Параллельные методы решения систем линейных уравнений

Параллельные методы решения систем линейных уравнений

Кафедра : Э лектронных вычислительных машин

Специальность : Компьютерные системы и сети

Тема выпускной работы :

Параллельные метод ы решения систем линейных алгебраических уравнений на вычислительном кластере

Руководитель : Ладыженский Юрий Валентинович, доцент, к.т.н.

Параллельные методы решения систем линейных уравнений

Параллельные методы решения систем линейных уравнений
Параллельные методы решения систем линейных уравнений
Параллельные методы решения систем линейных уравнений
Параллельные методы решения систем линейных уравнений
Параллельные методы решения систем линейных уравнений

Параллельные методы решения систем линейных уравнений

» Параллельные метод ы решения систем линейных алгебраических уравнений на вычислительном кластере «

На сегодняшний день производительность вычислительных систем во многом увеличивается не столько за счет увеличения частоты работы устройств, сколько за счет привлечения параллельной обработки 3. Данный процесс затрагивает как создание аппаратных средств (процессоры с несколькими АЛУ, коммуникационное оборудование для многопроцессорных систем и т.д.), так и разработку эффективных алгоритмов для различных параллельных платформ. Современные параллельные системы весьма дороги и используются для решения задач, требующих больших вычислительных ресурсов: предсказания погоды и климата, построения полупроводниковых приборов, исследования генома человека и т.д.

Как бы то ни было, существует возможность создания достаточно дешевой и относительно эффективной параллельной системы на базе обычных компьютеров, соединенных при помощи коммуникационного оборудования и, таким образом, образующих один вычислительный ресурс. Такие системы называются кластерами и относятся к классу параллельных систем с распределенной памятью [1,3]. Узким местом кластеров является то, что для взаимодействия отдельных узлов привлекается наиболее распространенное и дешевое коммуникационное оборудование (Fast Ethernet), которое использует общую среду передачи данных и обладает не очень большой пропускной способностью (в сравнении со скоростью обработки данных современными процессорами). Поэтому круг задач, решаемых на подобных системах, ограничивается задачами с небольшим числом обменов по сравнению с количеством вычислений. Неоспоримым преимуществом подобных систем является их относительная дешевизна и фактическое наличие больших компьютерных классов во многих учебных заведениях. Для программирования подобных систем применяются системы передачи сообщений, в которых отдельные компьютеры взаимодействуют посредством передачи и приема данных.

На сегодняшний день наиболее популярным стандартом является MPI ( message passing interface — интерфейс передачи сообщений) 2. Конкретные реализации MPI стандарта создаются производителями программного обеспечения и поставляются вместе с оборудованием. Большинство реализаций стандарта MPI называются MPICH . Этот стандарт описывает имена, вызовы и результат работы процедур. Для каждой конкретной параллельной системы с передачей сообщений MPI имеет свою оптимизированную реализацию, а правильно написанная программа переносима между различными MPI системами на уровне исходных кодов. Для написания MPI программ используются современные языки программирования, такие как C/C++ и Fortran.

Исследования в области MPI программирования ведутся в двух направлениях: создание эффективных параллельных алгоритмов и создание эффективных реализаций MPI стандарта для кластерных систем. Параллельные алгоритмы разрабатываются с учетом низкой скорости передачи данных, в связи с этим предпочтение отдается методам с наименьшим числом обменов. Текущая реализация MPI для кластерных систем осуществляет обмены посредством протокола TCP / IP [4], что приводит к невозможности эффективного использования широковещательных обменов, которые в текущей реализации осуществляются посредством парных обменов. Поэтому сегодня ведутся работы по созданию MPI реализации с реальным использованием широковещательных пересылок. Еще одна возможность увеличения производительности MPI программ – совмещение обменов и вычислений, однако для используемой в работе реализации данная техника не приводит к существенным улучшениям.

Данная работа посвящена созданию эффективных параллельных алгоритмов метода сопряженных градиентов для симметрических положительно определенных пятидиагональных систем линейных алгебраических уравнений. Системы подобного рода появляются при конечноразностной аппроксимации дифференциальных уравнений в частных производных. На сегодняшний день разработано большое число эффективных последовательных алгоритмов данного типа [1]. Однако большинство из них неприемлемо для параллельной реализации. Это связано с их рекурсивным характером, а, следовательно, малым параллелизмом.

Целью данной работы является исследование существующих последовательных и параллельных алгоритмов метода сопряженных градиентов, выделение из них, а также создание собственных эффективных алгоритмов метода сопряженных градиентов, пригодных для применения на кластерных системах.

В ходе работы было исследовано большое число алгоритмов метода сопряженных градиентов. При выборе метода для исследования предпочтение отдавалось методам с минимальным числом межпроцессорных обменов. В результате этого было выделено три класса методов: блочно-диагональные методы, полиномиальные методы и методы аппроксимации обратной матрицы.

Результаты исследования показали, что при реализации задачи на кластерах больших размеров целесообразно использовать методы с минимальным числом обменов, а на кластерах малых размеров — методы, обладающие лучшей сходимостью.

Кластер — это связанный набор полноценных компьютеров, используемый в качестве единого вычислительного ресурса [1,2].

В качестве вычислительных узлов кластера используются доступные на рынке одно-, двух- или четырехпроцессорные компьютеры. Каждый узел такой системы работает под управлением своей копии операционной системы, в качестве которой чаще всего используются стандартные операционные системы: Windows, Linux, Solaris и т.п. Состав и мощность узлов кластера может меняться, давая возможность создавать неоднородные системы [1,2].

В качестве коммуникационного протокола в таких системах используются стандартные протоколы ЛВС, характеризуемые низкой стоимостью и низкой скоростью передачи данных. Основные характеристики коммуникационных сетей: латентность – время начальной задержки при посылке сообщения и пропускная способность сети, определяющая скорость передачи информации по каналам связи [1,2]. Наличие латентности определяет тот факт, что максимальная скорость передачи данных по сети не может быть достигнута на сообщениях с небольшой длиной. Чаще всего используется сеть Fast Ethernet, основное достоинство которой – низкая стоимость оборудования. Однако большие накладные расходы на передачу сообщений в рамках Fast Ethernet приводят к серьезным ограничениям на спектр задач, которые можно эффективно решать на таком кластере. Если от кластера требуется большая универсальность, то нужно переходить на более производительные коммуникационные сети, например, SCI, Myrinet и т.п.

В качестве средств организации параллельного программирования в кластерах используются различные системы передачи сообщений, посредством которых осуществляется взаимодействие узлов кластера. Наиболее распространенным на сегодняшний день стандартом программирования для систем с передачей сообщений является MPI . Конкретная MPI реализация создается производителями параллельных систем и поставляется вместе с оборудованием.

Кластер кафедры ЭВМ , на котором проводились исследования (рис 1.1)

Параллельные методы решения систем линейных уравнений

Рис1. Структура кластера

Структура кластера состоит из :

· 1 главный узел ( head node ) ‏

· 11 вычислительных узлов ( compute nodes ) ‏

· c етевой интерфейс Gigabit Ethernet , 1 Гбит/ c

· кластерное ПО – Microsot Windows Compute Cluster Server 2003

· Языки программирования – С, С++, Fortran

· Параллельное программирование – MPI

Технические характеристики кластера

Характеристики главного и вычислительных узлов

1. Процессор: Intel Pentium Core2 64bit, 1.86 ГГц

2. Оперативная память: 1 Гб

3. Жесткий диск: 80 Гб

4. Сетевой интерфейс: Gigabit Ethernet , 1 Гбит/с

5. Операционная система : Microsoft Windows Server 2003 Enterprise x64 Edition SP2

2.Интерфейс передачи данных (message passing interface – MPI)

Для организации информационного взаимодействия между процессорами в самом минимальном варианте достаточно операций приема и передачи данных (при этом, конечно, должна существовать техническая возможность коммуникации между процессорами – каналы или линии связи). В MPI существует целое множество операций передачи данных. Они обеспечивают разные способы пересылки данных. Именно данные возможности являются наиболее сильной стороной MPI (об этом, в частности, свидетельствует и само название MPI).

Подобный способ организации параллельных вычислений получил наименование модели «одна программа множество процессов» (single program multiple processes or SPMP1)).

разработкой параллельных программ с применением MPI 4.

· MPI позволяет в значительной степени снизить остроту проблемы переносимости параллельных программ между разными компьютерными системами – параллельная программа, разработанная на алгоритмическом языке C или FORTRAN с использованием библиотеки MPI, как правило, будет работать на разных вычислительных платформах;

· MPI содействует повышению эффективности параллельных вычислений, поскольку в настоящее время практически для каждого типа вычислительных систем существуют реализации библиотек MPI, в максимальной степени учитывающие возможности компьютерного оборудования;

· MPI уменьшает, в определенном плане, сложность разработки параллельных программ, т. к., с одной стороны, а с другой стороны, уже имеется большое количество библиотек параллельных методов, созданных с использованием MPI.

3.Классификация параллельных методов решения СЛАУ

Метод Гаусса–Зейделя . Пусть решаемая система представлена в виде 2

Параллельные методы решения систем линейных уравнений

Итерационная схема Гаусса–Зейделя следует из этого представления системы:

Параллельные методы решения систем линейных уравнений

Параллельные методы решения систем линейных уравнений

Приведем метод Гаусса–Зейделя к стандартному виду:

Параллельные методы решения систем линейных уравнений

Стандартная форма метода позволяет выписать его итерационную матрицу и провести над ней очевидные преобразования:

Параллельные методы решения систем линейных уравнений

Представим метод Гаусса–Зейделя в координатной форме для системы общего вида:

Параллельные методы решения систем линейных уравнений

Координатная форма метода Гаусса–Зейделя отличается от координатной формы метода Якоби лишь тем, что первая сумма в правой части итерационной формулы содержит компоненты вектора решения не на k-й, а на (k+1)-й итерации.

Параллельный алгоритм метода Гаусса–Зейделя

Отличие метода Гаусса–Зейделя от метода простой итерации заключается в том, что новые значения вектора вычисляются не только на основании значений предыдущей итерации, но и с использованием значений уже вычисленных на данной итерации .

Текст последовательной программы для вычисления новых значений компонент вектора представлен ниже.

void GaussZeidel (double *A, double *X, int size)

/* задана матрица А, начальное приближение вектора Х,

размерность матрицы size, вычисляем новое значение вектора Х */

Sum += A[ind(i,j,size)] * X[j];

Sum += A[ind(i,j,size)] * X[j];

X[i]=(A[ind(i,size,size)] – Sum) / A[ind(i,i,size)];

Рис. 2. Процедура вычисления значений вектора по методу Гаусса-Зейделя

Следующая система уравнений описывает метод Гаусса-Зейделя .

Параллельные методы решения систем линейных уравнений

Вычисления каждой координаты вектора зависят от значений, вычисленных на предыдущей итерации, и значений координат вектора вычисленных на данной итерации. Поэтому нельзя реализовывать параллельный алгоритм, аналогичный методу простой итерации: каждый процесс не может начинать вычисления пока, не закончит вычисления предыдущий процесс.

Можно предложить следующий модифицированный метод Гаусса–Зейделя для параллельной реализации. Разделим вычисления координат вектора по процессам аналогично методу простой итерации. Будем в каждом процессе вычислять свое количество координат вектора по методу Гаусса Зейделя, используя только вычисленные значения вектора данного процесса. Различие в параллельной реализации по сравнению с методом простой итерации заключается только в процедуре вычисления значений вектора (вместо процедуры Iter_Jacoby используем процедуру Gauss-Seidel ).

void GaussZeidel(int size, int MATR_SIZE, int first)

/* задана матрица А, размерность матрицы MATR_SIZE, количество

вычисляемых элементов вектора в данном процессе size, вычисляем новые

значения вектора Х с номера first, используя значения вектора Х */

Sum += A[ind(i,j,MATR_SIZE)] * X[j];

for (j = i+1+first; j

Sum += A[ind(i,j,MATR_SIZE)] * X[j];

Рис. 1. Процедура вычисления значений вектора по методу Гаусса–Зейделя(параллельная версия)

• Разработка программной системы для параллельного решения СЛАУ на кластере

• Сравнение эффективности различных параллельных методов решения СЛАУ на кластере

1. Программирование для многопроцессорных систем в стандарте MPI: Пособие / Г. И. Ш паковский, Н. В. Серикова. – Мн.: БГУ, 2002. – 323с.

2. Теория и практика параллельных вычислений: учебное пособие/ В.П.Гергель.- М.: Интернет- Университет Информационных технологий; Бином. Лаборатория знаний, 2007.-423с.

3. Компьютерные сети. Принципы, технологии, протоколы / В. Г. Олифер, Н. А. Олифер. – СПб: Питер, 2001. – 672с.

4. Параллельное программирование с использованием Open MP.-М.: Бином. Лаборатория знаний Интуит., 2008.- 118с.

5. Group W, Lusk E, Skjellum A. Using MPI. Portable Parallel Programming with the Message-Passing Interface. — MIT Press, 1994. (http://www.mcs.anl.gov/mpi/index.html)

6. Параллельные информационные технологии: учебное пособие/ А.Б. Барский- M .: Интернет- Университет Информационных технологий; Бином. Лаборатория знаний, 2007.-504с.

7. Корнеев В.Д. Параллельное программирование в MPI. — Москва-Ижевск: Институт компьютерных исследований, 2003. — 304 с.

8 . Миллер Р., Боксер Л. Последовательные и параллельные алгоритмы: Общий подход. — М.: БИНОМ. Лаборатория знаний, 2006. — 406 с.

Видео:Матричный метод решения систем уравненийСкачать

Матричный метод решения систем уравнений

Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Содержание:

Видео:ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод ПодстановкиСкачать

ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод Подстановки

Методы решения систем линейных алгебраических уравнений (СЛАУ)

Метод Крамера

Определение: Системой линейных алгебраических уравнений (СЛАУ) называется выражение Параллельные методы решения систем линейных уравнений

Определение: Определитель, составленный из коэффициентов при неизвестных, называется главным определителем системы Параллельные методы решения систем линейных уравнений

Крамер предложил следующий метод решения СЛАУ: умножим главный определитель на Параллельные методы решения систем линейных уравненийдля этого умножим все элементы первого столбца на эту неизвестную: Параллельные методы решения систем линейных уравнений

Второй столбец умножим на Параллельные методы решения систем линейных уравненийтретий столбец — на Параллельные методы решения систем линейных уравнений-ый столбец — на Параллельные методы решения систем линейных уравненийи все эти произведения прибавим к первому столбцу, при этом произведение Параллельные методы решения систем линейных уравненийне изменится:

Параллельные методы решения систем линейных уравнений

Согласно записи СЛАУ первый столбец получившегося определителя представляет собой столбец свободных коэффициентов, т.е. Параллельные методы решения систем линейных уравнений

Определение: Определитель Параллельные методы решения систем линейных уравненийназывается первым вспомогательным определителем СЛАУ.

Поступая аналогично тому, как описано выше, найдем все вспомогательные определители СЛАУ: Параллельные методы решения систем линейных уравнений

31. Для того чтобы найти вспомогательный определитель i, надо в главном определителе СЛАУ заменить столбец i на столбец свободных коэффициентов.

Определение: Полученные выше соотношения называются формулами Крамера. Используя формулы Крамера, находят неизвестные величины Параллельные методы решения систем линейных уравненийПроанализируем полученные формулы:

  • если главный определитель системы отличен от нуля (Параллельные методы решения систем линейных уравнений), то система имеет единственное решение;
  • если главный определитель системы равен нулю (Параллельные методы решения систем линейных уравнений), а хотя бы один из вспомогательных определителей отличен от нуля ( Параллельные методы решения систем линейных уравненийили Параллельные методы решения систем линейных уравнений, или, . или Параллельные методы решения систем линейных уравнений), то система не имеет решений (деление на нуль запрещено);
  • если все определители системы равны нулю (Параллельные методы решения систем линейных уравнений), то система имеет бесчисленное множество решений.

Пример:

Решить СЛАУ методом Крамера Параллельные методы решения систем линейных уравнений

Решение:

Прежде всего, обращаем внимание на то, что в последнем уравнении переменные записаны в неправильном порядке, в этом случае говорят, что СЛАУ записана в ненормализованном виде. Нормализуем СЛАУ, для чего запишем неизвестные в последнем уравнении системы в правильном порядке, чтобы одноименные неизвестные были записаны друг под другом

Параллельные методы решения систем линейных уравнений

Найдем главный определитель СЛАУ (раскрываем по первой строке) Параллельные методы решения систем линейных уравнений

Так как главный определитель системы отличен от нуля, то СЛАУ имеет единственное решение. Найдем три вспомогательных определителя Параллельные методы решения систем линейных уравнений

Воспользуемся формулами Крамера

Параллельные методы решения систем линейных уравнений

Замечание: После нахождения решения СЛАУ надо обязательно провести проверку, для чего найденные числовые значения неизвестных подставляется в нормализованную систему линейных алгебраических уравнений.

Выполним проверку Параллельные методы решения систем линейных уравненийОтсюда видно, что СЛАУ решена верно.

Матричный способ решения СЛАУ

Для решения СЛАУ матричным способом введем в рассмотрение матрицу, составленную из коэффициентов при неизвестных Параллельные методы решения систем линейных уравненийматpицы-столбцы неизвестных Параллельные методы решения систем линейных уравненийи свободных коэффициентов Параллельные методы решения систем линейных уравнений

Тогда СЛАУ можно записать в матричном виде Параллельные методы решения систем линейных уравненийМатричный способ решения СЛАУ состоит в следующем: умножим слева матричное уравнение на обратную матрицу Параллельные методы решения систем линейных уравненийк матрице А, получим Параллельные методы решения систем линейных уравненийв силу того, что произведение Параллельные методы решения систем линейных уравненийнайдем Параллельные методы решения систем линейных уравненийТаким образом, для нахождения неизвестных матричным способом, надо найти обратную к А матрицу Параллельные методы решения систем линейных уравнений после чего надо умножить эту матрицу на матрицу-столбец свободных коэффициентов.

Пример:

Решить СЛАУ матричным способом Параллельные методы решения систем линейных уравнений

Решение:

Введем в рассмотрение следующие матрицы Параллельные методы решения систем линейных уравнений

Найдем матрицу Параллельные методы решения систем линейных уравнений(см. Лекцию № 2): найдем детерминант матрицы А.

Пример:

Параллельные методы решения систем линейных уравнений

Решение:

Найдем алгебраические дополнения всех элементов Параллельные методы решения систем линейных уравнений Параллельные методы решения систем линейных уравненийЗапишем обратную матрицу Параллельные методы решения систем линейных уравнений(в правильности нахождения обратной матрицы убедиться самостоятельно). Подействуем пай денной матрицей на матрицу-столбец свободных коэффициентов В:Параллельные методы решения систем линейных уравнений

Отсюда находим, что х = 1; y = l; z = l.

Метод Гаусса

Метод Гаусса или метод исключения неизвестных состоит в том, чтобы за счет элементарных преобразований привести СЛАУ к треугольному виду. Покажем использование расширенной матрицы, составленной из коэффициентов при неизвестных и расширенной за счет столбца свободных коэффициентов, для приведения СЛАУ к треугольному виду на примере системы, рассматриваемой в этой лекции. Расширенная матрица для СЛАУ имеет вид: Параллельные методы решения систем линейных уравнений

Замечание: В методе Гаусса желательно, чтобы первая строка расширенной матрицы начиналась с единицы.

Обменяем в расширенной матрице первую и вторую строки местами, получим Параллельные методы решения систем линейных уравненийПриведем матрицу к треугольному виду, выполнив следующие преобразования: умножим элементы первой строки на (-2) и прибавим к соответствующим элементам второй строки Параллельные методы решения систем линейных уравненийРазделим все элементы второй строки на (-5), получим эквивалентную матрицу Параллельные методы решения систем линейных уравнений

Умножим элементы первой строки на (—1) и прибавим к соответствующим элементам третьей строки Параллельные методы решения систем линейных уравненийРазделим все элементы третьей строки на (-3), получим Параллельные методы решения систем линейных уравненийТаким образом, эквивалентная СЛАУ имеет вид (напомним, что первый столбец это коэффициенты при неизвестной х, второй — при неизвестной у, третий — при неизвестной z, а за вертикальной чертой находится столбец свободных коэффициентов):

Параллельные методы решения систем линейных уравнений

Из первого уравнения находим, что х = 1.

Вывод: Из вышеизложенного материала следует, что вне зависимости от

способа решения СЛАУ всегда должен получаться один и тот же ответ.

Замечание: После нахождения решения СЛАУ надо обязательно выполнить проверку, то есть подставить полученные значения неизвестных в заданную СЛАУ и убедиться в тождественности левой части всех равенств системы соответствующим правым частям. Отметим, что задание СЛАУ всегда верно, то есть, если проверка показывает нарушение оговоренной тождественности, то надо искать ошибку в проведенных вычислениях.

Ранг матрицы. Теорема Кронекера-Капелли

Определение: Рангом матрицы Параллельные методы решения систем линейных уравненийназывается наивысший порядок отличного от нуля минора этой матрицы.

Если Параллельные методы решения систем линейных уравненийто среди всевозможных миноров этой матрицы есть хотя бы один минор порядка r, который отличен от нулю, а все миноры порядков больших, чем r, равны нулю.

При вычислении ранга необходимо начинать вычислять миноры 2 порядка, затем миноры 3 порядка и так далее, пока не будут найдены миноры, обращающиеся в нуль. Если все миноры порядка p равны нулю, то и все миноры, порядок которых больше p, равны нулю.

Пример:

Найти ранг матрицы Параллельные методы решения систем линейных уравнений

Решение:

Очевидно, что среди миноров второго порядка есть миноры отличные от нуля, например, Параллельные методы решения систем линейных уравненийсреди миноров третьего порядка также есть миноры, которые не равны нулю, например, Параллельные методы решения систем линейных уравненийОчевидно, что определитель четвертого порядка равен нулю, так как он будет содержать строку, состоящую из одних нулей (см. свойство Параллельные методы решения систем линейных уравненийдля определителей). Следовательно, ранг матрицы А равен 3.

Теорема Кронекера-Капелли (критерий совместности СЛАУ). Для совместности системы линейных алгебраических уравнений (СЛАУ) необходимо и достаточно, чтобы ранг расширенной матрицы совпадал с рангом основной матрицы, составленной из коэффициентов при неизвестных величинах.

Видео:Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

Следствия из теоремы Кронекера — Капелли

Следствие: Если ранг матрицы совместной системы равен числу неизвестных, то система имеет единственное решение (то есть она определенная).

Следствие: Если ранг матрицы совместной системы меньше числа неизвестных, то система имеет бесчисленное множество решений (т.е. она неопределенная).

В случае неопределенной системы решения ищут следующим образом: выбираются главные неизвестные, число которых равно рангу, а остальные неизвестные считаются свободными; далее главные неизвестные выражаются через свободные и получают множество решений, зависящих от свободных неизвестных. Это множество решений называется общим решением системы. Придавая свободным неизвестным различные произвольные значения, получим бесчисленное множество решений, каждое из которых называется частным решением системы.

Рекомендую подробно изучить предметы:
  1. Математика
  2. Алгебра
  3. Линейная алгебра
  4. Векторная алгебра
  5. Высшая математика
  6. Дискретная математика
  7. Математический анализ
  8. Математическая логика
Ещё лекции с примерами решения и объяснением:
  • Скалярное произведение и его свойства
  • Векторное и смешанное произведения векторов
  • Преобразования декартовой системы координат
  • Бесконечно малые и бесконечно большие функции
  • Критерий совместности Кронекера-Капелли
  • Формулы Крамера
  • Матричный метод
  • Экстремум функции

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

🎥 Видео

Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.

Система линейных уравнений. Метод обратной матрицы. Матричный метод.Скачать

Система линейных уравнений. Метод обратной матрицы. Матричный метод.

Метод Гаусса решения систем линейных уравненийСкачать

Метод Гаусса решения систем линейных уравнений

6 способов в одном видеоСкачать

6 способов в одном видео

Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.

10. Метод Крамера решения систем линейных уравнений.Скачать

10. Метод Крамера решения систем линейных уравнений.

Решение системы уравнений методом Крамера.Скачать

Решение системы уравнений методом Крамера.

12. Метод Гаусса решения систем линейных уравнений. Часть 1.Скачать

12. Метод Гаусса решения систем линейных уравнений. Часть 1.

Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки

9. Метод обратной матрицы для решения систем линейных уравнений / матричный методСкачать

9. Метод обратной матрицы для решения систем линейных уравнений / матричный метод

9 класс, 11 урок, Методы решения систем уравненийСкачать

9 класс, 11 урок, Методы решения систем уравнений

МЕТОД АЛГЕБРАИЧЕСКОГО СЛОЖЕНИЯ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ II #математика #егэ #shorts #профильныйегэСкачать

МЕТОД АЛГЕБРАИЧЕСКОГО СЛОЖЕНИЯ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ II #математика #егэ  #shorts #профильныйегэ

СИСТЕМЫ УРАВНЕНИЙ В ЕГЭ ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэСкачать

СИСТЕМЫ УРАВНЕНИЙ В ЕГЭ ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэ

12. Решение систем линейных уравнений методом ГауссаСкачать

12. Решение систем линейных уравнений методом Гаусса

Решение системы уравнений методом обратной матрицы.Скачать

Решение системы уравнений методом обратной матрицы.

Система линейных уравнений. Общее решение. Метод ГауссаСкачать

Система линейных уравнений.  Общее решение. Метод Гаусса
Поделиться или сохранить к себе: