В этой статье описаны основные формулы, величины и их обозначения которые относятся ко всем двигателям постоянного тока.
В результате взаимодействия Iя тока якоря в проводнике L обмотки якоря с внешним магнитным полем возникает электромагнитная сила создающая электромагнитный момент М который приводит якорь во вращение с частотой n.
- Противо ЭДС двигателя Eя
- Ток якоря Iя
- Частота вращения якоря
- Электромагнитная мощность двигателя
- Электромагнитный момент
- Коллекторный электродвигатель постоянного тока
- Конструкция коллекторного электродвигателя постоянного тока
- Типы коллекторных электродвигателей
- Коллекторный двигатель с постоянными магнитами
- Коллекторный двигатель с обмотками возбуждения
- Двигатели независимого и параллельного возбуждения
- Двигатель последовательного возбуждения
- Двигатель смешанного возбуждения
- Характеристики коллекторного электродвигателя постоянного тока
- Основные параметры электродвигателя постоянного тока
- Постоянная момента
- Машины постоянного тока.
- 🔥 Видео
Видео:Устройство машины постоянного токаСкачать

Противо ЭДС двигателя Eя
При вращении якоря пазовый проводник пресекает линии поля возбуждения с магнитной индукцией B и в соответствии с явлением электромагнитной индукции в проводнике наводится ЭДС Eя направленная навстречу Iя. Поэтому эта ЭДС называется противо ЭДС и она прямо пропорциональна Ф магнитному потоку и частоте вращения n.
Ce — постоянный коэффициент определяемой конструкцией двигателя.
Применив второй закон Кирхгофа получаем уравнение напряжения двигателя.
где ∑R — суммарное сопротивления обмотки якоря включающая сопротивление :
- обмотки якоря
- добавочных полюсов
- обмотки возбуждения (для двигателей с последовательным возбуждением)
Видео:Электрические машины постоянного тока, устройство и принцип действияСкачать

Ток якоря Iя
Выразим из формулы 2 ток якоря.
Видео:Электродвигатель постоянного тока. Принцип работы.Скачать

Частота вращения якоря
Из формул 1 и 2 выведем формулу для частоты вращения якоря.
Видео:Коллекторный электродвигательСкачать

Электромагнитная мощность двигателя
Видео:Тема: Практическое занятие №1. Расчёт параметров и построение развёрнутой схемы обмотки якоряСкачать

Электромагнитный момент
где: ω = 2*π*f — угловая скорость вращения якоря, Cм — постоянный коэффициент двигателя (включает в себя конструктивные особенности данного двигателя)
Момент на валу двигателя, т.е. полезный момент, где М0 момент холостого хода;
Видео:Коллекторные двигатели.Скачать

Коллекторный электродвигатель постоянного тока
Видео:Машины постоянного тока. Обмотки якоря. Лекция №22Скачать

Конструкция коллекторного электродвигателя постоянного тока
Статор — неподвижная часть двигателя.
Индуктор (система возбуждения) — часть коллекторной машины постоянного тока или синхронной машины, создающая магнитный поток для образования момента. Идуктор обязательно включает либо постоянные магниты либо обмотку возбуждения. Индуктор может быть частью как ротора так и статора. В двигателе, изображенном на рис. 1, система возбуждения состоит из двух постоянных магнитов и входит в состав статора.
Якорь — часть коллекторной машины постоянного тока или синхронной машины, в которой индуктируется электродвижущая сила и протекает ток нагрузки [2]. В качестве якоря может выступать как ротор так и статор. В двигателе, показанном на рис. 1, ротор является якорем.
Щетки — часть электрической цепи, по которой от источника питания электрический ток передается к якорю. Щетки изготавливаются из графита или других материалов. Двигатель постоянного тока содержит одну пару щеток или более. Одна из двух щеток соединяется с положительным, а другая — с отрицательным выводом источника питания.
Коллектор — часть двигателя, контактирующая со щетками. С помощью щеток и коллектора электрический ток распределяется по катушкам обмотки якоря [1].
Видео:Как работает КОЛЛЕКТОРНЫЙ ЭЛЕКТРОДВИГАТЕЛЬ постоянного тока. Самое понятное объяснение! #shortsСкачать

Типы коллекторных электродвигателей
По конструкции статора коллекторный двигатель может быть с постоянными магнитами и с обмотками возбуждения.
Коллекторный двигатель с постоянными магнитами
Коллекторный двигатель постоянного тока (КДПТ) с постоянными магнитами является наиболее распространенным среди КДПТ. Индуктор этого двигателя включает постоянные магниты, которые создают магнитное поле статора. Коллекторные двигатели постоянного тока с постоянными магнитами (КДПТ ПМ) обычно используются в задачах не требующих больших мощностей. КДПТ ПМ дешевле в производстве, чем коллекторные двигатели с обмотками возбуждения. При этом момент КДПТ ПМ ограничен полем постоянных магнитов статора . КДПТ с постоянными магнитами очень быстро реагирует на изменение напряжения. Благодаря постоянному полю статора легко управлять скоростью двигателя. Недостатком электродвигателя постоянного тока с постоянными магнитами является то, что со временем магниты теряют свои магнитные свойства, в результате чего уменьшается поле статора и снижаются характеристики двигателя.
- Преимущества:
- лучшее соотношение цена/качество
- высокий момент на низких оборотах
- быстрый отклик на изменение напряжения
- Недостатки:
- постоянные магниты со временем, а также под воздействием высоких температур теряют свои магнитные свойства
Коллекторный двигатель с обмотками возбуждения
- По схеме подключения обмотки статора коллекторные электродвигатели с обмотками возбуждения разделяют на двигатели:
- независимого возбуждения
- последовательного возбуждения
- параллельного возбуждения
- смешанного возбуждения
Двигатели независимого и параллельного возбуждения
В электродвигателях независимого возбуждения обмотка возбуждения электрически не связана с обмоткой якоря (рисунок выше). Обычно напряжение возбуждения UОВ отличается от напряжения в цепи якоря U. Если же напряжения равны, то обмотку возбуждения подключают параллельно обмотке якоря. Применение в электроприводе двигателя независимого или параллельного возбуждения определяется схемой электропривода. Свойства (характеристики) этих двигателей одинаковы [3].
В двигателях параллельного возбуждения токи обмотки возбуждения (индуктора) и якоря не зависят друг от друга, а полный ток двигателя равен сумме тока обмотки возбуждения и тока якоря. Во время нормальной работы, при увеличении напряжения питания увеличивается полный ток двигателя, что приводит к увеличению полей статора и ротора. С увеличением полного тока двигателя скорость так же увеличивается, а момент уменьшается. При нагружении двигателя ток якоря увеличивается, в результате чего увеличивается поле якоря. При увеличении тока якоря, ток индуктора (обмотки возбуждения) уменьшается, в результате чего уменьшается поле индуктора, что приводит к уменьшению скорости двигателя, и увеличению момента.
- Преимущества:
- практически постоянный момент на низких оборотах
- хорошие регулировочные свойства
- отсутствие потерь магнетизма со временем (так как нет постоянных магнитов)
- Недостатки:
- дороже КДПТ ПМ
- двигатель выходит из под контроля, если ток индуктора падает до нуля
Коллекторный электродвигатель параллельного возбуждения имеет механическую характеристику с уменьшающимся моментом на высоких оборотах и высоким, но более постоянным моментом на низких оборотах. Ток в обмотке индуктора и якоря не зависит друг от друга, таким образом, общий ток электродвигателя равен сумме токов индуктора и якоря. Как результат данный тип двигателей имеет отличную характеристику управления скоростью. Коллекторный двигатель постоянного тока с параллельной обмоткой возбуждения обычно используется в приложениях, которые требуют мощность больше 3 кВт, в частности в автомобильных приложениях и промышленности. В сравнении с КДПТ ПМ, двигатель параллельного возбуждения не теряет магнитные свойства со временем и является более надежным. Недостатками двигателя параллельного возбуждения являются более высокая себестоимость и возможность выхода двигателя из под контроля, в случае если ток индуктора снизится до нуля, что в свою очередь может привести к поломке двигателя [5].
Двигатель последовательного возбуждения
В электродвигателях последовательного возбуждения обмотка возбуждения включена последовательно с обмоткой якоря, при этом ток возбуждения равен току якоря (Iв = Iа), что придает двигателям особые свойства. При небольших нагрузках, когда ток якоря меньше номинального тока (Iа < Iном) и магнитная система двигателя не насыщена (Ф
Iа), электромагнитный момент пропорционален квадрату тока в обмотке якоря:

- где M – момент электродвигателя, Н∙м,
- сМ – постоянный коэффициент, определяемый конструктивными параметрами двигателя,
- Ф – основной магнитный поток, Вб,
- Ia – ток якоря, А.
С ростом нагрузки магнитная система двигателя насыщается и пропорциональность между током Iа и магнитным потоком Ф нарушается. При значительном насыщении магнитный поток Ф с ростом Iа практически не увеличивается. График зависимости M=f(Ia) в начальной части (когда магнитная система не насыщена) имеет форму параболы, затем при насыщении отклоняется от параболы и в области больших нагрузок переходит в прямую линию [3].
Способность двигателей последовательного возбуждения развивать большой электромагнитный момент обеспечивает им хорошие пусковые свойства.
- Преимущества:
- высокий момент на низких оборотах
- отсутствие потерь магнетизма со временем
- Недостатки:
- низкий момент на высоких оборотах
- дороже КДПТ ПМ
- плохая управляемость скоростью из-за последовательного соединения обмоток якоря и индуктора
- двигатель выходит из под контроля, если ток индуктора падает до нуля
Коллекторный двигатель последовательного возбуждения имеет высокий момент на низких оборотах и развивает высокую скорость при отсутствии нагрузки. Данный электромотор идеально подходит для устройств, которым требуется развивать высокий момент (краны и лебедки), так как ток и статора и ротора увеличивается под нагрузкой. В отличии от КДПТ ПМ и двигателей параллельного возбуждения двигатель последовательного возбуждения не имеет точной характеристики контроля скорости, а в случае короткого замыкания обмотки возбуждения он может стать не управляемым.
Двигатель смешанного возбуждения
Двигатель смешанного возбуждения имеет две обмотки возбуждения, одна из них включена параллельно обмотке якоря, а вторая последовательно. Соотношение между намагничивающими силами обмоток может быть различным, но обычно одна из обмоток создает большую намагничивающую силу и эта обмотка называется основной, вторая обмотка называется вспомогательной. Обмотки возбуждения могут быть включены согласовано и встречно, и соответственно магнитный поток создается суммой или разностью намагничивающих сил обмоток. Если обмотки включены согласно, то характеристики скорости такого двигателя располагаются между характеристиками скорости двигателей параллельного и последовательного возбуждения. Встречное включение обмоток применяется, когда необходимо получить неизменную скорость вращения или увеличение скорости вращения с увеличением нагрузки. Таким образом, рабочие характеристики двигателя смешанного возбуждения приближаются к характеристикам двигателя параллельного или последовательного возбуждения, смотря по тому, какая из обмоток возбуждения играет главную роль [4].
- Преимущества:
- хорошие регулировочные свойства
- высокий момент на низких оборотах
- менее вероятен выход из под контроля
- отсутствие потерь магнетизма со временем
- Недостатки:
- дороже других коллекторных двигателей
Двигатель смешанного возбуждения имеет эксплуатационные характеристики двигателей с параллельным и последовательным возбуждением. Он имеет высокий момент на низких оборотах, так же как двигатель последовательного возбуждения и хороший контроль скорости, как двигатель параллельного возбуждения. Двигатель смешанного возбуждения идеально подходит для устройств автомобилей и промышленности (таких как генераторы). Выход двигателя смешанного возбуждения из под контроля менее вероятен, так как для этого ток параллельной обмотки возбуждения должен уменьшиться до нуля, а последовательная обмотка возбуждения должна быть закорочена.
Видео:Характиристики машин постоянного токаСкачать

Характеристики коллекторного электродвигателя постоянного тока
Эксплуатационные свойства двигателей постоянного тока определяются их рабочими, электромеханическими и механическими характеристиками, а также регулировочными свойствами.
Видео:Схема двигателя постоянного тока. Устройство и принцип работы.Скачать

Основные параметры электродвигателя постоянного тока
Постоянная момента
Для коллекторного электродвигателя постоянного тока постоянная момента определяется по формуле:

- где Z — суммарное число проводников,
- Ф – магнитный поток, Вб [1]
Видео:Электрические машины, часть 1 - основные правила и законыСкачать

Машины постоянного тока.
Устройство, назначение отдельных частей машины (главные полюсы – создание основного магнитного потока; якорь – индуктируется ЭДС; щёточно-коллекторный аппарат – механический выпрямитель в режиме генератора, перераспределение тока по обмотке якорь-двигатель). Принцип работы в режиме генератора (якорь вращается в неподвижном поле полюсов статора; в проводниках обмотки якоря индуктируется переменная ЭДС 
Связь между ЭДС и напряжением в генераторном 


где Ф, Вб – магнитный поток одного полюса.

где р – число пар полюсов,
а — число пар параллельных ветвей,
N – число проводников якоря.
Генератор – ЭДС, двигатель – противоЭДС.
При n = const и 
Вращающий (двигатель), тормозной (генератор) момент




Электромагнитный момент машины постоянного тока пропорционален току якоря и результирующему потоку каждого полюса.
Уравнение баланса мощностей цепи якоря генератора:

Правая часть уравнения выражает мощность нагрузки и электрические потери мощности в обмотке якоря. Их сумма равна 
Величина 
Для электродвигателя баланс мощностей цепи якоря:

Это уравнение означает, что мощность 


Работа машины постоянного тока сопровождается потерями энергии и нагревом её частей:




Способы возбуждения машин постоянного тока.

Независимое Последовательное (сериесные)

Параллельное (шунтовые) Смешанное
генераторный: 
двигательный: 
Генераторы с самовозбуждением.
Условия самовозбуждения (наличие остаточного потока, совпадение по направлению 
Двигатели 



Уравнение механической характеристики: 


Из механической характеристики – способы регулирования скорости двигателя:
1) изменение напряжения на якоре U,
2) изменение потока возбуждения Ф,
3) изменение добавочного сопротивления в цепи якоря.
Задача 1.
Генератор независимого возбуждения имеет следующие номинальные данные: 



Построить внешнюю характеристику генератора и определить его электромагнитную мощность 
Внешняя характеристика генератора строится по уравнению:


В генераторе независимого возбуждения 
Если пренебречь реакцией якоря, то можно считать


Координаты точек характеристики 





Изменение напряжения на зажимах генератора: 
1. Как определяется величина тока генератора независимого возбуждения при режиме К.З.? Опасен ли этот режим для машин?
Величина магнитного потока практически не зависит от нагрузки, следовательно практически постоянной будет и ЭДС генератора. При К.З. U=0, следовательно 

Ток возрастает в 17 раз, что чрезвычайно опасно.
2. Какие причины вызывают уменьшение напряжения генератора при росте нагрузки?
а) при росте нагрузки увеличивается падение напряжения в цепи якоря,
б) хоть и незначительно, изменяется (уменьшается) ЭДС, вследствие реакции якоря.
Задача 2.
На сколько процентов нужно уменьшить магнитный поток генератора постоянного тока с независимым возбуждением и напряжением на выводах 


1) Уравнение электрического равновесия для двух нагрузок:


где 

2) В генераторах с независимым возбуждением 



3) Так как ЭДС пропорциональны магнитным потокам, можно записать 
Относительное изменение магнитного потока:




Итак, чтобы напряжение осталось неизменным при уменьшении нагрузки, поток требуется уменьшить на 5,5%.
Задача 3.
Генератор постоянного тока с независимым возбуждением, число полюсов 2р=4, номинальная мощность 


Основные размеры машины: диаметр якоря 


1) Среднюю индукцию воздушного зазора Вб;
2) Полюсное деление 

3) число проводников, включённых последовательно в одной ветви обмотки;
4) индуктированную ЭДС;
5) напряжение на выводах генератора и номинальный ток якоря 
1) Вб – среднее значение индукции на протяжении полюсного деления 


2) Полюсное деление 
Окружная скорость якоря:



3) Число последовательно включённых проводников одной параллельной ветви 
где 2а=2 – число параллельных ветвей при простой волновой обмотке не зависит от числа полюсов и всегда равно 2.
4) ЭДС, индуктированная в якоре 
где Ф – полезный магнитный поток.


5) Уравнение электрического равновесия якорной цепи в номинальном режиме:










Значение 


Дополнительный вопрос.
Машина постоянного тока, рассмотренная в задаче, подключается к сети при напряжении на выводах U=220 В. Ток возбуждения неизменён. Машину в качестве двигателя нагружают до номинальной нагрузки. При этом ток якоря 
Уравнение электрического равновесия в режиме двигателя:




Развиваемый при этом момент 
Задача 4.
Четырёхполюсный генератор постоянного тока вращается с частотой n =1500 об/мин. Диаметр якоря 

1) Построить обмотку так, чтобы она не была ступенчатой;
2) Определить полезный поток машины, если ЭДС Е = 414 В;
3) Определить значение индукции воздушного зазора: среднюю Вб и максимальную Вбmax.
1) Если обмотка не ступенчатая, катушечные стороны располагаются совместно в одном пазу. При этом – пазовый шаг (выражается в количестве зубцовых делений) должен выражаться целым числом.



Число коллекторных пластин k = u·z = 3·43 =129.
Коллекторный шаг 
Второй частичный шаг 
Число действующих проводников по периметру якоря: N = 2·u·z·w = 2·3·43·1 = 288.
Схема соединения на рисунке 6.
2) Полезный магнитный поток машины определяется из соотношения 

Средняя индукция воздушного зазора:


Максимальное значение индукции:

Задача 5.
Схема замещения генератора постоянного тока приведена на рис.7.
Uн = 230 В, Iя = 29,6 А, Rя = 0,7 Ом, 
Второй закон Кирхгофа – уравнение электрического состояния генератора 
Номинальный ток возбуждения (закон Ома):

Мощность на нагрузке:

Задача 6.
Условие то же. Построить внешнюю характеристику.
Определить U и Р при I = 24 А.


P = U·I = 232,5·24 = 5580 Вт.
![]() | ![]() | ![]() |
| 232,5 |
Задача 7.
Характеристика Х.Х. генератора независимого возбуждения задана:
| Е, В | ||
| Iв, А | 1,5 | 4,5 |
Номинальные данные генератора: Рн = 178 кВт, Uн = 230 В, Iян = 775 А, номинальное напряжение на зажимах обмотки возбуждения Uвн = 100 В.
Определить собственное сопротивление обмотки возбуждения Rв, а также сопротивление регулировочного реостата Rp, включаемого в цепь обмотки возбуждения для того, чтобы при неизменном сопротивлении нагрузки R = 0,297 Ом напряжение на её зажимах было равно 
При номинальном режиме 

Согласно характеристике Х.Х. этому значению ЭДС соответствует номинальное значение тока возбуждения Iвн = 4,5 А.
Номинальный режим создаётся при полностью выведенном регулированном реостате. Поэтому собственное сопротивление обмотки возбуждения: 
При снижении напряжения до величины 

ЭДС обмотки якоря в этом случае определится:

Этому значению ЭДС соответствует на характеристике Х.Х. Iв = 1,55 А. При этом сопротивление цепи возбуждения — 

Сопротивление регулировочного реостата: 
Задача 8.
Генератор постоянного тока с параллельным возбуждением характеризуется следующими номинальными величинами: напряжение Uн, мощность Рн. Мощность потерь в номинальном режиме в % от Рн, в цепи возбуждения Рв.
1) Номинальный ток нагрузки генератора Iн;
2) Номинальный ток возбуждения Iв;
3) Номинальный ток якоря Iя;
4) Сопротивление цепи якоря Rя;
5) ЭДС якоря при токе, равном номинальному;
6) Сопротивление цепи возбуждения при токе возбуждения, равном номинальному;
7) сопротивление обмотки возбуждения, принимая, что при холостом ходе генератора и полностью выведенном реостате в цепи возбуждения ток в этой цепи составляет 1,5Iвн.
При решении воспользоваться зависимостью Е=f(Iв).
| Iв, % |
| Е, % |
| Варианты | Uн, В | Рн, кВт | Ря, % | Рв, % |
| 7,5 | ||||
| 7,5 | ||||
| 6,5 | ||||
| 5,5 | ||||
| 1,5 | ||||
| 4,5 | 1,5 |
Задача 9.
Двигатель постоянного тока параллельного возбуждения включён в сеть U = 110 В, сопротивление обмотки якоря двигателя Rя = 0,07 Ом. При половинной нагрузке частота вращения двигателя n = 1400 об/мин, якорный ток Iя = 74 А. Определить частоту вращения двигателя, если в цепь якоря включено внешнее добавочное сопротивление Rдоб = 0,3 Ом, а нагрузочный момент увеличился вдвое. При этом пренебречь реакцией якоря, а падение напряжения на щётках считать равным 
Момент двигателя постоянного тока 



Уравнение электрического равновесия:




Для второго случая:


Задача 10.
Для тяговых двигателя последовательного возбуждения одинаковой конструкции нагружаются поочерёдно. Напряжение сети U = 500 В. В начале к сети подключается один из этих двигателей и нагружается до тех пор, пока его частота вращения не достигнет n1 = 700 об/мин. Потребляемый из сети ток этого двигателя равен Iя1 = 50 А. Затем то же самое проделывают со вторым двигателем. При той же частоте вращения потребляемый из сети ток Iя2 = 55 А. Внутренне сопротивление цепи якоря каждого двигателя Rя = 0,3 Ом. Валы двух двигателей соединены муфтой. Их электрические цепи соединены последовательно и подключены к сети U = 500 В. Затем оба двигателя нагружаются до тех пор, пока потребляемый ток достигнет значения 
Какова частота вращения машин и в каком соотношении находятся их потребляемые мощности? Предположим, что магнитная цепь машин не насыщена и при малых изменениях магнитный поток изменяется пропорционально току.
Определим индуктированные ЭДС двигателей при их раздельном испытании.





При последовательном включении двигателей:
По условию задачи, магнитный поток изменяется пропорционально току. Так как 

Поток второго двигателя определён из соотношения:




Определяем напряжение на выводах каждого двигателя:


Отношение потребляемых мощностей:

Задача 11.
Двигатель постоянного тока параллельного возбуждения имеет следующие номинальные данные: Рн = 12 кВт, Uн = 220 В, nн = 685 об/мин, Iн = 64 А, Iвн = 1,75 А. Сопротивление обмотки якоря в нагретом состоянии Rя = 0,281 Ом.
Определить скорость вращения якоря двигателя при Х.Х. и тормозном моменте на валу, равном 0,6Мн. Поострить естественную механическую характеристику. Размагничивающим действием реакции якоря пренебречь.
Скорость вращения якоря в режиме идеального Х.Х., когда Uн = Ео, 


Соотношение токов – по схеме по ходу решения.
Условие динамического равновесия при работе двигателя: 


Вращающий момент пропорционален току якоря. При постоянном магнитном потоке (реакцией якоря пренебрегаем) вращающий момент изменяется вследствие соответствующего изменения тока якоря. Следовательно, при



Записываем выражения, определяющие скорости при 



Взяв отношение этих скоростей, получим:

Механическая характеристика n = f(М). Для рассматриваемого двигателя – это прямая линия. Строим по двум точкам: М = 0, n = no = 740 об/мин. М = 0,6Мвр.ном, 
Естественная механическая характеристика – в цепи якоря отсутствует добавочное сопротивление.
1. Составить уравнение баланса мощностей для двигателя в номинальном режиме.


220·62,25 = 202,5·62,25 + 62,25·0,281;
13695 = 12605,6 + 1088,9;
2. Какое дополнительное сопротивление R следует включить в цепь якоря двигателя, чтобы при М = 0,6Мн скорость его вращения снизилась до 630 об/мин?
Соотношение аналогично тому, при котором определилось 


При введении в цепь якоря R получим искусственную механическую характеристику (график).
3. Определить мощность потерь в регулировочном сопротивлении

Задача 12.
Двигатель постоянного тока с независимым возбуждением, компенсированный (магнитный поток постоянен), номинальная мощность Рном = 22 кВт, число полюсов 2р = 4, напряжение на выводах U = 220 В, номинальная частота вращения n = 1500 об/мин, КПД 
1) Рассчитать естественную механическую характеристику, считая сопротивление якорной цепи Rя, рассчитать искусственную механическую характеристику при добавочном сопротивлении в цепи якоря Rдоб = 2 Ом;
2) Определить добавочное сопротивление, включаемое последовательно с якорной цепью, для номинального момента, чтобы получить n = 900 об/мин;
3) Определить, насколько нужно уменьшить напряжение на выводах, если необходимо установить n = 900 об/мин при номинальном моменте;
4) Определить, насколько нужно увеличить сопротивление цепи возбуждения, чтобы частота вращения стала равной = 1600 об/мин при номинальном моменте. Характеристика холостого хода машины приведена в виде таблицы
![]() | 206,5 | ||
![]() | 0,5 | 1,5 | 2,2 |
1) Механическая характеристика двигателя – это зависимость частоты вращения от момента n = f(M).
Если считать поток постоянным и пренебречь падением напряжения на щётках, то

Получим уравнение прямой, наклон которой к горизонтальной оси определяется величиной m. Теоретически при идеальном холостом ходе Iя = 0 и 
Итак, 



nх = 1583, М = 0 – точка Х.Х. естественной механической характеристики (рис. 8).
Вторая точка – определяется номинальным режимом
Мном = 
На графике – естественная механическая характеристика – 1.
Для искусственной механической характеристики первая точка – точка холостого хода.
Вторую точку можно определить как точку пуска: n = 0, М = Мпуск.

Момент в номинальной точке и пусковой момент: 

На графике – искусственная механическая характеристика 2.
2) Введение добавочного сопротивления в цепь якоря – один из способов регулирования частоты вращения двигателя постоянного тока (уменьшение).
Так регулирование происходит при постоянном моменте, ток якоря в установившемся режиме остаётся неизменным. Если М = Мном, то и Iя = Iя.ном, а поэтому 


125,064 = 220 – 11,56 — Rдоб·115,6,
Механическая характеристика на графике – 3.
Изменение оборотов 

3) Изменение величины питающего напряжения – ещё один способ регулирования частоты вращения двигателя (уменьшение).
Механические характеристики при сохранении неизменным момента в случае уменьшения напряжения сдвигаются параллельно естественной характеристике. При номинальном моменте разность частот вращения 

Для идеального холостого хода:




Итак, напряжение питания надо уменьшить на 83,4 В. Механическая характеристика на графике – 4.
4) Изменение сопротивления цепи возбуждения – ещё один способ изменения скорости вращения двигателя (увеличение).
Уравнение механической характеристики:


Если увеличивается сопротивление цепи возбуждения, ток возбуждения уменьшается, уменьшается и основной поток. Механическая характеристика становится более крутой, частота вращения в режиме холостого хода растёт.
Определим постоянные машины:


При заданной частоте вращения определим величину магнитного потока:






Выбираем первое решение, так как второе слишком мало для машины с 
Частота вращения при холостом ходе:


На графике – механическая характеристика – 5.
При магнитном потоке 

По характеристике холостого хода определяется ток возбуждения: 
Требуемое сопротивление цепи возбуждения:

Отсюда
Задача 14.
Электродвигатель постоянного тока с параллельным возбуждением выполнен на номинальное напряжение 220 В. Данные номинального режима электродвигателя: мощность 



1) номинальный момент на валу электродвигателя;
2) ток 
3) токи в цепи возбуждения и в цепи якоря при номинальной нагрузке;
🔥 Видео
Электроника, часть 6. Коллекторные и бесколлекторные двигатели.Скачать

Способы возбуждения электрических машин постоянного токаСкачать

Электрические машины постоянного токаСкачать

Принцип работы бесщеточного двигателя постоянного токаСкачать

Универсальные электродвигатели. Как они работают?Скачать

Регулирование частоты вращения двигателей постоянного токаСкачать

Как работает двухфазный ЭЛЕКТРОДВИГАТЕЛЬ? Бесколлекторные VS коллекторные моторы!Скачать

Электродвигатель постоянного токаСкачать

Универсальные коллекторные двигателиСкачать








































