) 2
-(x 2 — 4x) = 2(y+3/2) 2
-(x 2 — 4x + 4) = (y+3/2) 2
-(x — 2) 2 = (y+3/2) 2
(y+3/2) 2 + (x — 2) 2 = 0
Пример №2 . x=1-2/3 sqrt(y 2 -4y-5)
Здесь надо сначала привести к нормальному виду.
3/2(x-1)=sqrt(y 2 -4y-5)
Возводим в квадрат
9/4(x-1) 2 =y 2 -4y-5
9/4x 2 -9/4*2x+9/4-y 2 +4y+5=0
9/4x 2 -9/2x-y 2 +4y+29/4=0
Далее можно решать как с калькулятором, так и без него:
9/4(x-1) 2 =y 2 -4y-5
9/4(x-1) 2 =y 2 -4y+4-4-5
9/4(x-1) 2 =(y 2 -2)-9
9/4(x-1) 2 -(y 2 -2) = -9
-1/4(x-1) 2 +1/9(y 2 -2) = 1
Видео:Видеоурок "Приведение к каноническому виду"Скачать

Приведение уравнений линий и поверхностей второго порядка к каноническому виду
Страницы работы
Содержание работы
§. 5. Приведение уравнений линий и поверхностей
второго порядка к каноническому виду
Известно, что для любой квадратичной формы на конечном действительном евклидовом пространстве в этом пространстве существует ортонормированный базис, в котором рассматриваемая квадратичная форма имеет канонический вид. Используя этот факт, любую линию или поверхность второго порядка можно привести к каноническому виду по следующему плану.
1. Для квадратичной части уравнения (т. е. квадратичной формы) находим канонический вид и ортогональное преобразование переменных, приводящее квадратичную форму к этому каноническому виду.
2. Подставляем выражение старых переменных через новые в исходное уравнение. При этом квадратичная часть переходит в известный нам канонический вид, в котором коэффициенты при квадратах совпадают с собственными значениями ее матрицы, свободный член не меняется, линейная часть преобразуется непосредственно.
3. Получили уравнение, не содержащее произведений переменных. С помощью преобразования параллельного переноса избавляемся от лишних слагаемых первых степеней и тем самым окончательно приводим уравнение к каноническому виду.
Если линия или поверхность второго порядка имеет центр симметрии, то решение задачи можно существенно упростить, поменяв местами 1-й и третий пункты, а второй тогда совсем исчезает.
Для того чтобы точка 


Если с помощью параллельного переноса поместить начало координат в центр симметрии поверхности второго порядка, то при этом: квадратичная часть ее уравнения не изменится; слагаемые первой степени пропадут; свободный член нового уравнения можно найти по формуле

Аналогичные утверждения справедливы и для линий второго порядка (подробно обоснование см., например, в []).
Пример 1. Определить вид линии второго порядка, приведя ее уравнение к каноническому виду, и нарисовать эту линию, если ее уравнение имеет вид

►В первую очередь проверим, имеет ли эта линия центр симметрии. Составляем систему линейных уравнений (5.3)
из которой находим: 




Теперь приведем к каноническому виду квадратичную часть уравнения 














Приступаем к рисованию. На одном рисунке изображаем и старую систему координат, и новую. Намечаем новое начало координат – точку 


Замечания. 1. При таком способе решения нет необходимости выписывать ни преобразование параллельного переноса, ни ортогональное преобразование, т. к. мы и без непосредственной подстановки их в уравнение знаем, как оно преобразуется. Нет необходимости даже собственные векторы нормировать: ортогональное преобразование не нужно, а векторы с целочисленными координатами легче рисовать. Именно поэтому задачу приведения линии второго порядка к каноническому виду в том случае, когда эта линия имеет центр симметрии, сложной не назовешь.
Видео:§31.1 Приведение уравнения кривой к каноническому видуСкачать

Приведение к каноническому виду линейных уравнений с частными производными второго порядка
Федеральное агентство по образованию
ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
Институт математики, экономики и информатики
Кафедра дифференциальных и интегральных уравнений
ПРИВЕДЕНИЕ К КАНОНИЧЕСКОМУ ВИДУ ЛИНЕЙНЫХ УРАВНЕНИЙ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ ВТОРОГО ПОРЯДКА
Приведение к каноническому виду линейных уравнений с частными производными 2-го порядка с двумя независимыми переменными …………………………………………………………………………
1.1. Необходимый теоретический материал………………………..
1.2. Пример выполнения задачи1 (приведение к
каноническому виду уравнений гиперболического типа) .
1.3. Пример выполнения задачи 2 (приведение к
каноническому виду уравнений параболического типа)
1.4. Пример выполнения задачи 3 (приведение к
каноническому виду уравнений эллиптического типа) ..
1.5. Задачи для самостоятельного решения ………………….….
Упрощение группы младших производных
для уравнений второго порядка с постоянными коэффициентами
2.1. Необходимый теоретический материал …………………..
2.2. Пример выполнения задачи 4
2.3. Задачи для самостоятельного решения ……………………..
В настоящих методических указаниях изложен теоретический материал и на конкретных примерах разобрано приведение к каноническому виду линейных уравнений с частными производными второго порядка с двумя независимыми переменными для уравнений гиперболического, эллиптического и параболического типов.
Методические указания предназначены для студентов математических специальностей очной и заочной формы обучения.
§1. Приведение к каноническому виду линейных уравнений с частными производными 2-го порядка с двумя независимыми переменными.
Задача. Определить тип уравнения

и привести его к каноническому виду.
1.1. Необходимый теоретический материал.
I. Тип уравнения (1) определяется знаком выражения 
· если 
· если 
· если 
Уравнение (1) будет являться уравнением гиперболического, эллиптического, параболического типа в области D, если оно гиперболично, эллиптично, параболично в каждой точке этой области.
Уравнение (1) может менять свой тип при переходе из одной точки (области) в другую. Например, уравнение 



II. Чтобы привести уравнение к канонического виду, необходимо:
1. Определить коэффициенты 
2. Вычислить выражение 
3. Сделать вывод о типе уравнения (1) (в зависимости от знака выражения 
4. Записать уравнение характеристик:

5. Решить уравнение (2). Для этого:
а) разрешить уравнение (2) как квадратное уравнение относительно dy:

б) найти общие интегралы уравнений (3) (характеристики уравнения (1)):
· 
в случае уравнения гиперболического типа;
· 
в случае уравнения параболического типа;
· 
в случае уравнения эллиптического типа.
6. Ввести новые (характеристические) переменные 

· в случае уравнения гиперболического типа в качестве 

· в случае уравнения параболического типа в качестве 





· в случае уравнения эллиптического типа в качестве 

7. Пересчитать все производные, входящие в уравнение (1), используя правило дифференцирования сложной функции:





8. Подставить найденные производные в исходное уравнение (1) и привести подобные слагаемые. В результате уравнение (1) примет один из следующих видов:
· в случае уравнения гиперболического типа:

· в случае уравнения параболического типа:

· в случае уравнения эллиптического типа:

1.2. Пример выполнения задачи 1.
Определить тип уравнения
и привести его к каноническому виду.
1. Определим коэффициенты 
2. Вычислим выражение 

3. 
4. Запишем уравнение характеристик:

5. Решим уравнение (9). Для этого:
а) разрешаем уравнение (9) как квадратное уравнение относительно dy: 



б) найдём общие интегралы уравнений (10) (характеристики уравнения (9)):
6. Введём характеристические переменные:
7. Пересчитаем производные, входящие в исходное уравнение.
Используя формулы (7), получим:
Здесь слева написаны коэффициенты уравнения (8) при соответствующих производных.
8. Собирая подобные слагаемые, получим:
Или после деления на -100 (коэффициент при 
Ответ. Уравнение (8) является уравнением гиперболического типа на всей плоскости XOY. Канонический вид
где
1.3. Пример выполнения задачи 2.
Определить тип уравнения
и привести его к каноническому виду.
1. Определим коэффициенты 
2. Вычислим выражение 

3. 
4. Запишем уравнение характеристик:

5. Решим уравнение (12). Для этого:
а) разрешаем уравнение (9) как квадратное уравнение относительно dy. Однако в этом случае левая часть уравнения является полным квадратом:


б) имеем только одно уравнение характеристик (13). Найдём его общий интеграл (уравнения параболического типа имеют только одно семейство вещественных характеристик):
6. Введём характеристические переменные: одну из переменных 
а в качестве 


7. Пересчитаем производные, входящие в исходное уравнение.
Используя формулы (7), получим:
Здесь слева написаны коэффициенты уравнения (11) при соответствующих производных.
8. Собирая подобные слагаемые, получим:
Функцию, стоящую в правой части уравнения (11) необходимо также выразить через характеристические переменные.
После деления на 25 (коэффициент при 
Ответ. Уравнение (11) является уравнением параболического типа на всей плоскости XOY. Канонический вид
где
1.4. Пример выполнения задачи 3.
Определить тип уравнения

и привести его к каноническому виду.
1. Определим коэффициенты 
2. Вычислим выражение 

3. 
4. Запишем уравнение характеристик:

5. Решим уравнение (15). Для этого:
а) разрешаем уравнение (15) как квадратное уравнение относительно dy: 
б) уравнения (16) – это пара комплексно-сопряженных уравнений. Они имеют пару комплексно-сопряженных общих интегралов. (Уравнения эллиптического типа не имеют вещественных характеристик)

6. Введём характеристические переменные как вещественную и мнимую части одного из общих интегралов (17):
7. Пересчитаем производные, входящие в исходное уравнение.
Используя формулы (7), получим:
Здесь слева написаны коэффициенты уравнения (14) при соответствующих производных.
8. Собирая подобные слагаемые, получим:
Или после деления на 4 (коэффициент при 

Ответ. Уравнение (14) является уравнением эллиптического типа на всей плоскости XOY. Канонический вид
где
1.5. Задачи для самостоятельного решения.
Определить тип уравнения и привести его к каноническому виду.










Определить тип уравнения и привести его к каноническому виду.
Определить тип уравнения и привести его к каноническому виду.
§2. Упрощение группы младших производных
для уравнений второго порядка с постоянными коэффициентами
2. 1. Необходимый теоретический материал
В самом общем виде линейное уравнение с частными производными второго порядка с двумя независимыми переменными имеет вид

Преобразованием независимых переменных группа старших производных уравнения может быть упрощена. Уравнение (1) приводится к одному из следующих видов
· в случае уравнения гиперболического типа:

· в случае уравнения параболического типа:

· в случае уравнения эллиптического типа:

Если коэффициенты исходного уравнения постоянны, то для дальнейшего упрощения уравнения любого типа нужно сделать замену неизвестной функции

где 





Чтобы реализовать замену (14) в уравнениях (11), (12), (13), необходимо пересчитать все производные, входящие в эти уравнения по формулам

Подробно рассмотрим этот процесс на примере уравнения гиперболического типа, т. е. уравнения (11). Пересчитаем производные, входящие в это уравнение, используя формулы (15).
Здесь слева расставлены соответствующие коэффициенты уравнения (11). Собирая подобные слагаемые, получим

В уравнении (16) приравняем к нулю коэффициенты при 
Откуда 


где 
2.2. Пример выполнения задачи 4
к каноническому виду и упростить группу младших производных.
9. Определим коэффициенты 
10. Вычислим выражение 

11. 
12. Запишем уравнение характеристик:

5. Решим уравнение (18). Для этого:
а) разрешаем уравнение (18) как квадратное уравнение относительно dy: 

б) найдём общие интегралы уравнений (19) (характеристики уравнения (17)):
6. Введём характеристические переменные:
13. Пересчитаем производные, входящие в исходное уравнение.
Используя формулы (7), получим:
Здесь слева написаны коэффициенты уравнения (17) при соответствующих производных.
14. Собирая подобные слагаемые, получим:

Теперь с помощью замены неизвестной функции (14)
упростим группу младших производных.
Пересчитаем производные, входящие в уравнение (20), используя формулы (15).
Здесь слева расставлены соответствующие коэффициенты уравнения (20). Собирая подобные слагаемые, получим

В уравнении (21) приравняем к нулю коэффициенты при 
Откуда 


Ответ. Уравнение (20) является уравнением эллиптического типа на всей плоскости XOY. Его канонический вид

где 
2.3. Задачи для самостоятельного решения
Задача 4. Привести уравнения к каноническому виду и упростить группу младших производных.










💥 Видео
Приведение кривой второго порядка к каноническому виду. ПримерСкачать

Кривые второго порядка. Эллипс. Приведение к каноническому виду и чертежСкачать

Поворот и параллельный перенос координатных осей. ЭллипсСкачать

53. Приведение общего уравнения кривой к каноническому видуСкачать

Семинар 6. Приведение уравнения кривой II порядка к каноническому видуСкачать

Кривые второго порядка. Парабола. Приведение к каноническому виду и чертежСкачать

Привести квадратичную форму к каноническому видуСкачать

Приводим уравнение кривой 2 порядка к каноническому видуСкачать

Приведение поверхности второго порядка к каноническому виду ортогональным преобразованием.Скачать

2. Приведение уравнений второго порядка к каноническому видуСкачать

Метод Лагранжа. Приведение квадратичной формы к каноническому и нормальному видамСкачать

Приведение ДУ 2 порядка в частных производных к каноническому видуСкачать

УМФ, 20.10.2021, приведение уравнений к каноническому видуСкачать

Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

§23 Приведение матрицы к каноническому видуСкачать

Приведение линейного уравнения в частных производных c постоянными коэфф--ми к каноническому виду.Скачать

Линейная алгебра. Алексей Савватеев и Александр Тонис. Лекция 11.2. Приведение к каноническому видуСкачать

































































