Постройте график функции у х2 4 с помощью этого графика решите систему уравнений

Решение №890 Постройте график функции у = х2 – 4|х| – х и определите, при каких значениях m прямая у = m

Постройте график функции у = х 2 – 4|х| – х и определите, при каких значениях m прямая у = m имеет с графиком не менее одной, но не более трёх общих точек.

Постройте график функции у х2 4 с помощью этого графика решите систему уравнений

Есть три секунды времени? Для меня важно твоё мнение!

Насколько понятно решение?

Средняя оценка: 3.6 / 5. Количество оценок: 28

Оценок пока нет. Поставь оценку первым.

Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️

Вступай в группу vk.com 😉

Расскажи, что не так? Я исправлю в ближайшее время

В отзыве оставь контакт для связи, если хочешь, что бы я тебе ответил.

Видео:Графический способ решения систем уравнений. Алгебра, 9 классСкачать

Графический способ решения систем уравнений. Алгебра, 9 класс

Построить график функции y = x²-4x онлайн . Таблица точек . Нули функции .

Видео:Как построить график функции без таблицыСкачать

Как построить график функции без таблицы

График функции y = x²-4x (x во 2-ой степени (в квадрате) минус 4 умножить на x)

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово «авто» или оставить поля пустыми (эквивалентно «авто»)

Округление:

Видео:Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.

Таблица точек функции f(x) = x^2-4x

Показать/скрыть таблицу точек

xf(x)
-10140
-9.5128.25
-9117
-8.5106.25
-896
-7.586.25
-777
-6.568.25
-660
-5.552.25
-545
-4.538.25
-432
-3.526.25
-321
-2.516.25
-212
-1.58.25
-15
-0.52.25
00
0.5-1.75
1-3
1.5-3.75
2-4
2.5-3.75
3-3
3.5-1.75
40
4.52.25
55
5.58.25
612
6.516.25
721
7.526.25
832
8.538.25
945
9.552.25
1060

График построен по уравнению, но можно воспользоваться таблицей точек, чтобы построить такой же график по точкам .

Чтобы скачать график, нажмите на кнопку ‘Скачать график’ под ним .

Видео:Построить график ЛИНЕЙНОЙ функции и найти:Скачать

Построить график  ЛИНЕЙНОЙ функции и найти:

Построение графика функции y = x²-4x по шагам

x²-4x = 0 — это квадратная функция. Коэффициенты a, b, c нашей квадратной функции равны:

Ее график — симметричная парабола. Найдем направление ветвей нашей параболы.

Направление ветвей параболы

Если коэффициент a положительный, то ветви направлены вверх, если отрицательный — вниз.

У нас коэффициент a — положительный, значит ветви нашей параболы направлены вверх.

Найдем координаты вершины параболы

Для того, чтобы найти y, подставим наш найденный x в уравнение:

Координаты вершины нашей нашей параболы [x0, y0] = [2, -4].

Решение уравнения x²-4x = 0 . Поиск нулей функции.

Найдем точки пересечения с осью x. Для этого y должен равняться 0. То есть решим уравнение: x²-4x = 0

x²-4x = 0 — это квадратное уравнение, найдем его дискриминант:

Так как дискриминант больше нуля, то у данного уравнения два корня, найдем их:

Подставим значения x1 и x2 в наше уравнение:

То есть график функции пересекается с осью x в точках 4 и 0 . Наши точки :

Перечеяение с осью y

Найдем точку пересечения с осью y. Она будет одна, при x3 = 0:

У нас эта точка равна точке пересечения с осью x [x3, y3] = [0, 0].

Построение графика квадратной функции

  1. Для построения графика нужно провести вспомогательную линию (можно пунктиром) из точки вершины параболы [2, -4] параллельно оси y. Относительно этой линии парабола будет идти симметрично. Левая и правая часть графика относительно этой линии называется ветви параболы.
  2. Для построения симметричной параболы нужно минимум три точки — вершина параболы и еще две. Эти две точки мы возьмем из нашего квадратного уравнения. И того у нас есть четыре точки [x, y] для построения нашего графика:
    • [2, -4]
    • [4, 0]
    • [0, 0]
    • [0, 0]

Для большей точности можно взять еще несколько из таблицы точек. Чтобы высчитать их нужно взять значение x из таблицы и подставить в функцию y = x²-4x. Калькулятор это сделал за Вас.

  • Строим наш график по найденным точкам симметрично вспомогательной линии.
  • Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

    Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

    Свойства функции y = x²-4x

    • Область определения (x in (- infty;+ infty)) — все действительные числа.
    • Область значений (y in [-4;+ infty)) — все действительные числа больше или равные -4.
    • Функция убывает при (x lt 2), функция возрастает при (x gt 2).
    • Наименьшее значение функции y = -4 — в вершине параболы при x = 2.

    Видео:Алгебра 9 класс. Графическое решение систем уравненийСкачать

    Алгебра 9 класс. Графическое решение систем уравнений

    Инструменты для написания уравнений

    Для написания математических выражений доступно следующее:

    Функции

    Операторы

    ^ — возведение в степень

    x^(1/n) — корень n-ой степени от числа x. То есть 8^(1/3) = 3 √8 = 2

    Видео:ЭЛЕМЕНТАРНО, ВАТСОН! Квадратичная Функция и ее график ПараболаСкачать

    ЭЛЕМЕНТАРНО, ВАТСОН! Квадратичная Функция и ее график Парабола

    Графический способ решения уравнений в среде Microsoft Excel 2007

    Тип урока: Обобщение, закрепление пройденного материала и объяснение нового.

    Цели и задачи урока:

    • повторение изученных графиков функций;
    • повторение и закрепление графического способа решения уравнений;
    • закрепление навыков записи и копирования формул, построения графиков функций в электронных таблицах Excel 2007;
    • формирование и первичное закрепление знаний о решении уравнений с использованием возможностей электронных таблиц Excel 2007;
    • формирование мышления, направленного на выбор оптимального решения;
    • формирование информационной культуры школьников.

    Оборудование: персональные компьютеры, мультимедиапроектор, проекционный экран.

    Материалы к уроку: презентация Power Point на компьютере учителя (Приложение 1).

    Слайд 1 из Приложения1 ( далее ссылки на слайды идут без указания Приложения1).

    Объявление темы урока.

    1. Устная работа (актуализация знаний).

    Слайд 2 — Соотнесите перечисленные ниже функции с графиками на чертеже (Рис. 1):

    у = 6 — х; у = 2х + 3; у = (х + 3) 2 ; у = -(х — 4) 2 ; Постройте график функции у х2 4 с помощью этого графика решите систему уравнений.

    Постройте график функции у х2 4 с помощью этого графика решите систему уравнений

    Слайд 3 Графический способ решения уравнений вида f(x)=0.

    Корнями уравнения f(x)=0 являются значения х1, х2, точек пересечения графика функции y=f(x) с осью абсцисс (Рис. 2).

    Постройте график функции у х2 4 с помощью этого графика решите систему уравнений

    Найдите корни уравнения х 2 -2х-3=0, используя графический способ решения уравнений (Рис.3).

    Постройте график функции у х2 4 с помощью этого графика решите систему уравнений

    Слайд 5 Графический способ решения уравнений вида f (x)=g (x).

    Корнями уравнения f(x)=g(x) являются значения х1, х2, точек пересечения графиков функций y=f(x) и у=g(x). (Рис. 4):

    Постройте график функции у х2 4 с помощью этого графика решите систему уравнений

    Слайд 6 Найдите корни уравнения Постройте график функции у х2 4 с помощью этого графика решите систему уравнений, используя графический способ решения уравнений (Рис. 5).

    Постройте график функции у х2 4 с помощью этого графика решите систему уравнений

    2. Объяснение нового материала. Практическая работа.

    Решение уравнений графическим способом требует больших временных затрат на построение графиков функций и в большинстве случаев дает грубо приближенные решения. При использовании электронных таблиц, в данном случае – Microsoft Excel 2007, существенно экономится время на построение графиков функций, и появляются дополнительные возможности нахождения корней уравнения с заданной точностью (метод Подбор параметра).

    I. Графический способ решения уравнений вида f(x)=0 в Excel.

    Дальнейшая работа выполняется учителем в Excel одновременно с учениками с подробными (при необходимости) инструкциями и выводом результатов на проекционный экран. Слайды Приложения 1 используются для формулировки задач и подведения промежуточных итогов.

    Пример1: Используя средства построения диаграмм в Excel, решить графическим способом уравнение —х 2 +5х-4=0.

    Для этого: построить график функции у=-х 2 +5х-4 на промежутке [ 0; 5 ] с шагом 0,25; найти значения х точек пересечения графика функции с осью абсцисс.

    Выполнение задания можно разбить на этапы:

    1 этап: Представление функции в табличной форме (рис. 6):

    Постройте график функции у х2 4 с помощью этого графика решите систему уравнений

    • в ячейку А1 ввести текст Х, в ячейку A2Y;
    • в ячейку В1 ввести число 0, в ячейку С1 – число 0,25;
    • выделить ячейки В1:С1, подвести указатель мыши к маркеру выделения, и в тот момент, когда указатель мыши примет форму черного крестика, протянуть маркер выделения вправо до ячейки V1 (Рис. 7).

    Постройте график функции у х2 4 с помощью этого графика решите систему уравнений

    При вводе формулы можно вводить адрес ячейки с клавиатуры (не забыть переключиться на латиницу), а можно просто щелкнуть мышью на ячейке с нужным адресом.

    После ввода формулы в ячейке окажется результат вычисления по формуле, а в поле ввода строки формул — сама формула (Рис. 8):

    Постройте график функции у х2 4 с помощью этого графика решите систему уравнений

    • скопировать содержимое ячейки B2 в ячейки C2:V2 за маркер выделения. Весь ряд выделенных ячеек заполнится содержимым первой ячейки. При этом ссылки на ячейки в формулах изменятся относительно смещения самой формулы.

    2 этап: Построение диаграммы типа График.

    • выделить диапазон ячеек B2:V2;
    • на вкладке Вставка|Диаграммы|График выбрать вид График;
    • на вкладке Конструктор|Выбрать данные (Рис. 9) в открывшемся окне «Выбор источника данных» щелкнуть по кнопке Изменить в поле Подписи горизонтальной оси — откроется окно «Подписи оси». Выделить в таблице диапазон ячеек B1:V1 (значения переменной х). В обоих окнах щелкнуть по кнопкам ОК;

    Постройте график функции у х2 4 с помощью этого графика решите систему уравнений

    • на вкладке Макет|Оси|Основная горизонтальная ось|Дополнительные параметры основной горизонтальной оси выбрать:

    Интервал между делениями: 4;

    Интервал между подписями: Единица измерения интервала: 4;

    Положение оси: по делениям;

    Выбрать ширину и цвет линии (Вкладки Тип линии и Цвет линии);

    • самостоятельно изменить ширину и цвет линии для вертикальной оси;
    • на вкладке Макет|Сетка|Вертикальные линии сетки по основной оси выбрать Основные линии сетки.

    Примерный результат работы приведен на рис. 10:

    Постройте график функции у х2 4 с помощью этого графика решите систему уравнений

    3 этап: Определение корней уравнения.

    График функции у=-х 2 +5х-4 пересекает ось абсцисс в двух точках и, следовательно, уравнение -х 2 +5х-4=0 имеет два корня: х1=1; х2=4.

    II. Графический способ решения уравнений вида f(x)=g(x) в Excel.

    Пример 2: Решить графическим способом уравнение Постройте график функции у х2 4 с помощью этого графика решите систему уравнений.

    Для этого: в одной системе координат построить графики функций у1= Постройте график функции у х2 4 с помощью этого графика решите систему уравненийи у2=1-х на промежутке [ -1; 4 ] с шагом 0,25; найти значение х точки пересечения графиков функций.

    1 этап: Представление функций в табличной форме (рис. 1):

  • Перейти на Лист2.
  • Аналогично Примеру 1, применив приемы копирования, заполнить таблицу. При табулировании функции у1=Постройте график функции у х2 4 с помощью этого графика решите систему уравненийвоспользоваться встроенной функцией Корень (Рис. 11).
  • Постройте график функции у х2 4 с помощью этого графика решите систему уравнений

    2 этап: Построение диаграммы типа График.

  • Выделить диапазон ячеек (А2:V3);
  • Аналогично Примеру 1 вставить и отформатировать диаграмму типа График, выбрав дополнительно в настройках горизонтальной оси: вертикальная ось пересекает в категории с номером 5.
  • Примерный результат работы приведен на Рис. 12:

    Постройте график функции у х2 4 с помощью этого графика решите систему уравнений

    3 этап: Определение корней уравнения.

    Графики функций у1= Постройте график функции у х2 4 с помощью этого графика решите систему уравненийи у2=1-х пересекаются в одной точке (0;1) и, следовательно, уравнение Постройте график функции у х2 4 с помощью этого графика решите систему уравненийимеет один корень – абсцисса этой точки: х=0.

    III. Метод Подбор параметра.

    Графический способ решения уравнений красив, но далеко не всегда точки пересечения могут быть такими «хорошими», как в специально подобранных примерах 1 и 2.

    Возможности электронных таблиц позволяют находить приближенные значения коней уравнения с заданной точностью. Для этого используется метод Подбор параметра.

    Пример 3: Разберем метод Подбор параметра на примере решения уравнения —х 2 +5х-3=0.

    1 этап: Построение диаграммы типа График для приближенного определения корней уравнения.

    Построить график функции у=х 2 +5х-3, отредактировав полученные в Примере 1 формулы.

    • выполнить двойной щелчок по ячейке B2, внести необходимые изменения;
    • с помощью маркера выделения скопировать формулу во все ячейки диапазона C2:V2.

    Все изменения сразу отобразятся на графике.

    Примерный результат работы приведен на Рис. 13:

    Постройте график функции у х2 4 с помощью этого графика решите систему уравнений

    2 этап: Определение приближенных значений корней уравнения.

    График функции у=-х 2 +5х-3 пересекает ось абсцисс в двух точках и, следовательно, уравнение -х 2 +5х-4=0 имеет два корня.

    По графику приближенно можно определить, что х1≈0,7; х2≈4,3.

    3 этап: Поиск приближенного решения уравнения с заданной точностью методом Подбор параметра.

    1) Начать с поиска более точного значения меньшего корня.

    По графику видно, что ближайший аргумент к точке пересечения графика с осью абсцисс равен 0,75. В таблице значений функции этот аргумент размещается в ячейке E1.

    • Выделить ячейку Е2;
    • перейти на вкладку Данные|Анализ «что-если»|Подбор параметра…;

    В открывшемся диалоговом окне Подбор параметра (Рис. 14) в поле Значение ввести требуемое значение функции: 0.

    В поле Изменяя значение ячейки: ввести $E$1 (щелкнув по ячейке E1).

    Щелкнуть по кнопке ОК.

    Постройте график функции у х2 4 с помощью этого графика решите систему уравнений

    Постройте график функции у х2 4 с помощью этого графика решите систему уравнений

    • В окне Результат подбора (Рис. 15) выводится информация о величине подбираемого и подобранного значения функции:
    • В ячейке E1 выводится подобранное значение аргумента 0,6972 с требуемой точностью (0,0001).

    Установить точность можно путем установки в ячейках таблицы точности представления чисел – числа знаков после запятой (Формат ячеек|Число|Числовой).

    Итак, первый корень уравнения определен с заданной точностью: х1≈0,6972.

    2) Самостоятельно найти значение большего корня с той же точностью. 2≈4,3029).

    IV. Метод Подбор параметра для решения уравнений вида f(x)=g(x).

    При использовании метода Подбор параметров для решения уравнений вида f(x)=g(x) вводят вспомогательную функцию y(x)=f(x)-g(x) и находят с требуемой точностью значения х точек пересечения графика функции y(x) с осью абсцисс.

    3. Закрепление изученного материала. Самостоятельная работа.

    Задание: Используя метода Подбор параметров, найти корни уравнения Постройте график функции у х2 4 с помощью этого графика решите систему уравненийс точностью до 0,001.

    • ввести функцию у=Постройте график функции у х2 4 с помощью этого графика решите систему уравненийи построить ее график на промежутке [ -1; 4 ] с шагом 0,25 (Рис. 16):

    Постройте график функции у х2 4 с помощью этого графика решите систему уравнений

    • найти приближенное значение х точки пересечения графика функции с осью абсцисс (х≈1,4);
    • найти приближенное решение уравнения с точностью до 0,001 методом Подбор параметра (х≈1,438).

    4. Итог урока.

    Слайд 12 Проверка результатов самостоятельной работы.

    Слайд 13 Повторение графического способа решения уравнения вида f(x)=0.

    Слайд 14 Повторение графического способа решения уравнения вида f(x)=g(x).

    5. Домашнее задание.

    Используя средства построения диаграмм в Excel и метод Подбор параметра, определите корни уравнения х 2 -5х+2=0 с точностью до 0,01.

    🎬 Видео

    Решение системы уравнений графическим методомСкачать

    Решение системы уравнений графическим методом

    Только не говори никому.. Как легко можно восстановить жидкокристаллический экран..Скачать

    Только не говори никому.. Как легко можно восстановить жидкокристаллический экран..

    График функции y=x² (y=аx).Скачать

    График функции y=x² (y=аx).

    Построить график функции y=x2. Парабола.Скачать

    Построить график функции y=x2. Парабола.

    Математический анализ, 16 урок, Исследование функции и построение графикаСкачать

    Математический анализ, 16 урок, Исследование функции и построение графика

    Функция у=х² и у=х³ и их графики. Алгебра, 7 классСкачать

    Функция у=х² и у=х³ и их графики. Алгебра, 7 класс

    Постройте график функции y=2x-4.Скачать

    Постройте график функции y=2x-4.

    Графики сложных функций на ОГЭ по математике №22. Подробный разбор основных видов!Скачать

    Графики сложных функций на ОГЭ по математике №22. Подробный разбор основных видов!

    Урок по теме ГРАФИЧЕСКИЙ СПОСОБ РЕШЕНИЯ СИСТЕМ УРАВНЕНИЙ 7 КЛАСССкачать

    Урок по теме ГРАФИЧЕСКИЙ СПОСОБ РЕШЕНИЯ СИСТЕМ УРАВНЕНИЙ 7 КЛАСС

    Решение систем уравнений методом подстановкиСкачать

    Решение систем уравнений методом подстановки

    Математика | Двойной модуль. ОГЭСкачать

    Математика | Двойной модуль. ОГЭ

    Как построить график линейной функции.Скачать

    Как построить график линейной функции.

    Задание 23 из ОГЭ Построение графиков функций с модулем | МатематикаСкачать

    Задание 23 из ОГЭ Построение графиков функций с модулем | Математика
    Поделиться или сохранить к себе: