Не решая квадратного уравнения найдите сумму квадратов его корней

8.2.4. Применение теоремы Виета

Часто требуется найти сумму квадратов (x1 2 +x2 2 ) или сумму кубов (x1 3 +x2 3 ) корней квадратного уравнения, реже — сумму обратных значений квадратов корней или сумму арифметических квадратных корней из корней квадратного уравнения:

Не решая квадратного уравнения найдите сумму квадратов его корней

Помочь в этом может теорема Виета:

Сумма корней приведенного квадратного уравнения x 2 +px+q=0 равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену:

Выразим через p и q:

1) сумму квадратов корней уравнения x 2 +px+q=0;

2) сумму кубов корней уравнения x 2 +px+q=0.

Решение.

1) Выражение x1 2 +x2 2 получится, если взвести в квадрат обе части равенства x1+x2=-p;

(x1+x2) 2 =(-p) 2 ; раскрываем скобки: x1 2 +2x1x2+ x2 2 =p 2 ; выражаем искомую сумму: x1 2 +x2 2 =p 2 -2x1x2=p 2 -2q. Мы получили полезное равенство: x1 2 +x2 2 =p 2 -2q.

2) Выражение x1 3 +x2 3 представим по формуле суммы кубов в виде:

Еще одно полезное равенство: x1 3 +x2 3 =-p·(p 2 -3q).

Примеры.

3) x 2 -3x-4=0. Не решая уравнение, вычислите значение выражения x1 2 +x2 2 .

Решение.

По теореме Виета сумма корней этого приведенного квадратного уравнения

x1+x2=-p=3, а произведение x1∙x2=q=-4. Применим полученное нами (в примере 1) равенство:

x1 2 +x2 2 =p 2 -2q. У нас -p=x1+x2=3 → p 2 =3 2 =9; q=x1x2=-4. Тогда x1 2 +x2 2 =9-2·(-4)=9+8=17.

4) x 2 -2x-4=0. Вычислить: x1 3 +x2 3 .

Решение.

По теореме Виета сумма корней этого приведенного квадратного уравнения x1+x2=-p=2, а произведение x1∙x2=q=-4. Применим полученное нами (в примере 2) равенство: x1 3 +x2 3 =-p·(p 2 -3q)=2·(2 2 -3·(-4))=2·(4+12)=2·16=32.

Ответ: x1 3 +x2 3 =32.

Вопрос: а если нам дано не приведенное квадратное уравнение? Ответ: его всегда можно «привести», разделив почленно на первый коэффициент.

5) 2x 2 -5x-7=0. Не решая, вычислить: x1 2 +x2 2 .

Решение. Нам дано полное квадратное уравнение. Разделим обе части равенства на 2 (первый коэффициент) и получим приведенное квадратное уравнение: x 2 -2,5x-3,5=0.

По теореме Виета сумма корней равна 2,5; произведение корней равно -3,5.

Решаем так же, как пример 3), используя равенство: x1 2 +x2 2 =p 2 -2q.

x1 2 +x2 2 =p 2 -2q=2,5 2 -2∙(-3,5)=6,25+7=13,25.

Ответ: x1 2 +x2 2 =13,25.

6) x 2 -5x-2=0. Найти:

Не решая квадратного уравнения найдите сумму квадратов его корнейПреобразуем это равенство и, заменив по теореме Виета сумму корней через -p, а произведение корней через q, получим еще одну полезную формулу. При выводе формулы использовали равенство 1): x1 2 +x2 2 =p 2 -2q.

Не решая квадратного уравнения найдите сумму квадратов его корней

В нашем примере x1+x2=-p=5; x1∙x2=q=-2. Подставляем эти значения в полученную формулу:

Не решая квадратного уравнения найдите сумму квадратов его корней

7) x 2 -13x+36=0. Найти:

Не решая квадратного уравнения найдите сумму квадратов его корнейПреобразуем эту сумму и получим формулу, по которой можно будет находить сумму арифметических квадратных корней из корней квадратного уравнения.

Не решая квадратного уравнения найдите сумму квадратов его корней

У нас x1+x2=-p=13; x1∙x2=q=36. Подставляем эти значения в выведенную формулу:

Не решая квадратного уравнения найдите сумму квадратов его корней

Совет: всегда проверяйте возможность нахождения корней квадратного уравнения по подходящему способу, ведь 4 рассмотренные полезные формулы позволяют быстро выполнить задание, прежде всего, в тех случаях, когда дискриминант — «неудобное» число. Во всех простых случаях находите корни и оперируйте ими. Например, в последнем примере подберем корни по теореме Виета: сумма корней должна быть равна 13, а произведение корней 36. Что это за числа? Конечно, 4 и 9. А теперь считайте сумму квадратных корней из этих чисел: 2+3=5. Вот так то!

Видео:Не решая квадратное уравнение, найдите сумму частного его корнейСкачать

Не решая квадратное уравнение, найдите сумму частного его корней

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Видео:Не решая квадратное уравнение, найдите сумму кубов его корнейСкачать

Не решая квадратное уравнение, найдите сумму кубов его корней

Калькулятор онлайн.
Решение квадратного уравнения.

С помощью этой математической программы вы можете решить квадратное уравнение.

Программа не только даёт ответ задачи, но и отображает процесс решения двумя способами:
— с помощью дискриминанта
— с помощью теоремы Виета (если возможно).

Причём, ответ выводится точный, а не приближенный.
Например, для уравнения (81x^2-16x-1=0) ответ выводится в такой форме:

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода квадратного многочлена, рекомендуем с ними ознакомиться.

В качестве переменной может выступать любая латинсая буква.
Например: ( x, y, z, a, b, c, o, p, q ) и т.д.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5x — 3,5x^2

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 3&1/3 — 5&6/5z +1/7z^2
Результат: ( 3frac — 5frac z + fracz^2 )

При вводе выражения можно использовать скобки. В этом случае при решении квадратного уравнения введённое выражение сначала упрощается.
Например: 1/2(y-1)(y+1)-(5y-10&1/2)

Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.

Немного теории.

Видео:5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

Квадратное уравнение и его корни. Неполные квадратные уравнения

Каждое из уравнений
( -x^2+6x+14=0, quad 8x^2-7x=0, quad x^2-frac=0 )
имеет вид
( ax^2+bx+c=0, )
где x — переменная, a, b и c — числа.
В первом уравнении a = -1, b = 6 и c = 1,4, во втором a = 8, b = —7 и c = 0, в третьем a = 1, b = 0 и c = 4/9. Такие уравнения называют квадратными уравнениями.

Определение.
Квадратным уравнением называется уравнение вида ax 2 +bx+c=0, где x — переменная, a, b и c — некоторые числа, причём ( a neq 0 ).

Числа a, b и c — коэффициенты квадратного уравнения. Число a называют первым коэффициентом, число b — вторым коэффициентом и число c — свободным членом.

В каждом из уравнений вида ax 2 +bx+c=0, где ( a neq 0 ), наибольшая степень переменной x — квадрат. Отсюда и название: квадратное уравнение.

Заметим, что квадратное уравнение называют ещё уравнением второй степени, так как его левая часть есть многочлен второй степени.

Квадратное уравнение, в котором коэффициент при x 2 равен 1, называют приведённым квадратным уравнением. Например, приведёнными квадратными уравнениями являются уравнения
( x^2-11x+30=0, quad x^2-6x=0, quad x^2-8=0 )

Если в квадратном уравнении ax 2 +bx+c=0 хотя бы один из коэффициентов b или c равен нулю, то такое уравнение называют неполным квадратным уравнением. Так, уравнения -2x 2 +7=0, 3x 2 -10x=0, -4x 2 =0 — неполные квадратные уравнения. В первом из них b=0, во втором c=0, в третьем b=0 и c=0.

Неполные квадратные уравнения бывают трёх видов:
1) ax 2 +c=0, где ( c neq 0 );
2) ax 2 +bx=0, где ( b neq 0 );
3) ax 2 =0.

Рассмотрим решение уравнений каждого из этих видов.

Для решения неполного квадратного уравнения вида ax 2 +c=0 при ( c neq 0 ) переносят его свободный член в правую часть и делят обе части уравнения на a:
( x^2 = -frac Rightarrow x_ = pm sqrt< -frac> )

Так как ( c neq 0 ), то ( -frac neq 0 )

Значит, неполное квадратное уравнение вида ax 2 +bx=0 при ( b neq 0 ) всегда имеет два корня.

Неполное квадратное уравнение вида ax 2 =0 равносильно уравнению x 2 =0 и поэтому имеет единственный корень 0.

Видео:Решить квадратное уравнение, если известна сумма квадратов его корнейСкачать

Решить квадратное уравнение, если известна сумма квадратов его корней

Формула корней квадратного уравнения

Рассмотрим теперь, как решают квадратные уравнения, в которых оба коэффициента при неизвестных и свободный член отличны от нуля.

Решим квадратне уравнение в общем виде и в результате получим формулу корней. Затем эту формулу можно будет применять при решении любого квадратного уравнения.

Решим квадратное уравнение ax 2 +bx+c=0

Разделив обе его части на a, получим равносильное ему приведённое квадратное уравнение
( x^2+fracx +frac=0 )

Преобразуем это уравнение, выделив квадрат двучлена:
( x^2+2x cdot frac+left( fracright)^2- left( fracright)^2 + frac = 0 Rightarrow )

Подкоренное выражение называют дискриминантом квадратного уравнения ax 2 +bx+c=0 («дискриминант» по латыни — различитель). Его обозначают буквой D, т.е.
( D = b^2-4ac )

Теперь, используя обозначение дискриминанта, перепишем формулу для корней квадратного уравнения:
( x_ = frac < -b pm sqrt> ), где ( D= b^2-4ac )

Очевидно, что:
1) Если D>0, то квадратное уравнение имеет два корня.
2) Если D=0, то квадратное уравнение имеет один корень ( x=-frac ).
3) Если D 0), один корень (при D = 0) или не иметь корней (при D

Видео:Теорема Виета. Как найти сумму корней, не решая квадратное уравнениеСкачать

Теорема Виета. Как найти сумму корней, не решая квадратное уравнение

Теорема Виета

Приведённое квадратное уравнение ax 2 -7x+10=0 имеет корни 2 и 5. Сумма корней равна 7, а произведение равно 10. Мы видим, что сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену. Таким свойством обладает любое приведённое квадратное уравнение, имеющее корни.

Сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Т.е. теорема Виета утверждает, что корни x1 и x2 приведённого квадратного уравнения x 2 +px+q=0 обладают свойством:
( left< begin x_1+x_2=-p \ x_1 cdot x_2=q end right. )

Видео:Вариант 17, № 2. Теорема Виета. Сумма корней квадратного уравненияСкачать

Вариант 17, № 2. Теорема Виета. Сумма корней квадратного уравнения

Задание: найти сумму квадратов корней уравнения ax2+bx+c=0 , не находя

Проверь себя №1 >>

Не решая квадратного уравнения найдите сумму квадратов его корней

Задание: найти сумму квадратов корней уравнения ax2+bx+c=0 , не находя его корней. Решение: x1+х2=- b/x x1?x2 =c/a x2+bx/a+c/a=0 x12+x22=(x1+x2)2-2x1x2=(-b/a)2-2c/a=b2/a2-2c/a=(b2-2ac)/a2 Ответ:х12+х22=(b2-2ас)/а2.

Слайд 31 из презентации «Квадратные уравнения»

Размеры: 720 х 540 пикселей, формат: .jpg. Чтобы бесплатно скачать слайд для использования на уроке, щёлкните на изображении правой кнопкой мышки и нажмите «Сохранить изображение как. ». Скачать всю презентацию «Квадратные уравнения.ppt» можно в zip-архиве размером 778 КБ.

Видео:Теорема Виета. 8 класс.Скачать

Теорема Виета. 8 класс.

Квадратное уравнение

«Методы решения квадратных уравнений» — Вычислите корни квадратного уравнения методом выделения. Три пути ведут к знанию. По праву в стихах быть воспета о свойствах корней теорема Виета. Решенья небольшого уравнения. Вычислите корни квадратного уравнения. Уравнение. Немаловажную роль играет сумма коэффициентов. Как вы думаете, какое из уравнений этой группы лишнее.

«Корни квадратного уравнения» — Квадратные уравнения умели решать около 2000 лет до нашей веры вавилоняне. Несмотря на высокий уровень развития алгебры в Вавилонии, в клинописных текстах отсутствуют понятие отрицательного числа. Угадываем корни. Реши устно уравнения. Алгебра 8 класс. Квадратные уравнения в Древнем Вавилоне. Если приведенное квадратное уравнение x2+px+q=0 имеет действительные корни, то их сумма равна p, а произведение равно q.

««Квадратные уравнения» алгебра 8 класс» — Исторические сведения. Реши неполные уравнения. Определение. Динамическая пауза. Реши уравнения с помощью формулы. Квадратные уравнения. От чего зависит количество корней квадратного уравнения. Проверь себя. Решение неполных квадратных уравнений. Проверь. Составим уравнение. Вычисли дискриминант и определи количество корней.

«Математика «Квадратные уравнения»» — е) При каком значении а уравнение имеет один корень? Цель: научиться видеть рациональный способ решения квадратных уравнений. М.В. Ломоносов. Выполнение упражнений. Решение квадратных уравнений. Квадратное уравнение aх2+bх+с=0 полное неполное b=0 или c=0. Устно решите квадратное уравнение. Старайся дать уму как можно больше пищи.

«Решение квадратных уравнений 9 класс» — Тема 1. Введение. 1 час. Определение кв.уравнения. Графическое решение квадратного уравнения. 10 способов решения квадратного уравнения. Может быть применен в классах с любым уровнем подготовки. Продолжительность 12 часов. Решение квадратных уравнений по формуле. Решим уравнение ах2 +bх+с=0. Решение кв. уравнений с использованием коэффициентом 1ч.

«Способы решения квадратных уравнений» — Как адвокат Виет пользовался у населения авторитетом и уважением. Квадратные уравнения. 3. По теореме обратной теореме Виета x2+bx+c=0 х1+х2=-b, x1?x2=c. Классификация. Квадратные уравнения Способы решения. Решение квадратных уравнений. Биография Виета Способы решения. Квадратные уравнения Дальше. Решение приведенного квадратного уравнения.

Всего в теме «Квадратное уравнение» 34 презентации

💡 Видео

ТЕОРЕМА ВИЕТА ЗА 2 МИНУТЫСкачать

ТЕОРЕМА ВИЕТА ЗА 2 МИНУТЫ

Быстрый способ решения квадратного уравненияСкачать

Быстрый способ решения квадратного уравнения

Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

Найти сумму квадратов корней квадратного уравнения Д509Скачать

Найти сумму квадратов корней квадратного уравнения Д509

САМЫЙ ПРОСТОЙ СПОСОБ ПОНЯТЬ ТЕОРЕМУ ВИЕТА #shorts #математика #егэ #огэ #теорема #теоремавиетаСкачать

САМЫЙ ПРОСТОЙ СПОСОБ ПОНЯТЬ ТЕОРЕМУ ВИЕТА #shorts #математика #егэ #огэ #теорема #теоремавиета

Найти сумму корней квадратного уравнения, если дискриминант равен нулюСкачать

Найти сумму корней квадратного уравнения, если дискриминант равен нулю

Неполные квадратные уравнения. Алгебра, 8 классСкачать

Неполные квадратные уравнения. Алгебра, 8 класс

Квадратное уравнение. 8 класс.Скачать

Квадратное уравнение. 8 класс.

Формула корней квадратного уравнения. Алгебра, 8 классСкачать

Формула корней квадратного уравнения. Алгебра, 8 класс

Метод выделения полного квадрата. 8 класс.Скачать

Метод выделения полного квадрата. 8 класс.

Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать

Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnline

Найти сумму квадратов корней квадратного уравненияСкачать

Найти сумму квадратов корней квадратного уравнения
Поделиться или сохранить к себе: