Метанол (метиловый спирт) СН3ОН представляет бесцветную легкоподвижную жидкость с температурой кипения 64,65 °С, температурой кристаллизации -97,9 °С и плотностью 0,792 т/м 3 . Критическая температура метанола равна 239,65 °С. Метанол смешивается во всех отношениях с водой, спиртами, бензолом, ацетоном и другими органическими растворителями, образуя с некоторыми из них азеотропные смеси. Хорошо растворяет многие газы, в том числе оксиды углерода, ацетилен, этилен и метан, вследствие чего используется в технике для абсорбции примесей из технологических газов. Метанол является токсичным веществом, вызывая отравление через органы дыхания, кожу и при приеме внутрь, действуя на нервную и сосудистую системы. Предельно-допустимая концентрация метанола составляет 5 мг/м 3 . Прием внутрь человеческого организма 5 -10 мл метанола приводит к тяжелому отравлению, доза 30 мл и более может быть смертельной.
Метанол — сырье для многих производств органического синтеза. Основное количество его расходуется на получение формальдегида. Он служит промежуточным продуктом в синтезе сложных эфиров органических и неорганических веществ (диметилтерефталата, метилметакрилата, диметилсульфата), пентаэритрита. Его применяют в качестве метилирующего средства для получения метиламинов и диметиланилина, карбофоса, хлорофоса и других продуктов. Метанол используют также в качестве растворителя и экстрагента, в энергетических целях как компонент моторных топлив и для синтеза метил-трет-бутилового эфира — высокооктановой добавки к топливу. В последнее время наметились новые перспективные направления использования метанола, такие как производство уксусной кислоты, очистка сточных вод, производство синтетического протеина, конверсия в углеводороды с целью получения топлива.
В течение длительного времени метанол получали как продукт сухой перегонки древесины (отсюда его иногда применяемое название – древесный спирт). В настоящее время более 75 % мирового производства метанола получается исходя из природного газа – основного сырьевого источника. Традиционно это производство относится к азотной промышленности, поскольку получение синтез-газа (смеси водорода и оксида углерода (II)) осуществляется по технологии, аналогичной технологии получения синтез-газа в производстве синтетического аммиака.
1.11.1 Физико-химические основы процесса синтеза метанола
Реакция синтеза метанола из синтез-газа представляет гетерогенно-каталитическую обратимую экзотермическую реакцию, протекающую по уравнению:
Тепловой эффект реакции возрастает с повышением температуры и давления, составляя для условий синтеза величину 110,8 кДж.
Параллельно основной реакции протекают и побочные реакции:
где ΔН2 = 209 кДж;
где ΔН3 = 252 кДж;
а также продукционная реакция образования метанола из содержащегося в синтез-газе диоксида углерода:
Кроме этого, образовавшийся метанол может подвергаться вторичным превращениям по реакциям:
Синтез метанола из оксида углерода (II) и водорода сопровождается образованием целого ряда различных продуктов — метанола, изобутилового спирта, бензила, парафина, олеина и др. в зависимости от применяемого катализатора. Поэтому катализаторы синтеза метанола должны обладать высокой селективностью, а кроме того, устойчивостью против старения и большой механической прочностью.
Основная реакция и побочные реакции протекают с выделением тепла и уменьшением объема, но различаются величиной теплового эффекта и степенью контракции. Поэтому, хотя для всех этих реакций степень превращения возрастает с увеличением давления и понижением температуры, в наибольшей степени повышение давления влияет на равновесие основной реакции синтеза из оксида углерода (II) и водорода, для которой степень контракции максимальна и составляет 3 : 1. В то же время, понижение температуры ниже некоторого предела нецелесообразно, так как при низких температурах скорость процесса синтеза настолько мала, что не существует катализатора, который в этих условиях мог бы существенно ускорить достижение высокой степени превращения сырья.
Вследствие противоречивого влияния температуры на скорость процесса и равновесную степень превращения выход метанола за один проход реакционной смеси через реактор не превышает 20 %, что делает необходимой организацию циркуляционной технологической схемы синтеза.
Промышленные катализаторы синтеза метанола работают при высоких температурах. Температура процесса зависит главным образом от активности применяемого катализатора и варьируется в пределах от 250 до 420 °С. В соответствии с температурным режимом работы катализаторы синтеза метанола подразделяются на высокотемпературные и низкотемпературные катализаторы. Наибольшее распространение получили цинк-хромовые катализаторы и тройные низкотемпературные катализаторы с добавкой оксидов меди. Низкотемпературные катализаторы не обладают высокой селективностью и очень чувствительны к соединениям серы, поэтому их эффективное применение началось с 70-х годов прошлого столетия после создания систем глубокой очистки природного газа от соединений серы.
Высокотемпературные катализаторы, получаемые методом соосаждения оксидов цинка и хрома, например, катализатор СМС-4 состава 2,5 ZnO ∙ ZnCr2O4, термостойки, мало чувствительны к каталитическим ядам, причем отравляются обратимо, имеют высокую селективность, но активны только при высоких температурах 370 — 420 °С и давлениях 20 — 35 МПа. Низкотемпературные катализаторы, например, цинк-медь-алюминиевый состава ZnO ∙ CuO ∙ Al2O3 или цинк-медь-хромовый состава ZnО ∙ СиО ∙ Сг2О3, менее термостойки, необратимо отравляются каталитическими ядами, но проявляют высокую активность при относительно низких температурах 250 – 300 °С и давлениях 5 — 10 МПа, что более экономично. При пониженных температурах в метаноле-сырце снижается содержание различных примесей от 3 — 6 до 0,2 — 0,8 %, что упрощает последующую его очистку.
Оба типа катализаторов проявляют свою активность и селективность в узком интервале температур 20 – 30 °С. Исходя из температурного режима работы катализаторов, выбирается давление синтеза, которое тем больше, чем выше температура синтеза.
Наиболее вредной примесью в газе для синтеза метанола является пентакарбонил железа Fе(СО)5, который, разлагаясь на катализаторе, выделяет металлическое железо, что способствует образованию метана. Для очистки газа от пентакарбонила железа в системах синтеза метанола устанавливают угольные фильтры, а стальные стенки аппаратов футеруют медью, алюминием или серебром.
Рассмотрим влияние ряда технологических параметров на эффективность протекания процесса синтеза метанола из оксида углерода (II) и водорода. Скорость образования метанола зависит от концентрации компонентов исходной газовой смеси, времени контакта, температуры и давления.
При повышении давления выход метанола почти прямо пропорционально увеличивается и резко возрастает степень превращения оксида и диоксида углерода (при 380 °С):
Давление, МПа . 5 10 20 30 40
Выход СН3ОН, % об. .. . 0,37 1,56 5,54 9,31 11,68.
Следует заметить, что с увеличением давления более резкий рост равновесного выхода метанола наблюдается при повышенных температурах. Так, при изменении давления от 5 до 30 МПа равновесный выход метанола при 280 °С увеличивается в 2,4 раза, а при 380 °С — в 2,3 раза (отношение H2 : СО = 4 : 1).
С повышением температуры равновесный выход метанола понижается. Наиболее резкое понижение наблюдается при температурах выше 340°С. В этих условиях (при давлении 30 МПа) начинает снижаться степень превращения оксида и диоксида углерода в метанол, причем более резко для оксида углерода (ІІ):
Температура, °С . 250 300 340 360 380 400
Выход метанола, % об. …. 15,44 14,81 12,88 11,37 9,31 7,40
— по СО . 99,75 97,20 87,52 78,96 66,19 53,29
— по СО2 . 98,00 89,80 77,00 71,50 66,61 64,00.
При давлении 5 МПа и повышении температуры от 180 до 300 °С равновесный выход метанола снижается более чем в 7 paз (отношение Н2 : СО = 3,6, содержание диоксида углерода 6,0 % об.). При этом степень превращения оксида и диоксида углерода в метанол уменьшается с 75,3 до 14,6 %.
Большое значение для проведения процесса синтеза метанола имеет соотношение Н2 : СО в газовой смеси, поступающей на синтез. При поддержании стехиометрического соотношения, равного двум, образуется загрязненный метанол. Повышение содержания водорода уменьшает образование метана; чрезмерное снижение содержания оксида углерода приводит к значительному уменьшению выхода метанола (см. рисунок 1.7).
![]() |
Рисунок 1.7 — Зависимость степени конверсии оксида углерода (II) в метанол (1) и содержания метанола в газе (2) от мольного соотношения Н2 : СО в газовой смеси
Максимальная производительность наблюдается при соотношении Н2 : СО = 4. При синтезе метанола на медьсодержащем катализаторе в газовой смеси должно быть 3-15 % СО2, который участвует в фазовых превращениях катализатора и длительное время сохраняет его активность. При работе на цинк-хромовом катализаторе наличие СО2 не всегда желательно.
С увеличением объемной скорости поступающего газа содержание метанола в газе уменьшается. Однако за счет большего объема газа, проходящего за единицу времени через единицу объема катализатора, производительность его увеличивается (см. рисунок 1.8). В промышленных условиях вначале работы системы объемная скорость в колонне синтеза составляет 40000 — 45000 ч -1 , к концу работы ее снижают до 15000 — 20000 ч -1 из-за снижения активности катализатора.

Рисунок 1.8 – Зависимость производительности катализатора СНМ — 1 (1) и содержания метанола в газе на выходе из колонны синтеза (2) при концентрациях оксида и диоксида углерода, равных 8 % об. и водорода 20 % об.
В промышленных условиях синтез метанола протекает в присутствии инертных к данному процессу газов (метан, азот). Они в реакции не участвуют и не оказывают прямого влияния на равновесие реакции образования метанола. Однако наличие их в газе снижает парциальное (эффективное) давление реагирующих веществ, что ведет к уменьшению равновесного выхода метанола. Поэтому концентрацию инертных компонентов необходимо поддерживать на минимальном уровне.
Конденсация метанола из газовой смеси после его синтеза производится значительно легче, чем конденсация аммиака. При температурах 20 – 30 о С давление паров метанола над жидкостью очень мало, поэтому для конденсации метанола достаточно охлаждения газа при давлении 5 — 10 МПа водой, охлажденной до 20 – 25 о С. При этом степень конденсации составляет 95 — 98 %.
На основании изложенного следует отметить, что синтез метанола на цинк-хромовом катализаторе, который работает при 360 — 380 °С, целесообразно проводить только при давлениях выше 20 МПа. На низкотемпературных катализаторах, эксплуатируемых в температурном интервале 220 – 280 °С, возможна работа при давлениях ниже 10 Мпа.
1.11.2 Технологическая схема синтеза метанола
Многочисленные технологические схемы производства метанола включают три обязательных стадии:
— очистка синтез-газа от сернистых соединений, карбонилов железа и частиц компрессорного масла;
— собственно синтез метанола;
— очистка и ректификация метанола-сырца с получением готового продукта.
Ниже рассмотрена технологическая схема синтеза метанола при низком давлении (см. рисунок 1.9), который проводится на цинк-медь-алюминиевых или цинк-медь-хромовых катализаторах при температуре 250 – 300 °С и давлении 5 — 10 МПа. Использование в этом методе низкотемпературных катализаторов, активных при более низких давлениях, позволяет снизить энергозатраты на сжатие газа и уменьшить степень рециркуляции не прореагировавшего сырья, то есть увеличить степень его конверсии. Однако, в этом методе требуется особо тонкая очистка исходного газа от различных соединений, отравляющих катализатор.
![]() |
1- сепаратор; 2- циркуляционный центробежный компрессор; 3- сепаратор-влагоотделитель; 4 – теплообменник; 5 – фильтр; 6 – реактор синтеза; 7 – воздушный холодильник; 8 – сепаратор; 9 — сборник
Рисунок 1.9 – Технологическая схема синтеза метанола
Из цеха получения синтез-газа конвертированный газ с давлением 6 – 11 МПа поступает в отделение синтеза метанола. Свежий газ проходит сепаратор-влагоотделитель (3) и вместе с циркуляционным газом, подаваемым циркуляционным центробежным компрессором (2), поступает в темплообменник (4), где подогревается за счет теплоты газа, выходящего из реактора синтеза (6). Подогретые газы проходят затем фильтр (5) очистки от пентакарбонила железа Fe(CO)5. Фильтр заполнен гравием и активированным углем.
Очищенный и подогретый газ направляется в реактор синтеза (6). В реакторе из смеси газов водорода, оксида углерода (II) и диоксида углерода на медьсодержащем катализаторе при температуре 130 – 280 о С и давлении около 10 МПа образуется метанол. Из реактора синтеза горячий непрреагировавший газ с парами метанола проходит теплообменник (4), а затем охлаждается в воздушном холодильнике (7) и, если необходимо, в водяном холодильнике-конденсаторе. Сконденсировавшийся метанол отделяется в сепараторе (8) и собирается в сборнике (9), откуда направляется на ректификацию. Непрореагировавший газ циркуляционным центробежным компрессором (2) направляется в цикл. При накоплении в цикле более 4 — 6 % об. инертных примесей (СН4, Аг, N2) часть циркуляционного газа отводится после сепаратора (1) в коллектор природного газа отделения конверсии.
Теоретический расход газов на 1 т метанола составляет 700 м 3 оксидов углерода и 1400 м 3 водорода. Практически же суммарно расходуется 2450 — 2500 м 3 газов. Степень конверсии газа в метанол составляет 86 — 88 % от теоретически рассчитанной.
Возросшая потребность в метаноле вызвала разработку новых перспективных методов его производства. К ним относятся:
1) Синтез в трехфазной системе «газ—жидкость—твердый катализатор», проводимый в суспензии из тонкодисперсного катализатора и инертной жидкости, через которую барботирует синтез-газ. В трехфазной системе может бытъ обеспечено более благоприятное состояние равновесия системы, что позволяет повысить равновесную концентрацию метанола в реакционной смеси до 15 % вместо 5 %, доведя степень конверсии оксида углерода (II) до 35 % вместо 15 %.
2) Синтез метанола прямым окислением метана воздухом на цинк-никель-кадмиевом катализаторе, который позволяет использовать в качестве сырья природный газ непосредственно из скважин.
3) Совместное производство из синтез-газа метанола и спиртов С2—С4 в виде так называемой «спиртовой композиции», используемой как добавка к моторному топливу.
4) Совместное производство метанола и аммиака на основе конвертированного газа по малоотходным энерготехнологическим схемам, обеспечивающим рациональное и комплексное использование сырья.
- Метанол: химические свойства и получение
- Строение метанола
- Водородные связи и физические свойства метанола
- Изомерия метанола
- Химические свойства метанола
- 1.1. Взаимодействие с раствором щелочей
- 1.2. Взаимодействие с металлами (щелочными и щелочноземельными)
- 2. Реакции замещения группы ОН
- 2.1. Взаимодействие с галогеноводородами
- 2.2. Взаимодействие с аммиаком
- 2.3. Этерификация (образование сложных эфиров)
- 2.4. Взаимодействие с кислотами-гидроксидами
- 3. Реакции замещения группы ОН
- 3.2. Межмолекулярная дегидратация
- 4. Окисление метанола
- 4.1. Окисление оксидом меди (II)
- 4.2. Окисление кислородом в присутствии катализатора
- 4.3. Жесткое окисление
- 4.4. Горение метанола
- 5. Дегидрирование спиртов
- Получение метанола
- 1. Щелочной гидролиз галогеналканов
- 2. Гидратация алкенов
- 3. Гидрирование карбонильных соединений
- 4. Промышленное получение метанола из «синтез-газа»
- Получение метанола из угарного газа и водорода уравнение реакции
- 🌟 Видео
Видео:Получение метана из углекислого газа и водородаСкачать

Метанол: химические свойства и получение
Метанол CH3OH, метиловый спирт – это органическое вещество, предельный одноатомный спирт .
Общая формула предельных нециклических одноатомных спиртов: CnH2n+2O.
Видео:37. Водород. Методы полученияСкачать

Строение метанола
В молекулах спиртов, помимо связей С–С и С–Н, присутствуют ковалентные полярные химические связи О–Н и С–О.
| Электроотрицательность кислорода (ЭО = 3,5) больше электроотрицательности водорода (ЭО = 2,1) и углерода (ЭО = 2,4). |
Электронная плотность обеих связей смещена к более электроотрицательному атому кислорода:
| Атом кислорода в спиртах находится в состоянии sp 3 -гибридизации. |
В образовании химических связей с атомами C и H участвуют две 2sp 3 -гибридные орбитали, а еще две 2sp 3 -гибридные орбитали заняты неподеленными электронными парами атома кислорода.
Поэтому валентный угол C–О–H близок к тетраэдрическому и составляет почти 108 о .
Водородные связи и физические свойства метанола
Спирты образуют межмолекулярные водородные связи. Водородные связи вызывают притяжение и ассоциацию молекул спиртов:
Поэтому метанол – жидкость с относительно высокой температурой кипения (температура кипения метанола +64,5 о С).
Водородные связи образуются не только между молекулами метанола, но и между молекулами метанола и воды. Поэтому метанол очень хорошо растворимы в воде. Молекулы метанола в воде гидратируются:
| Чем больше углеводородный радикал, тем меньше растворимость спирта в воде. Чем больше ОН-групп в спирте, тем больше растворимость в воде. |
Метанол смешивается с водой в любых соотношениях.
Видео:Химия 9 класс (Урок№18 - Угарный газ. Углекислый газ.)Скачать

Изомерия метанола
Для метанола не характерно наличие структурных изомеров – ни изомеров углеродного скелета, ни изомеров положения гидроксильной группы, ни межклассовых изомеров.
Видео:История открытия водорода. Получение и физические свойства водорода. Видеоурок по химии 8 классСкачать

Химические свойства метанола
Метанол – органическое вещество, молекула которого содержит, помимо углеводородной цепи, одну группу ОН.
1. Кислотные свойства метанола
| Метанол – неэлектролит, в водном растворе не диссоциирует на ионы; кислотные свойства у него выражены слабее, чем у воды. |
1.1. Взаимодействие с раствором щелочей
Метанол с растворами щелочей практически не реагирует, т. к. образующиеся алкоголяты почти полностью гидролизуются водой.
Равновесие в этой реакции так сильно сдвинуто влево, что прямая реакция не идет. Поэтому метанол не взаимодействуют с растворами щелочей.
1.2. Взаимодействие с металлами (щелочными и щелочноземельными)
Метанол взаимодействуют с активными металлами (щелочными и щелочноземельными). При этом образуются алкоголяты. При взаимодействии с металлами спирты ведут себя, как кислоты.
| Например, метанол взаимодействует с калием с образованием метилата калия и водорода . |
Метилаты под действием воды полностью гидролизуются с выделением спирта и гидроксида металла.
| Например, метилат калия разлагается водой: |
CH3OK + H2O → CH3-OH + KOH
Видео:Водород. 8 класс.Скачать

2. Реакции замещения группы ОН
2.1. Взаимодействие с галогеноводородами
При взаимодействии метанола с галогеноводородами группа ОН замещается на галоген и образуется галогеналкан.
| Например, метанол реагирует с бромоводородом. |
2.2. Взаимодействие с аммиаком
Гидроксогруппу спиртов можно заместить на аминогруппу при нагревании спирта с аммиаком на катализаторе.
| Например, при взаимодействии метанола с аммиаком образуется метиламин. |
2.3. Этерификация (образование сложных эфиров)
Метанол вступает в реакции с карбоновыми кислотами, образуя сложные эфиры.
| Например, метанол реагирует с уксусной кислотой с образованием метилацетата (метилового эфира уксусной кислоты): |
2.4. Взаимодействие с кислотами-гидроксидами
Спирты взаимодействуют и с неорганическими кислотами, например, азотной или серной.
| Например, метанол взаимодействует с азотной кислотой : |
Видео:НШ | Химия. Способы получения водорода и кислородаСкачать

3. Реакции замещения группы ОН
В присутствии концентрированной серной кислоты от метанола отщепляется вода. Процесс дегидратации протекает по двум возможным направлениям: внутримолекулярная дегидратация и межмолекулярная дегидратация.
3.2. Межмолекулярная дегидратация
При низкой температуре (меньше 140 о С) происходит межмолекулярная дегидратация по механизму нуклеофильного замещения: ОН-группа в одной молекуле спирта замещается на группу OR другой молекулы. Продуктом реакции является простой эфир.
| Например, при дегидратации метанола при температуре до 140 о С образуется диметиловый эфир: |
Видео:Химия 11 класс (Урок№17 - Принципы химического производства. Промышленное получение металлов.)Скачать

4. Окисление метанола
Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).
В зависимости от интенсивности и условий окисление можно условно разделить на каталитическое, мягкое и жесткое.
| Метанол окисляется сначала в формальдегид, затем в углекислый газ: Метанол → формальдегид → углекислый газ |
Типичные окислители — оксид меди (II), перманганат калия KMnO4, K2Cr2O7, кислород в присутствии катализатора.
Легкость окисления спиртов уменьшается в ряду:
метанол
4.1. Окисление оксидом меди (II)
Метанол можно окислить оксидом меди (II) при нагревании. При этом медь восстанавливается до простого вещества. Метанол окисляется до метаналя.
| Например, метанол окисляется оксидом меди до муравьиного альдегида |
4.2. Окисление кислородом в присутствии катализатора
Метанол можно окислить кислородом в присутствии катализатора (медь, оксид хрома (III) и др.). Метанол окисляется до метаналя.
4.3. Жесткое окисление
При жестком окислении под действием перманганатов или соединений хрома (VI) метанол окисляется до углекислого газа.
| Спирт/ Окислитель | KMnO4, кислая среда | KMnO4, H2O, t |
| Метанол СН3-ОН | CO2 | K2CO3 |
| Например, при взаимодействии метанола с перманганатом калия в серной кислоте образуется углекислый газ |
4.4. Горение метанола
При сгорании спиртов образуются углекислый газ и вода и выделяется большое количество теплоты.
| Например, уравнение сгорания метанола: |
Видео:ВСЕ ПРО АЛКАНЫ за 8 минут: Химические Свойства и ПолучениеСкачать

5. Дегидрирование спиртов
При нагревании спиртов в присутствии медного катализатора протекает реакция дегидрирования. При дегидрировании метанола образуется альдегид.
Видео:Получение водорода паровым реформингомСкачать

Получение метанола
Видео:Водород/химические свойства водорода/8 классСкачать

1. Щелочной гидролиз галогеналканов
При взаимодействии галогеналканов с водным раствором щелочей образуются спирты. Атом галогена в галогеналкане замещается на гидроксогруппу.
| Например, при нагревании хлорметана с водным раствором гидроксида натрия образуется метанол |
Видео:Оксид углерода(II). Угарный газ. Состав. Строение. Получение. СвойстваСкачать

2. Гидратация алкенов
Гидратация (присоединение воды) алкенов протекает в присутствии минеральных кислот. При присоединении воды к алкенам образуются спирты.
Однако получить метанол гидратацией алкенов нельзя.
Видео:Получение МЕТАНОЛАСкачать

3. Гидрирование карбонильных соединений
Присоединение водорода к альдегидам и кетонам протекает при нагревании в присутствии катализатора. При гидрировании альдегидов образуются первичные спирты, при гидрировании кетонов — вторичные спирты, а из формальдегида образуется метанол.
| Например, при гидрировании формальдегида образуется метанол |
CH2=O + H2 → CH3-OH
Видео:Получение угарного газаСкачать

4. Промышленное получение метанола из «синтез-газа»
Каталитический синтез метанола из монооксида углерода и водорода при 300-400°С и давления 500 атм в присутствии смеси оксидов цинка, хрома и др.
Сырьем для синтеза метанола служит «синтез-газ» (смесь CO и H2), обогащенный водородом:
Видео:Химические свойства алканов | Химия ЕГЭ для 10 класса | УмскулСкачать

Получение метанола из угарного газа и водорода уравнение реакции
Из смеси 1 м 3 угарного газа и 2 м 3 водорода получен 1 кг метанола. Чему равен выход метанола (в %)? Объёмы газов даны при нормальных условиях. (Запишите число с точностью до целых.)
Синтез метанола описывается следующим уравнением реакции:
Рассчитаем теоретически возможное количество полученного метанола. Исходное количество газов было в эквимолярном количестве, значит нет избытка/недостатка, расчёт можно вести по любому из реагентов:
🌟 Видео
7.3. Спирты: Способы получения. ЕГЭ по химииСкачать

Способы получения предельных одноатомных спиртовСкачать

ВОДОРОД | Химия | От А до Я простым языкомСкачать

Получение углекислого газа и тест на его обнаружениеСкачать

Метанол - Мировая революция (Док. фильм) / RUSСкачать

Метан. Состав. Строение. Свойства. Получение и применение метанаСкачать
















