Понижение степени в дифференциальных уравнениях

Дифференциальные уравнения, допускающие понижение порядка

Рассмотрим три частных случая решения дифференциальных уравнений с возможностью понижения порядка. Во всех случаях понижение порядка производится с помощью замены переменной. То есть, решение дифференциального уравнения сводится к решению уравнения более низкого порядка. В основном мы рассмотрим способы понижения порядка дифференциальных уравнений второго порядка, однако их можно применять многократно и понижать порядок уравнений изначально более высокого порядка. Так, в примере 2 решается задача понижения порядка дифференциального уравнения третьего порядка.

Видео:Дифференциальные уравнения высших порядков, допускающие понижение порядкаСкачать

Дифференциальные уравнения высших порядков, допускающие понижение порядка

Понижение порядка уравнения, не содержащего y и y

Это дифференциальное уравнение вида Понижение степени в дифференциальных уравнениях. Произведём замену переменной: введём новую функцию Понижение степени в дифференциальных уравненияхи тогда Понижение степени в дифференциальных уравнениях. Следовательно, Понижение степени в дифференциальных уравненияхи исходное уравнение превращается в уравнениие первого порядка

Понижение степени в дифференциальных уравнениях

с искомой функцией Понижение степени в дифференциальных уравнениях.

Решая его, находим Понижение степени в дифференциальных уравнениях. Так как Понижение степени в дифференциальных уравнениях, то Понижение степени в дифференциальных уравнениях.

Отсюда, интегрируя ещё раз, получаем решение исходного уравнения:

Понижение степени в дифференциальных уравнениях,

где Понижение степени в дифференциальных уравненияхи Понижение степени в дифференциальных уравнениях— произвольные константы интегрирования.

Пример 1. Найти общее решение дифференциального уравнения

Понижение степени в дифференциальных уравнениях.

Решение. Произведём замену переменной, как было описано выше: введём функцию Понижение степени в дифференциальных уравненияхи, таким образом, понизив порядок уравнения, получим уравнение первого порядка Понижение степени в дифференциальных уравнениях. Интегрируя его, находим Понижение степени в дифференциальных уравнениях. Заменяя Понижение степени в дифференциальных уравненияхна Понижение степени в дифференциальных уравненияхи интегрируя ещё раз, находим общее решение исходного дифференциального уравнения:

Понижение степени в дифференциальных уравнениях

Пример 2. Решить дифференциальное уравнение третьего порядка

Понижение степени в дифференциальных уравнениях.

Решение. Дифференциальное уравнение не содержит y и y‘ в явном виде. Для понижения порядка применяем подстановку:

Понижение степени в дифференциальных уравнениях.

Тогда Понижение степени в дифференциальных уравненияхи получаем линейное дифференциальное уравнение первого порядка:

Понижение степени в дифференциальных уравнениях.

Заменяя z произведением функций u и v , получим

Понижение степени в дифференциальных уравнениях

Тогда получим выражения с функцией v :

Понижение степени в дифференциальных уравнениях

Выражения с функцией u :

Понижение степени в дифференциальных уравнениях

Дважды интегрируем и получаем:

Понижение степени в дифференциальных уравнениях.

Понижение степени в дифференциальных уравнениях.

Интегрируем по частям и получаем:

Понижение степени в дифференциальных уравнениях.

Итак, общее решение данного дифференциального уравения:

Понижение степени в дифференциальных уравнениях.

Видео:Дифференциальные уравнения, 7 урок, Дифференциальные уравнения, допускающие понижение порядкаСкачать

Дифференциальные уравнения, 7 урок, Дифференциальные уравнения, допускающие понижение порядка

Понижение порядка уравнения, не содержащего y

Это дифференциальное уравнение вида Понижение степени в дифференциальных уравнениях. Произведём замену переменной как в предыдущем случае: введём Понижение степени в дифференциальных уравнениях, тогда Понижение степени в дифференциальных уравнениях, и уравнение преобразуется в уравнение первого порядка Понижение степени в дифференциальных уравнениях. Решая его, найдём Понижение степени в дифференциальных уравнениях. Так как Понижение степени в дифференциальных уравнениях, то Понижение степени в дифференциальных уравнениях. Отсюда, интегрируя ещё раз, получаем решение исходного уравнения:

Понижение степени в дифференциальных уравнениях,

где Понижение степени в дифференциальных уравненияхи Понижение степени в дифференциальных уравнениях— произвольные константы интегрирования.

Пример 3. Найти общее решение дифференциального уравнения

Понижение степени в дифференциальных уравнениях.

Решение. Уже знакомым способом произведём замену переменной: введём функцию Понижение степени в дифференциальных уравненияхи понизим порядок уравнения. Получаем уравнение первого порядка Понижение степени в дифференциальных уравнениях. Решая его, находим Понижение степени в дифференциальных уравнениях. Тогда Понижение степени в дифференциальных уравненияхи получаем решение исходного дифференциального уравнения второго порядка:

Понижение степени в дифференциальных уравнениях.

Пример 4. Решить дифференциальное уравнение

Понижение степени в дифференциальных уравнениях.

Решение. Дифференциальное уравнение не содержит y в явном виде. Поэтому для понижения порядка применяем подстановку:

Понижение степени в дифференциальных уравнениях.

Получим дифференциальное уравнение первого порядка:

Понижение степени в дифференциальных уравнениях.

Это уравение с разделяющимися переменными. Решим его:

Понижение степени в дифференциальных уравнениях

Интегрируем полученную функцию:

Понижение степени в дифференциальных уравнениях

Мы пришли к цели — общему решению данного дифференциального уравения:

Понижение степени в дифференциальных уравнениях.

Пример 5. Найти общее решение дифференциального уравнения

Понижение степени в дифференциальных уравнениях.

Решение. Дифференциальное уравнение не содержит y в явном виде. Поэтому для понижения порядка применяем подстановку:

Понижение степени в дифференциальных уравнениях.

Получим дифференциальное уравнение первого порядка:

Понижение степени в дифференциальных уравнениях.

Понижение степени в дифференциальных уравнениях

Это однородное уравение, которое решается при помощи подстановки Понижение степени в дифференциальных уравнениях. Тогда Понижение степени в дифференциальных уравнениях, Понижение степени в дифференциальных уравнениях:

Понижение степени в дифференциальных уравнениях

Далее потребуется интегрировать по частям. Введём обозначения:

Понижение степени в дифференциальных уравнениях

Понижение степени в дифференциальных уравнениях

Таким образом, получили общее решение данного дифференциального уравения:

Понижение степени в дифференциальных уравнениях.

Видео:14. Дифференциальные уравнения второго порядка, допускающие понижение порядкаСкачать

14. Дифференциальные уравнения второго порядка, допускающие понижение порядка

Понижение порядка уравнения, не содержащего x

Это уравнение вида Понижение степени в дифференциальных уравнениях. Вводим новую функцию Понижение степени в дифференциальных уравнениях, полагая Понижение степени в дифференциальных уравнениях. Тогда

Понижение степени в дифференциальных уравнениях.

Подставляя в уравнение выражения для Понижение степени в дифференциальных уравненияхи Понижение степени в дифференциальных уравнениях, понижаем порядок уравнения. Получаем уравнение первого порядка относительно z как функции от y:

Понижение степени в дифференциальных уравнениях.

Решая его, найдём Понижение степени в дифференциальных уравнениях. Так как Понижение степени в дифференциальных уравнениях, то Понижение степени в дифференциальных уравнениях. Получено дифференциальное уравнение с разделяющимися переменными, из которого находим общее решение исходного уравнения:

Понижение степени в дифференциальных уравнениях,

где Понижение степени в дифференциальных уравненияхи Понижение степени в дифференциальных уравнениях— произвольные константы интегрирования.

Пример 6. Найти общее решение дифференциального уравнения

Понижение степени в дифференциальных уравнениях.

Решение. Полагая Понижение степени в дифференциальных уравненияхи учитывая, что Понижение степени в дифференциальных уравнениях, получаем Понижение степени в дифференциальных уравнениях. Понизив порядок исходного уравнения, получаем уравнение первого порядка с разделяющимися переменными. Приводя его к виду Понижение степени в дифференциальных уравненияхи интегрируя, получаем Понижение степени в дифференциальных уравнениях, откуда Понижение степени в дифференциальных уравнениях. Учитывая, что Понижение степени в дифференциальных уравнениях, находим Понижение степени в дифференциальных уравнениях, откуда получаем решение исходного дифференциального уравнения второго порядка:

Понижение степени в дифференциальных уравнениях

Понижение степени в дифференциальных уравнениях.

При сокращении на z было потеряно решение уравнения Понижение степени в дифференциальных уравнениях, т.е. Понижение степени в дифференциальных уравнениях. В данном случае оно содержится в общем решении, так как получается из него при Понижение степени в дифференциальных уравнениях(за исключением решения y = 0).

Пример 7. Найти общее решение дифференциального уравнения

Понижение степени в дифференциальных уравнениях.

Решение. Дифференциальное уравнение не содержит x в явном виде. Для понижения порядка применяем подстановку:

Понижение степени в дифференциальных уравнениях.

Получим дифференциальное уравнение первого порядка:

Понижение степени в дифференциальных уравнениях.

Это уравение с разделяющимися переменными. Решим его:

Понижение степени в дифференциальных уравнениях

Используя вновь подстановку

Понижение степени в дифференциальных уравнениях,

получим ещё одно уравнение с разделяющимися переменными. Решим и его:

Понижение степени в дифференциальных уравнениях

Таким образом, общее решение данного дифференциального уравения:

Понижение степени в дифференциальных уравнениях.

Пример 8. Найти частное решение дифференциального уравнения

Понижение степени в дифференциальных уравнениях,

удовлетворяющее начальному условию y(0) = 1 , y‘(0) = −1 .

Решение. Дифференциальное уравнение не содержит x в явном виде. Поэтому применяем подстановку:

Понижение степени в дифференциальных уравнениях.

Таким образом, понизили порядок уравнения и получили уравнение первого порядка

Понижение степени в дифференциальных уравнениях.

Это дифференциальное уравнение с разделяющимися переменными. Разделяем переменные и интегрируем:

Понижение степени в дифференциальных уравнениях

Чтобы определить C 1 , используем данные условия y(0) = 1 , y‘(0) = −1 или p(0) = −1 . В полученное выражение подставим y = 1 , p = −1 :

Понижение степени в дифференциальных уравнениях.

Понижение степени в дифференциальных уравнениях

Понижение степени в дифференциальных уравнениях.

Разделяя переменные и интегрируя, получаем

Понижение степени в дифференциальных уравнениях.

Из начального условия y(0) = 1 следует

Понижение степени в дифференциальных уравнениях.

Получаем окончательное решение данного дифференциального уравнения

Понижение степени в дифференциальных уравнениях.

Пример 9. Найти частное решение дифференциального уравнения

Понижение степени в дифференциальных уравнениях,

удовлетворяющее начальному условию y(1) = 1 , y‘(1) = −1 .

Решение. Дифференциальное уравнение не содержит x в явном виде. Для понижения порядка применяем подстановку:

Понижение степени в дифференциальных уравнениях.

Таким образом, получили уравнение первого порядка

Понижение степени в дифференциальных уравнениях.

Это дифференциальное уравнение с разделяющимися переменными. Разделив обе части уравнения на p , получим

Понижение степени в дифференциальных уравнениях

Интегрируем обе части уравнения

Понижение степени в дифференциальных уравнениях

Понижение степени в дифференциальных уравнениях

Понижение степени в дифференциальных уравнениях

Используем начальные условия и определим C 1 . Если x = 1 , то y = 1 и p = y‘ = −1 , поэтому

Понижение степени в дифференциальных уравнениях.

Понижение степени в дифференциальных уравнениях

Из начального условия y(1) = 1 следует

Понижение степени в дифференциальных уравнениях.

Получаем окончательное решение данного дифференциального уравнения

Понижение степени в дифференциальных уравнениях.

Видео:16. Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентамиСкачать

16. Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентами

Дифференциальные уравнения, допускающие понижение порядка

Материал данной статьи дает представление о дифференциальных уравнениях порядка выше второго с возможностью понизить порядок, используя замену. Подобные уравнения часто представлены F ( x , y ( k ) , y ( k + 1 ) , . . . , y ( n ) ) = 0 , не содержащими искомой функции и производных до k – 1 порядка, а также дифференциальными уравнениями записи F ( y , y ‘ , y » , . . . , y ( n ) ) = 0 , не содержащими независимой переменной.

Видео:ДУ, допускающие понижение порядка, когда нет Y| poporyadku.schoolСкачать

ДУ, допускающие понижение порядка, когда нет Y| poporyadku.school

Понижение порядка дифференциальных уравнений, не содержащих искомой функции и производных до
k – 1 порядка вида F ( x , y ( k ) , y ( k + 1 ) , . . . , y ( n ) ) = 0

Мы имеем возможность понижения порядка дифференциального уравнения F ( x , y ( k ) , y ( k + 1 ) , . . . , y ( n ) ) = 0 до n – k , используя замену переменных y ( k ) = p ( x ) . Осуществив подобную замену, имеем: y ( k + 1 ) = p ‘ ( x ) , y ( k + 2 ) = p » ( x ) , . . . , y ( n ) = p ( n — k ) ( x ) . Затем подставим полученный результат в исходное уравнение и увидим дифференциальное уравнение порядка n – k с неизвестной функцией p ( x ) .

После нахождения p ( x ) функцию y ( x ) найдем из равенства y ( k ) = p ( x ) интегрированием k раз подряд.

Для наглядности разберём решение такой задачи.

Задано дифференциальное уравнение 4 y ( 4 ) — 8 y ( 3 ) + 3 y » = 0 . Необходимо найти его общее решение.

Решение

Произведя замену y » = p ( x ) , получим возможность понизить порядок дифференциального уравнения с четвертого до второго. Итак, y ( 3 ) = p ‘ , y ( 4 ) = p » , и, таким образом, исходное уравнение четвертого порядка мы преобразуем в линейное однородное дифференциальное уравнение второго порядка, имеющее постоянные коэффициенты 4 p » — 8 p ‘ + 3 p = 0 .

Характеристическое уравнение будет записано так: 4 k 2 — 8 k + 3 = 0 , а корни его — k 1 = 1 2 и k 2 = 3 2 , тогда общим решением дифференциального уравнения 4 p » — 8 p ‘ + 3 p = 0 будет p ( x ) = C 1 · e 1 2 x + C 2 · e 3 2 x .

Проинтегрируем два раза полученный результат и можем записать необходимое нам общее решение дифференциального уравнения четвертого порядка:

y » = p ( x ) ⇒ y ‘ = ∫ p ( x ) d x = ∫ C 1 · e 1 2 x + C 2 · e 3 2 x d x = = 2 C 1 · e 1 2 x + 2 3 C 2 · e 3 2 x + C 3 ⇒ y = ∫ y ‘ d x = ∫ 2 C 1 · e 1 2 x + 2 3 C 2 · e 3 2 x + C 3 d x = = 4 C 1 · e 1 2 x + 4 9 C 2 · e 3 2 x + C 3 · x + C 4

Ответ: y = 4 C 1 · e 1 2 x + 4 9 C 2 · e 3 2 x + C 3 · x + C 4 ( С 1 , С 2 , С 3 и С 4 являются произвольными постоянными).

Задано общее дифференциальное уравнение третьего порядка y ‘ ‘ ‘ · x · ln ( x ) = y » . Необходимо найти его общее решение.

Решение

Осуществим замену y » = p ( x ) , следовательно, y ‘ ‘ ‘ = p ‘ , а заданное дифференциальное уравнение третьего порядка преобразуется в дифференциальное уравнение, имеющее разделяющиеся переменные записи p ‘ · x · ln ( x ) = p .

Осуществим разделение переменных и интегрирование:

d p p = d x x ln ( x ) , p ≠ 0 ∫ d p p = ∫ d x x ln ( x ) ∫ d p p = ∫ d ( ln ( x ) ) ln ( x ) ln p + C 1 = ln ln ( x ) + C 2

Последующее потенцирование с учетом того, что p ( x ) = 0 тоже является решением, даст нам возможность получить общее решение дифференциального уравнения p ‘ · x · ln ( x ) = p в записи p ( x ) = C · ln ( x ) , в которой C будет произвольной постоянной.

Поскольку в самом начале была использована замена y » = p ( x ) , то y ‘ = ∫ p ( x ) d x тогда: y ‘ = C · ∫ ln ( x ) d x . Задействуем метод интегрирования по частям:

y ‘ = C · ∫ ln ( x ) d x = u = ln ( x ) , d v = d x d u = d x x , v = x = = C · x · ln ( x ) — ∫ x d x x = C · ( x · ln ( x ) — x ) + C 3

Произведем интегрирование повторно для получения общего решения заданного дифференциального уравнения третьего порядка:
y = ∫ y ‘ d x = ∫ C · x · ln ( x ) — x + C 3 d x = = C · ∫ x · ln ( x ) d x — C · ∫ x d x + C 3 · ∫ d x = = C · ∫ x · ln ( x ) d x — C · x 2 2 + C 3 · x = = u = ln x , d v = x d x d u = d x x , v = x 2 2 = = C · x 2 2 · ln x — ∫ x d x 2 — C · x 2 2 + C 3 · x + C 4 = = C · x 2 ln ( x ) 2 — 3 x 2 4 + C 3 · x + C 4

Ответ: y = C · x 2 ln ( x ) 2 — 3 x 2 4 + C 3 · x + C 4 ( С , С 3 и С 4 являются произвольными постоянными).

Видео:#635 НАУКА Структура вакуума. Устройство Мироздания: версия Межзвездного Союза. Юмор в разных мирах.Скачать

#635 НАУКА Структура вакуума. Устройство Мироздания: версия Межзвездного Союза. Юмор в разных мирах.

Понижение порядка дифференциальных уравнений, не содержащих независимую переменную, записи F ( x , y ( k ) , y ( k + 1 ) , . . . , y ( n ) ) = 0

Теперь рассмотрим дифференциальные уравнения F ( y , y ‘ , y » , . . . , y ( n ) ) = 0 , не имеющие в своей записи независимую переменную.

В данном случае снижение порядка на единицу возможно с использованием замены d y d x = p ( y ) . Опираясь на правило дифференцирования сложных функций, получим:

d 2 y d x 2 = d p d y d y d x = d p d y p ( y ) d 3 y d x 3 = d d p d y p ( y ) d x = d 2 p d y 2 d y d x p ( y ) + d p d y d p d y d y d x = = d 2 p d y 2 p 2 ( y ) + d p d y 2 p ( y ) . . .

Подставив результат в заданное уравнение, получаем дифференциальное уравнение с порядком ниже на единицу.

Рассмотрим данный алгоритм в решении конкретной задачи.

Задано дифференциальное уравнение 4 y 3 y » = y 4 — 1 и начальные условия: y ( 0 ) = 2 , y ‘ ( 0 ) = 1 2 2 . Необходимо найти частное решение заданного уравнения.

Решение

Заданное уравнение не имеет в своем составе независимую переменную x , следовательно, мы можем снизить порядок уравнения на единицу, используя замену d y d x = p ( y ) .

Тогда d 2 y d x 2 = d p d y · p ( y ) . Произведем подстановку и получим дифференциальное уравнение с разделяющимися переменными 4 y 3 · d p d y · p ( y ) = y 4 — 1 .

4 y 3 · d p d y · p ( y ) = y 4 — 1 ⇔ p ( y ) d p = y 4 — 1 4 y 3 d y , y ≠ 0 ∫ p ( y ) d p = ∫ y 4 — 1 4 y 3 d y p 2 ( y ) 2 + C 1 = y 2 8 + 1 8 y 2 + C 2 p 2 ( y ) = 1 4 y 4 + 8 C y 2 + 1 y 2 , C = C 2 — C 1 P ( y ) = ± 1 2 y 4 + 8 C y 2 + 1 y 2

Поскольку d y d x = p ( y ) , тогда y ‘ = ± 1 2 y 4 + 8 C y 2 + 1 y 2 .

Этап решения позволяет найти константу C , задействовав начальные условия y ( 0 ) = 2 , y ‘ ( 0 ) = 1 2 2 :

y ‘ ( 0 ) = ± 1 2 y 4 ( 0 ) + 8 C y 2 ( 0 ) + 1 y 2 ( 0 ) 1 2 2 = ± 1 2 2 4 + 8 C 2 2 + 1 2 1 2 2 = ± 1 2 5 + 16 C 2 1 = ± 5 + 16 C

Крайнее равенство дает возможность сформулировать вывод:

C = — 1 4 ,а y ‘ = — 1 2 y 4 + 8 C y 2 + 1 y 2 не удовлетворяет условиям задачи.

y ‘ = 1 2 y 4 + 8 C y 2 + 1 y 2 = 1 2 y 4 + 8 · — 1 4 y 2 + 1 y 2 = = 1 2 y 4 + 2 y 2 + 1 y 2 = 1 2 ( y 2 — 1 2 ) y 2 = 1 2 y 2 — 1 y

При y 2 — 1 y ≥ 0 ⇔ y ∈ — 1 ; 0 ∪ [ 1 ; + ∞ ) получаем y ‘ = 1 2 · y 2 — 1 y , откуда

2 y d y y 2 — 1 = d x ∫ 2 y d y y 2 — 1 = ∫ d x ∫ d ( y 2 — 1 ) y 2 — 1 = ∫ d x ln ( y 2 — 1 ) + C 3 = x + C 4 y 2 — 1 = e x + C 3 = x + C 4 y 2 — 1 = x + C 1 , C 5 + C 4 — C 2 y = ± e x + C 5 + 1

Область значений функции y = — e x + C 5 + 1 — это ( — ∞ , — 1 ] , и такой интервал не будет удовлетворять условию y 2 — 1 y ≥ 0 ⇔ y ∈ — 1 ; 0 ∪ [ 1 ; + ∞ ) , а значит y = — e x + C 5 + 1 не рассматриваем.

Обратимся к начальному условию y ( 0 ) = 2 :

y ( 0 ) = e 0 + C 5 + 1 2 = e 0 + C 5 + 1 2 = e C 5 + 1 С 5 = 0

Таким образом, y = e x + C 5 + 1 = e x + 0 + 1 = e x + 1 — необходимое нам частное решение.

При у 2 — 1 y 0 ⇔ y ∈ — ∞ ; — 1 ∪ 0 ; 1 получим y ‘ = — 1 2 · y 2 — 1 y , откуда y = ± e x + C 5 + 1 . Область значений функции y = e — x + C 5 + 1 — интервал [ 1 , + ∞ ) , и такой интервал не будет удовлетворять условию y 2 — 1 y 0 ⇔ y ∈ — ∞ ; — 1 ∪ 0 ; 1 , тогда y = e — x + C 5 + 1 не рассматриваем.

Для функции y = e — x + C 5 + 1 начальное условие y ( 0 ) = 2 не будет удовлетворяться ни для каких С 6 , поскольку

Видео:ЛОДУ 2 порядка c постоянными коэффициентамиСкачать

ЛОДУ 2 порядка c постоянными коэффициентами

Дифференциальные уравнения высших порядков с полной производной

Понижение степени в дифференциальных уравнениях

Видео:18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать

18+ Математика без Ху!ни. Дифференциальные уравнения.

Понижение порядка

Рассмотрим дифференциальное уравнение n-го порядка:
(1) .
Порядок этого уравнения легко понизить, если его левая часть является полной (точной) производной по переменной x от некоторой функции :
(2)
.
Отсюда сразу получаем первый интеграл:
(3) .
Он представляет собой дифференциальное уравнение, порядок которого на единицу меньше по сравнению с исходным уравнением (1).

Сделаем пояснения по поводу полной производной. Ее также называют точной производной. Пусть – некотрая функция, зависящая от переменной x . Найдем ее производных, и подставим в Φ. В результате получим сложную функцию, зависящую от одной переменной x :
(4) .
Производная функции называется полной производной функции по x . По правилу дифференцирования сложной функции имеем:
(5) .

Тогда если выполняется (2), то подставляя (5) в (1) получаем:
.
Отсюда . Учитывая (4), получаем (3):
.

Видео:5. Однородные дифференциальные уравнения. Часть 2.Скачать

5. Однородные дифференциальные уравнения. Часть 2.

Методы выделения полной производной

Как видно из (1) и (2), если левая часть уравнения является полной производной по переменной x , то оно имеет следующий вид:
.
Все входящие сюда частные производные зависят только от переменных . Старшая производная входит линейным образом только в последний член. То есть, чтобы левая часть уравнения являлась полной производной, необходимо, чтобы уравнение было линейным относительно старшей производной.

Общего способа, позволяющего гарантированно выделить полную производную в уравнении, нет. Для выделения полной производной можно применять те же методы, что и при выделении полного дифференциала в уравнениях первого порядка. См. Методы определения интегрирующего множителя

Эти методы заключаются в том, что можно умножать и делить уравнение на множители, составленные из переменных , и применять следующие формулы:
(Ф1) ;
(Ф2) ;
(Ф3) ;
(Ф4) .
Здесь и – функции от x , возможно сложные. То есть и могут зависеть от x и переменных , которые в свою очередь зависят от x .

Далее мы рассмотрим примеры решений дифференциальных уравнений с помощью выделения полной производной.

Видео:ДУ допускающие понижение порядка, однородные относительно Y и его производных | poporyadku.schoolСкачать

ДУ допускающие понижение порядка, однородные относительно Y и его производных | poporyadku.school

Примеры

Все примеры Ниже рассмотрены следующие примеры, в которых нужно решить дифференциальные уравнения методом выделения полной производной.


Пример 1

Решить дифференциальное уравнение второго порядка:
(П1.1) .

Разделим (П1.1) на . При имеем:
(П1.2) .

Выделяем полную производную, используя (Ф4).
;
;
.

Подставляем в (П1.2) и применяем (Ф1).
;
. Отсюда получаем первый интеграл:
.

Потенцируем:
.
Убираем знаки модуля:
.
Заменим постоянную: . Подставляем:
.
Поскольку , то . Переобозначим постоянную . Тогда первый интеграл принимает следующий вид:
(П1.3) .

Теперь рассмотрим случай , который мы до этого отбросили ⇑. Нетрудно видеть, что удовлетворяет исходному уравнению (П1.1). Оно получается из (П1.3), если положить . Таким образом постоянная может принимать нулевое значение. Отбрасываем условие :
(П1.4) .

Разделяем переменные и интегрируем.
;
;
;
;
Логарифмируем:
.

Пример 2

Решить уравнение, преобразовав его к полной производной:
(П2.1) .

Чтобы упростить уравнение, сделаем подстановку:
(П2.2) .
Тогда оно примет следующий вид:
(П2.3) .

Подставим . При этом во втором слагаемом запишем так: . Получаем:
(П2.4) .

Теперь замечаем, что
.
Поэтому умножим (П2.4) на , и выполним преобразования:
;
(П2.5) .

Когда мы умножаем уравнение на множитель , мы автоматически добавляем решение , которое может не содержаться в исходном уравнении. В нашем случае мы автоматически добавили решения и . Однако нетрудно видеть, что они удовлетворяют исходному уравнение (П2.4). Поэтому в результате умножения на множитель, у нас не будет лишних решений, которые не удовлетворяют исходному уравнению.

Теперь можно применить правило дифференцирования частного (Ф3). Тогда, чтобы (П2.5) приняло вид полной производной дроби, разделим его на . При имеем:
;
.
Отсюда получаем первый интеграл:
(П2.6) .

Операция деления на справедлива, если знаменатель не обращается в нуль. Поэтому далее мы ищем решение при . После того, как решение будет найдено, мы рассмотрим случай .

Из (П2.6) имеем:
.
Заменим постоянную интегрирования :
(П2.7) .
Замена постоянной позволяет получить выражение, не загроможденное лишними операциями. При этом также нужно следить, чтобы не произошло потери части решений, или не появились новые. В нашем примере, старая постоянная может принимать любые значения: . Тогда и новая постоянная может принимать любые значения: .

Разделяем переменные в (П2.7) и интегрируем.
;
;
;
.
Снова заменим постоянные: .
.
Извлекая корень четной степени 4 от переменной u , возведенной в четную степень 4, нужно помнить, что результат может иметь два знака – положительный или отрицательный:
(П2.8) .

Возвращаемся к переменной y (см. (П2.2)), и интегрируем. При имеем. ;

;
;

;
.
Еще раз заменим постоянные: :
(П2.9) .

Теперь рассмотрим случай , который мы выше ⇑ исключили из рассмотрения. Из (П2.8) и (П2.2) имеем:
.
Здесь . Заменим постоянную . Новая постоянная может принимать любые значения, кроме нулевого: . Тогда
(П2.10) .
Заметим, что в этом случае, . Интегрируем.
;
.
Заменив постоянную , получаем:
(П2.11) .

Теперь рассмотрим случай , который мы отбросили при делении ⇑ на :
.
Это уравнение имеет вид (П2.10) с . Тогда (П2.11) также является решением уравнения , если положить . Отбросим в (П2.11) условие . В результате получаем решение, в котором :
.

Наконец, мы можем переобозначить постоянные: . В результате получаем решение, справедливое при :
.

Пример 3

Найти общее решение дифференциального уравнения, преобразовав его к полной производной:
(П3.1) .

Попробуем привести уравнение к полной производной, применяя формулы (Ф2) и (Ф3).

Преобразуем исходное уравнение (П3.1), собрав в левой части члены, содержащие логарифм:
;
.

Разделим на и используем формулу (Ф3). При имеем:
;
(П3.2) .

Применим к (П3.2) формулу (Ф2), записав ее аналогично интегрированию по частям в следующем виде: .
.
Здесь мы учли, что .
Подставляем в (П3.2) и выделяем полную производную:
;
;
.
Левая часть уравнения является полной производной. Отсюда получаем первый интеграл:
.

Разделяем переменные и интегрируем.
.
Возводим левую и правую части уравнения в степень -1 . Случай разбирать не нужно, поскольку исходное уравнение (П3.1) не определено при . При имеем:
;
;
(П3.3) .

Подставляем в (П3.3) и потенцируем.
;
.

Заменим постоянную интегрирования . Новая постоянная может принимать только положительные значения: . Тогда
.
Убираем знак модуля:
.
Знак ± включим в состав постоянной . Тогда она может принимать и положительные отрицательные значения, не равные нулю. Переобозначим постоянную :
(П3.4) .

Теперь рассмотрим случай . Нетрудно видеть, что функция является решением исходного уравнения (П3.1). Она входит в (П3.4), если положить . Таким образом, (П3.4) является решением уравнения и при . Отменяем ограничение :
.

Сделаем замену постоянных . Тогда
.

Осталось рассмотреть случай . Если подставить в исходное уравнение (П3.1), то оно выполняется.
Решаем уравнение . Его решение . Таким образом, при , уравнение (П3.1) имеет решение .

Использованная литература.
В. В. Степанов. Курс дифференциальных уравнений, «ЛКИ», 2015.
В. М. Ипатова, О. А. Пыркова, В. Н. Седов. Дифференциальные уравнения. Методы решений. Москва, МФТИ, 2012.
А. Ф. Филиппов. Сборник задач по дифференциальным уравнениям. НИЦ «Регулярная и хаотическая динамика», 2000.

Автор: Олег Одинцов . Опубликовано: 07-07-2021

📸 Видео

Частное решение дифференциального уравнения. 11 класс.Скачать

Частное решение дифференциального уравнения. 11 класс.

7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.Скачать

7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.

Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать

Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами

Решение тригонометрических уравнений. Метод понижения порядка. 10 класс.Скачать

Решение тригонометрических уравнений. Метод понижения порядка. 10 класс.

13. Как решить дифференциальное уравнение первого порядка?Скачать

13. Как решить дифференциальное уравнение первого порядка?

3D Решите уравнение (метод понижения степени)Скачать

3D Решите уравнение (метод понижения степени)

18+ Математика без Ху!ни. Дифференциальные уравнения. Однородное уравнение.Скачать

18+ Математика без Ху!ни. Дифференциальные уравнения. Однородное уравнение.
Поделиться или сохранить к себе: