Яблонский задание К.1. Определение скорости и ускорения точки по заданным уравнениям ее движения.
По заданным уравнениям движения точки M установить вид ее траектории и для момента времени t=t1 (с) найти положение точки на траектории, ее скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории. Необходимые для решения данные приведены в таблице 20.
Дополнение к заданию К.1. Данное задание может быть использовано для определения скорости и ускорения точки при ее движении по пространственной траектории. Для этого к двум уравнениям движения (см. табл. 20) добавляется третье уравнение (табл. 22).
Общий порядок выполнения задания в этом случае такой же, как и в приведенном примере.
Видео:Кинематика точки Задание К1Скачать
КИНЕМАТИКА
Точка В движется в плоскости ху(рис. К1.0 – К1.9, табл.К1; траектория точки на рисунках показана условно). Закон движения точки задан уравнениями: х = f2 (t),y = f2 (t), где хи увыражены в сантиметрах, t– в секундах.
Найти уравнение траектории точки; для момента времени t1 =1сопределить скорость и ускорение точки, а также ее касательное и нормальное ускорения и радиус кривизны в соответствующей точке траектории.
Зависимость x = f1 (t) указана непосредственно на рисунках, а зависимость y = f2 (t) дана в табл.К1 (для рис. 0-2 в столбце 2, для рис. 3-6 в столбце 3, для рис. 7-9 в столбце 4).
Указания. Задача К1 относится к кинематике точки и решается с помощью формул, по которым определяются скорость и ускорение точки в декартовыхкоординатах (координатный способ задания движения точки), а также формул, по которым определяются касательное и нормальное ускорение точки.
В данной задаче все искомые величины нужно определить только для момента времени t1 = 1c. В некоторых вариантах задачи при определении траектории или при последующих расчетах (для их упрощения) следует учесть известные из тригонометрии формулы:
cos2a = 1 – 2sin 2 a =2cos 2 α –1,
sin2a = 2sina× cos a
Рис. К1.0-9
Пример К1.Даны уравнения движения точки в плоскости ху:
;
(х,у – в сантиметрах, t – в секундах).
Определить уравнение траектории точки; для момента времени t1 = 1с найти скорость и ускорение точки, а также ее касательное и нормальное ускорение и радиус кривизны в соответствующей точке траектории.
Решение. 1. Для определения уравнения траектории точки исключим из данных уравнений движения время t.
Таблица К1
№ условия | У = f2 (t) | |
Рис. 0 – 2 | Рис. 3 — 6 | Рис. 7 — 9 |
2t 3 | ||
Поскольку t входит в аргументы тригонометрических функций, где один аргумент вдвое больше другого, используем формулу
Из уравнений движения находим выражения соответствующих функций и подставляем в равенство (1). Получим
следовательно,
Откуда окончательно находим следующее уравнение траектории точки (парабола, рис.К1):
2. Скорость точки найдем по ее
проекциям на координатные оси:
|
(3) Рис. К1.10
3. Аналогично найдем ускорение точки:
(4)
4. Касательное ускорение найдем, дифференцируя по времени равенство
Получаем
(5)
Числовые значения всех величин, входящих в правую часть выражения (5), определены и даются равенствами (3) и (4). Подставив сюда эти числа, найдем сразу, что при t1 =1c, a1t =0,66см/c 2 .
5. Нормальное ускорение точки Подставляя сюда найденные числовые значения a1 и a1t , получим, что при t1 = 1с , a1n = 0,58 см/c 2 .
6. Радиус кривизны траектории r =u 2 /an . Подставляя сюда числовые значения u1 и a1n , найдем, что при t1 = 1c r1 = 3,05см.
Плоский механизм состоит из: колёс 1, 2 и 3, планки 4 и груза 5. Диски и груз соединены между собой нерастяжимыми нитями. Диски, касающиеся планки, при движении механизма не проскальзывают.
Схемы механизмов показаны на рис. К2.0-9, необходимые для расчёта данные помещены в таблице К2.
Дано | Найти | |||||||
№ условия | уравнение движения груза | скорости | ускорения | |||||
см | см | см | см | см | с | |||
, | , , | |||||||
, | , , | |||||||
, | , , | |||||||
, | , , | |||||||
, | , , | |||||||
, | , , | |||||||
, | , , | |||||||
, | , , , | |||||||
, | , , | |||||||
, | , , |
По заданному направлению поступательного движения груза 5 определить в заданной момент времени угловые скорости и ускорения тел и линейные скорости и ускорения точек, указанных в таблице К2.
Указания. Студенту при решении задач следует учесть следующее. 1. Что скорости точек контакта тел, находящихся в зацеплении, равны между собой. 2. Два вращающихся тела связаны нерастяжимой ременной передачей, и скорости точек ремня равны скоростям соприкасающихся с ним точек тел. 3. Тело 1 представляет собой ступенчатое колесо с радиусами : — большой ступени, — малой ступени
Рис. К2.0-9
Пример К2.Груз 5 подвешен на нерастяжимой нити, намотанной на большую ступень колеса 1. Движение груза задано уравнением: . Колеса 1 и 3 связаны нерастяжимой ременной передачей, как показано на рис. К2.10. Между колесом 2 и малой ступенью колеса 1 зажатая рейка 4, которая движется в горизонтальных направляющих. Радиусы колёс: см, см, см..
Рис. К2.10 | Определить скорости точек и Е , , ускорения точки Е и рейки 4 , , а также угловую скорость колеса 1 и угловое ускорение колеса 2 в момент времени = 2 с. Решение Обозначим точки контакта взаимодействующих тел через K, L, M, D, E. Груз 5 опускаясь приводит во вращательное движение колесо 1. Скорость точки K контакта колеса и нити равна скорости груза, т. е. . Вектор скорости направлен в сторону увеличения координаты , вектор — по касательной к окружности радиуса . Искомая угловая скорость колеса 1 — . |
Чтобы определить скорость точки колеса 3 , отметим, что , а . Векторы и направлены по касательным к окружностям радиусов и соответственно.
Зубчатая рейка 4 связана с колесом 2 и 1, как показано на рисунке К2.10, и движется в направляющих поступательно. Линейные скорости точек , ободов колес и точек планки равны между собой, т.е. . Но , следовательно, . Вектор направлен вдоль направляющих в сторону движения планки.
Ускорение планки . Если положительно, то направление вектора ускорения совпадает с направлением вектора скорости , если отрицательна, то вектор направлен в сторону, обратную направлению .
Тогда, угловая скорость колеса 2 , а угловое ускорение колеса . Скорость точки равна скорости точки , т. е. . Вектор направлен по касательной к окружности радиуса . Линейное ускорение модуль ускорения
Таким образом .
Вектор направлен по касательной к окружности радиуса , вектор — по радиусу к центру окружности , вектор — по диагонали параллелограмма, построенного на векторах , .
Подставляя в найденные аналитические выражения заданное значения параметра с, получим : =5рад /с ; =15см/с ; =15см/с 2 ; =3рад/с 2 ; =15см/с ; =47,1см/с 2 ; =15см/с 2 ; =45см/с 2 .
Плоский механизм состоит из стержней 1, 2, 3, 4 и ползунов В и Е(рис.К3.0.–7) или из стержней 1, 2, 3 и ползунов В и Е (рис К3.8-9), соединенных друг с другом и с неподвижными опорами О1, О2шарнирами; точка D находится в середине стержня АВ. Длины стержней равны соответственно : l1 =0,4м, l2 = 1,2 м, l3 =1,4м, l4 = 0,6м. Положение механизма определяется углами a, b, g, j, q. Значения этих углов и других заданных величин указаны в табл.К3.1 (для рис. К3.0 –4) или в табл.К3.2 (для рис.К3.5–9). Определить величины, указанные в таблицах в столбцах «Найти».
Дуговые стрелки на рисунках показывают, как при построении чертежа механизма должны откладываться соответствующие углы: по ходу или против хода часовой стрелки (например, угол g на рис. К2.8 следует отложить от DB по ходу часовой стрелки, а на рис. К2.9 – против часовой стрелки).
Рис. К3.0-9
Таблица К3.1 (к рис. К3.0-К3.4)
Номер условия | Углы, градусы | Дано | Найти | |||||
a | b | g | j | q | w1 рад/с | w2 рад/с | Скорости точек | w звена |
— | В,Е | DE | ||||||
— | A,E | AB | ||||||
— | B,E | AB | ||||||
— | A,E | DE | ||||||
— | D,E | AB | ||||||
— | A,E | AB | ||||||
— | B,E | DE | ||||||
— | A,E | DE | ||||||
— | D,E | AB | ||||||
— | A,E | DE |
Таблица К3.2 (к рис. К3.5-К3.9)
Номер условия | Углы, градусы | Дано | Найти | |||||
a | b | g | j | q | w1, рад/с | uВ, м/с | Скорости точек | w звена |
— | B,E | AB | ||||||
— | A,E | DE | ||||||
— | B,E | AB | ||||||
— | A,E | AB | ||||||
— | B,E | DE | ||||||
— | D,E | DE | ||||||
— | B,E | DE | ||||||
— | A,E | AB | ||||||
— | B,E | DE | ||||||
— | D,E | AB |
Указания. Построение чертежа начинать со стержня, направление которого определяется углом a. Заданную угловую скорость считать направленной против часовой стрелки, а заданную скорость — от точки В к в (на рис. К3.5 –.9).
Задача К3 – на исследование плоскопараллельного движения твердого тела. При ее решении для определения скоростей точек механизма и угловых скоростей его звеньев следует воспользоваться теоремой о проекциях скоростей двух точек тела и понятием о мгновенном центре скоростей, применяя эту теорему (или это понятие) к каждому звену механизма в отдельности.
Пример К3. Механизм (рис.К3.10) состоит из двух стержней 1,2,3,4 и ползуна В,соединенных друг с другом и неподвижными опорами О2 и О2шарнирами.
Дано: a = 60 0 , b =150 0 , g = 90 0 , j = 30 0 , q = 30 0 , AD = DB, l1= 0,4 м, l2 = 1,2 м, l3 = 1,4 м, w2 = 2 рад/c (направление w1 – против хода часовой стрелки). Определить: VВ, VЕ, ω2.
1. Строим положение механизма в соответствии с заданными углами (рис.К2.11); на этом рисунке изображаем все векторы скоростей.
2. Определяем . Точка В принадлежит стержню 3. Чтобы найти , надо знать скорость, какой – либо другой точки этого стержня и направление . По данным задачи, учитывая направление , можем определить ; численно
(1)
Направление найдем, учтя, что точка В принадлежит и ползуну B, движущемуся вдоль направляющих поступательно.
Рис. К2.10 Рис. К2.11
Теперь, зная и направление , воспользуемся теоремой о проекциях скоростей двух точек тела (стержня 3) на прямую, соединяющую эти точки (прямая АВ). Сначала по этой теореме устанавливаем, в какую сторону направлен вектор (проекции скоростей должны иметь одинаковые знаки). Затем, вычисляя эти проекции, находим
и (2)
3. Определяем . Точка Е принадлежит стержню 2. Следовательно, по аналогии с предыдущим, чтобы определить , надо сначала найти скорость точки D, принадлежащей одновременно стержню 3. Для этого, зная строим мгновенный центр скоростей (МЦС) стержня 3; это точка С3, лежащая на пересечении перпендикуляров к , восстановленных из точек А и В (к перпендикулярен стержень 1). По направлению вектора определяем направление поворота стержня 3 вокруг МЦС С3. Вектор перпендикулярен отрезку С3 D, соединяющему точки D и С3, и направлен в сторону поворота. Величину найдем из пропорции
. (3) 7
Чтобы вычислить C3 D и C3 B, заметим, что ∆ АС3 В – прямоугольный, так что острые углы в нем равны 30 0 и 60 0 , и что С3В = АB sin 30 0 = 0,5 AB =BD.
Тогда ∆ ВС3 D является равносторонним и С3 В = С3 D. В результате равенство (3) дает
(4)
Так как точка Е принадлежит одновременно стержню 4, вращающемуся вокруг О2, то . Тогда, восставляя из точек Е и D перпендикуляры к скоростям , построим МЦС С2 стержня 2. По направлению вектора определяем направление поворота стержня 2 вокруг центра С2. Вектор направлен в сторону поворота этого стержня. Из рис. К2.11 видно, что С2ED = C2DE =30 0 , откуда С2Е = C2D.
Составив теперь пропорцию, найдем, что
(5)
4. Определяем . Так как МЦС стержня 2 известен (точка С2) и С2D = l2 / (2cos30 0 ) = 0, 69 м, то
. (6)
Ответ: VB = 0,46 м /c; VЕ = 0,46 м / с; ω2 = 0,67 рад / c.
(1)
Направление найдем, учтя, что точка В принадлежит и ползуну B, движущемуся вдоль направляющих поступательно.
Теперь, зная и направление , воспользуемся теоремой о проекциях скоростей двух точек тела (стержня 3) на прямую, соединяющую эти точки (прямая АВ). Сначала по этой теореме устанавливаем, в какую сторону направлен вектор (проекции скоростей должны иметь одинаковые знаки). Затем, вычисляя эти проекции, находим
и (2)
3. Определяем . Точка Е принадлежит стержню 2. Следовательно, по аналогии с предыдущим, чтобы определить , надо сначала найти скорость точки D, принадлежащей одновременно стержню 3. Для этого, зная строим мгновенный центр скоростей (МЦС) стержня 3; это точка С3, лежащая на пересечении перпендикуляров к , восстановленных из точек А и В (к перпендикулярен стержень 1). По направлению вектора определяем направление поворота стержня 3 вокруг МЦС С3. Вектор перпендикулярен отрезку С3 D, соединяющему точки D и С3, и направлен в сторону поворота. Величину найдем из пропорции
. (3)
Чтобы вычислить C3 D и C3 B, заметим, что ∆ АС3 В – прямоугольный, так что острые углы в нем равны 30 0 и 60 0 , и что С3В = АB sin 30 0 = 0,5 AB =BD.
Тогда ∆ ВС3 D является равносторонним и С3 В = С3 D. В результате равенство (3) дает
(4)
Так как точка Е принадлежит одновременно стержню 4, вращающемуся вокруг О2, то . Тогда, восставляя из точек Е и D перпендикуляры к скоростям , построим МЦС С2 стержня 2. По направлению вектора определяем направление поворота стержня 2 вокруг центра С2. Вектор направлен в сторону поворота этого стержня. Из рис. К3б видно, что С2ED = C2DE =30 0 , откуда С2Е = C2D.
Составив теперь пропорцию, найдем, что
(5)
4. Определяем . Так как МЦС стержня 2 известен (точка С2) и С2D = l2 / (2cos30 0 ) = 0, 69 м, то
. (6) Ответ: VB = 0,46 м /c; VЕ = 0,46 м / с; ω2 = 0,67 рад / c.
Видео:К1 Определение скорости и ускорения точки по заданным уравнениям ее движенияСкачать
Примеры решения задач. Движение точки задано уравнениями (х, у — в метрах, t — в секундах).
Задача 2.1.
Движение точки задано уравнениями (х, у — в метрах, t — в секундах).
.
Определить траекторию, скорость и ускорение точки.
Решение.
Рис. 2.9. К задаче 2.1 |
Для определения траектории исключаем из уравнений движения время t. Умножая обе части первого уравнения на 3, а обе части второго — на 4 и почленно вычитая из первого равенства второе, получим: или .
Следовательно, траектория — прямая линия, наклоненная к оси Ох под углом α, где (рис. 2.9).
Определяем скорость точки. По формулам (2.1) получаем:
;
.
Теперь находим ускорение точки. Формулы (2.1) дают:
Направлены векторы и вдоль траектории, т. е. вдоль прямой АВ. Проекции ускорения на координатные оси все время отрицательны, следовательно, ускорение имеет постоянное направление от В к А. Проекции скорости при 0 1 с) обе проекции скорости отрицательны и, следовательно, скорость направлена от В к А, т. е. так же, как и ускорение.
Заметим, наконец, что при и ; при (точка В); при ; при значения и растут по модулю, оставаясь отрицательными.
Итак, заданные в условиях задачи уравнения движения рассказывают нам всю историю движения точки. Движение начинается из точки О с начальной скоростью и происходит вдоль прямой АВ, наклоненной к оси Ох под углом α, для которого . На участке OB точка движется замедленно (модуль ее скорости убывает) и через одну секунду приходит в положение В (4, 3), где скорость ее обращается в нуль. Отсюда начинается ускоренное движение в обратную сторону. В момент точка вновь оказывается в начале координат и дальше продолжает свое движение вдоль ОА, Ускорение точки все время равно 10 м/с 2 .
Задача 2.2.
Движение точки задано уравнениями:
где , ω и u — постоянные величины. Определить траекторию, скорость и ускорение точки.
Решение.
Рис. 2.10. К задаче 2.2 |
Возводя первые два уравнения почленно в квадрат и складывая, получаем
.
Следовательно, траектория лежит на круглом цилиндре радиуса R, ось которого направлена вдоль оси Oz (рис. 2.10). Определяя из последнего уравнения t и подставляя в первое, находим
.
Таким образом, траекторией точки будет линия пересечения синусоидальной поверхности, образующие которой параллельны оси Оу (синусоидальный гофр) с цилиндрической поверхностью радиуса R. Эта кривая называется винтовой линией. Из уравнений движения видно, что один виток винтовой линий точка проходит за время , определяемое из равенства . При этом вдоль оси z точка за это время перемещается на величину , называемую шагом винтовой линии.
Найдем скорость и ускорение точки. Дифференцируя уравнения движения по времени, получаем:
.
Стоящие под знаком радикала величины постоянны. Следовательно, движение происходит с постоянной по модулю скоростью, направленной по касательной к траектории. Теперь по формулам (2.1) вычисляем проекции ускорения;
.
Итак, движение происходит с постоянным по модулю ускорением, Для определения направления ускорения имеем формулы:
,
’
.
,
где α и β —углы, образуемые с осями Ох и Оу радиусом R, проведенным от оси цилиндра к движущейся точке. Так как косинусы углов α1 и β1 отличаются от косинусов α и β только знаками, то отсюда заключаем, что ускорение точки все время направлено по радиусу цилиндра к его оси.
Заметим, что хотя в данном случае движение и происходит со скоростью, постоянной по модулю, ускорение точки не равно нулю, так как направление скорости изменяется.
Задача 2.3.
На шестерню 1 радиуса r1 действует пара сил с моментом m1 (рис. 46, а). Определить момент m2 пары, которую надо приложить к шестерне 2 радиуса r2, чтобы сохранить равновесие.
Решение.
Рис. 2.11. К задаче 2.3 |
Рассмотрим сначала условия равновесия шестерни 1. На нее действует пара с моментом m1, которая может быть уравновешена только действием другой пары, в данном случае пары . Здесь — перпендикулярная радиусу составляющая силы давления на зуб со стороны шестерни 2, a — тоже перпендикулярная радиусу составляющая реакции оси А (сила давления на зуб и реакция оси А имеют еще составляющие вдоль радиуса, которые взаимно уравновешиваются и в условие равновесия не войдут). При этом, согласно условию равновесия (17), и .
Теперь рассмотрим условия равновесия шестерни 2 (рис. 46, б). По закону равенства действия и противодействия на нее со стороны шестерни 1 будет действовать сила , которая с перпендикулярной радиусу составляющей реакции оси В образует пару , с моментом, равным -Q2r2. Эта пара и должна уравновеситься приложенной к шестерне 2 парой с моментом m2; следовательно, по условию равновесия, . Отсюда, так как Q2=Q1 находим m2=m1/r2r1.
Естественно, что пары с моментами m1 и m2 не удовлетворяют условию равновесия , так как они приложены к разным телам.
Полученная в процессе решения задачи величина Q1 (или Q2) называется окружным усилием, действующим на шестерню. Как видим, окружное усилие равно моменту вращающей пары, деленному на радиус шестерни: Q1=m1/r1 =m2/r2.
Задача 2.4.
Человек ростом h удаляется от фонаря, висящего на высоте H, двигаясь прямолинейно со скоростью . С какой скоростью движется конец тени человека?
Решение.
Рис. 2.12. К задаче 2.4 |
Для решения задачи найдем сначала закон, по которому движется конец тени. Выбираем начало отсчета в точке О, находящейся на одной вертикали с фонарем, и направляем вдоль прямой, по которой движется конец тени, координатную ось Ох (рис. 2.12). Изображаем человека в произвольном положении на расстоянии x1 от точки О. Тогда конец его тени будет находиться от начала О на расстоянии х2.
Из подобия треугольников ОАМ и DAB находим:
.
Это уравнение выражает закон движения конца тени М, если закон движения человека, т.е. , известен.
Взяв производную по времени от обеих частей равенства и замечая, что по формуле (2.1) , где — искомая скорость, получим
.
Если человек движется с постоянной скоростью ( ), то скорость конца тени М будет тоже постоянна, но в раз больше, чем скорость человека.
Обращаем внимание на то, что при составлении уравнений движения надо изображать движущееся тело или механизм в произвольном положении. Только тогда мы поучим уравнения, определяющие положение движущейся точки (или тела) в любой момент времени.
Задача 2.5.
Определить траекторию, скорость и ускорение середины М шатуна кривошипно-ползунного механизма (рис. 2.13), если OA=AB=2b, а угол при вращении кривошипа растет пропорционально времени: .
Рис. 2.13. К задаче 2.5. |
Начинаем с определения уравнений движения точки М. Проводя оси и обозначая координаты точки М в произвольном положении через х и у находим
.
Заменяя его значением, получаем уравнения движения точки М:
.
Для определения траектории точки М представим уравнения движения в виде
.
Возводя эти равенства почленно в квадрат и складывая, получим
.
Итак, траектория точки М — эллипс с полуосями 3b и b.
Теперь по формуле (2.1) находим скорость точки М:
.
Скорость оказывается величиной переменной, меняющейся с течением времени в пределах от до .
Далее по формулам (2.1) определяем проекции ускорения точки М;
;
,
где — длина радиуса-вектора, проведанного из центра О до точки М. Следовательно, модуль ускорения точки меняется пропорционально ее расстояние от центра эллипса.
Определелим направление ускорения
Отсюда находим, что ускорение точки М все время направлено вдоль МО к центру эллипса.
Задача 2.6.
Вал, делающий n=90 об/мин, после выключения двигателя начинает вращаться равнозамедленно и останавливается через t1=40 с. Определить, сколько оборотов сделал вал за это время.
Решение.
Так как вал вращается равнозамедленно, то для него, считая , будет
. (2.2)
Начальной угловой скоростью при замедленном вращении является та, которую вал имел до выключения двигателя. Следовательно,
.
В момент остановки при t=t1 угловая скорость вала ω1=0. Подставляя эти значения во второе из уравнений (2.2), получаем:
и .
Если обозначить число сделанных валом за время t1 оборотов через N (не смешивать с n; n — угловая скорость), то угол поворота за то же время будет равен . Подставляя найденные значения ε и в первое из уравнений (а), получим
,
.
Задача 2.7.
Маховик радиусом R=0,6 м вращается равномерно, делая n=90 об/мин. Определить скорость и ускорение точки, лежащей на ободе маховика.
Решение.
Скорость точки обода , где угловая скорость должна быть выражена в радианах в секунду. Тогда и .
Далее, так как , то ε=0, и, следовательно,
.
Ускорение точки направлено в данном случае к оси вращения.
Задача 2.8.
Найти скорость точки М обода колеса, катящегося по прямолинейному рельсу без скольжения (рис. 2.14), если скорость центра С колеса равна , а угол DKM=α.
Рис. 2.14. К задаче 2.8. |
Решение
Приняв точку С, скорость которой известна, за полюс, найдем, что , где по модулю ( — радиус колеса). Значение угловой скорости со найдем из условия того, что точка колеса не скользит по рельсу и, следовательно, в данный момент времени . С другой стороны, так же как и для точки М, где . Так как для точки К скорости и направлены вдоль одной прямой, то при , откуда . В результате находим, что .
Параллелограмм, построенный на векторах и , будет при этом ромбом. Угол между и равен β, так как стороны, образующие этот угол и угол β, взаимно перпендикулярны. В свою очередь угол β=2α, как центральный угол, опирающийся на ту же дугу, что и вписанный угол α. Тогда по свойствам ромба углы между и и между и тоже равны α. Окончательно, так как диагонали ромба взаимно перпендикулярны, получим
и .
Задача 2.9.
Определить скорость точки М обода катящегося колеса, рассмотренного в предыдущей задаче, с помощью мгновенного центра скоростей.
Решение.
Рис. 2.15. К задаче 2.9. |
Точка касания колеса Р (рис. 2.15) является мгновенным центром скоростей, поскольку . Следовательно, . Так как прямой угол PMD опирается на диаметр, то направление вектора скорости любой точки обода проходит через точку D. Составляя пропорцию и замечая,
что , a , находим .
Чем точка М дальше от Р, тем ее скорость больше; наибольшую скорость имеет верхний конец D вертикального диаметра. Угловая скорость колеса имеет значение
Аналогичная картина распределения скоростей имеет место при качении колеса или шестерни по любой цилиндрической поверхности.
Задача 2.10.
Центр О колеса, катящегося по прямолинейному рельсу (рис. 2.16), имеет в данный момент времени скорость и ускорение . Радиус колеса R=0,2 м. Определить ускорение точки В — конца перпендикулярного ОР диаметра АВ и ускорение точки Р, совпадающей с мгновенным центром скоростей.
Решение.
Рис. 2.16. К задаче 2.10. |
1) Так как и известны, принимаем точку О за полюс.
2) Определение ω. Точка касания Р является мгновенным центром скоростей; следовательно, угловая скорость колеса
.
3) Определение ε. Так как величина PO=R остается постоянной при любом положении колеса, то
Знаки ω и ε совпадают, следовательно, вращение колеса ускоренное.
а) не следует думать, что если по условиям задачи , то . Значение в задаче указано для данного момента времени; с течением же времени изменяется, так как ;
б) в данном случае , так как движение точки O является прямолинейным. В общем случае .
4) Определение и . Так как за полюс взята точка O, то ускорение точки B определяется по фомуле:
Учитывая, что в нашем случае BO=R, находим:
.
Показав на чертеже точку B отдельно, изображаем (без соблюдения масштаба) векторы, из которых слагается ускорение , а именно: вектор (переносим из точки O), вектор (в сторону вращения, так как оно ускоренное) и вектор (всегда от B к полюсу O).
5) Вычисление . Проведя оси X и Y, находим, что
,
.
Аналогичным путем легко найти и ускорение точки P: и направлено вдоль PO. Таким образом, ускорение точки P, скорость которой в данный момент времени равна нулю, нулю не равно.
Задача 2.11.
Колесо катится по прямолинейному рельсу так, что скорость его центра С постоянна. Определить ускорение точки М обода колеса (рис. 2.17).
Решение.
Рис. 2.17. К задаче 2.11. |
Так как по условиям задачи , то и точка С является мгновенным центром ускорений. Мгновенный центр скоростей находится в точке Р. Следовательно, для колеса
В результате ускорение точки М
.
Таким образом, ускорение любой точки М обода (в том числе и точки Р) равно и направлено к центру С колеса, так как угол . Заметим, что это ускорение для точки М не будет нормальным ускорением. В самом деле, скорость точки М направлена перпендикулярно РМ . Следовательно, касательная к траектории точки М направлена вдоль линии MD, а главная нормаль — вдоль МР. Поэтому
.
Зажача 2.12.
Плоский механизм состоит из стержней 1, 2, 3, 4 и ползуна С, соединенных друг с другом и с неподвижными опорами О1 и О2 шарнирами (рис.2.17 а). Точка D находится в середине стержня АВ. Длины стержней равны соответственно L1=0,4 м, L2 =1,2 м, L3=1,4 м, L4=0,6 м.
Дано: = 6 с -1 , величина постоянная. Заданную угловую скорость считать направленной против часовой стрелки.
Найти: скорости точек В и C; угловую скорость ; ускорение точки В; угловое ускорение
а) | |
б) | |
Рис.2.17. К задаче 2.12. |
Решение (рис.2.12б)
1. Определим скорость точки А. Стержень OAвращается вокруг точко O1, поэтому скорость точки А определяется по формуле = 1,6 м/с и направлена перпендикулярно отрезку O1А. = 1,6 м/с
2. Определим угловую скорость стержня АВ. Точка В вращается вокруг центра О2, поэтому ее скорость перпендикулярна отрезку O2B. Для нахождения мгновенного центра скоростей отрезка АВ в точках А и В восстановим перпендикуляры к векторам и . Точка пересечения этих перпендикуляров Р2 является мгновенным центром скоростей второго стержня. Угловая скорость вычисляется по формуле . Расстояние определяется из равнобедренного треугольника , то есть м. Поэтому 2,3 с -1 .
3. Определим скорость точки В по формуле = 1,6 м/с
по формуле = 0,8 м/с
4. Определим скорость точки С. Так как точка С движется прямолинейно, то ее скорость направлена вдоль движения ползуна. Для нахождения мгновенного центра скоростей отрезка CD в точках C и D восстановим перпендикуляры к векторам и . Точка пересечения этих перпендикуляров Р3 является мгновенным центром скоростей третьего стержня. Угловая скорость вычисляется по формуле , а скорость точки С . Так как треугольник равносторонний, то = 0,8 м/с
5. Определим угловую скорость отрезка О2В. Известно, что центром скоростей этого стержня является точка О2В , а также скорость точки B. Поэтому угловая скорость четвертого стержня вычисляется по формуле и 2,7 с -1 .
6. Определим ускорение точки А. Так как первый стержень вращается равномерно, то точка А имеет относительно О1 только нормальное ускорение, которое вычисляется по формуле = 6,4 м/с 2 .
7. Определим ускорение точки В, которая принадлежит двум стержням — АВ и О2В. Поэтому ускорение точки В определяется с помощью двух формул
и , где
— ускорение точки А;
— нормальное ускорение точки В относительно А;
— тангенциальное ускорение точки В относительно А;
— нормальное ускорение точки В относительно О2;
— тангенциальное ускорение точки В относительно О2.
= 6,4 м/с 2 ; = 4,3 м/с 2 .
Можно составить уравнение
, которое в проекциях на оси координат имеет вид
Решив полученную систему двух уравнений с двумя неизвестными, получим:
= 13,2 м/с 2 , аВХ = 4,1 м/с 2 , аВY =9,1 м/с 2 , аВ =10 м/с 2 .
8. Определим угловое ускорение стержня АВ, используя формулу = 13,2 с -2 .
Задача 2.13.
Круглая пластина радиуса R=60 см вращается вокруг неподвижной оси по закону (рис.2.18 а). Положительное направление угла показано на рисунке дуговой стрелкой. Ось вращения ОО1 лежит в плоскости пластины (пластина вращается в пространстве). По окружности радиуса R движется точка М. Закон ее движения по дуге окружности s= АМ= . На рисунке точка М показана в положении, когда s положительно, при s отрицательном точка М находится по другую сторону от точки А; L=R.
Найти абсолютную скорость и абсолютное ускорение точки М в момент времени t=1 с.
а) | |
б) | |
Рис.2.18. К задаче 2.13. |
Решение (рис.2.13 б)
В качестве подвижной системы координат xyz примем точку С. Эта система совершает вращательное движение с угловой скоростью = 5 с -1 . Угловое ускорение = -10 с -2 . Направления векторов и опледеляются по правилу буравчика и изображены на рис. Причем, вектор направлен в противоположную сторону, так как его значение его проекции на ось OХ неподвижной системы координат XYZ отрицательно. Вычислим скорость и ускорение центра подвижной системы координат С, которая движется по окружности. Скорость вычисляется по формуле , равна 600 см/с и первендикулярна плоскости рисунка. Ускорение точки С состоит из двух компонент — нормальное = 3000 см/с 2 и тангенциальное = 1200 см/с 2 ускорения.
Вычислим путь, относительную скорость и ускорение точки M. Ее положение определяется величиной дуги S, в данный момент времени S = , поэтому она располагается слева от точки А. Относительная скорость . В данный момент времени она равна 63 см/с и направлена по касательной к окружности. Относительное ускорение является суммой двух составляющих — тангенциальное = 377 см/с -2 и нормальное = 66 см/с -2 .
Абсолютная скорость точки M определяется по формуле
Где — переносная скорость вращательного движения, модуль которой = 150 см / с, ее направление определяется по правилу Жуковского. В разложении на оси координат
По теореме Пифагора = 750 м /с.
Абсолютное ускорение точки M определяется по формуле
Где и — соответственно нормальное и тангенциальное переносные ускорения вращательного движения, — кориолисово ускорение.
= 750 м / с -2 ; =300 м / с -2 ; = 546 м / с -2
;
;
📹 Видео
Траектория и уравнения движения точки. Задача 1Скачать
Кинематика точки. Три способа задания движения. Скорость, ускорениеСкачать
Кинематика точки К1Скачать
Скорость и ускорение точки в полярных координатахСкачать
кинематика точкиСкачать
Теормех Кинематика точки. Определение кинематических характеристик. Задача (траектория-эллипс)Скачать
Теоретическая механика. Задание К1 (часть 2) из сборника ЯблонскогоСкачать
Как решать первую задачу К1. Кинематика точки. К1-1Скачать
Теоретическая механика. Задание К1 (часть 1) из сборника ЯблонскогоСкачать
Лекция 5.3 | Уравнение траектории | Александр Чирцов | ЛекториумСкачать
Физика - перемещение, скорость и ускорение. Графики движения.Скачать
Лекция 3.4 | Перемещение и скорость материальной точки | Александр Чирцов | ЛекториумСкачать
Способы описания движения. Траектория. Путь. ПеремещениеСкачать
Урок 7. Механическое движение. Основные определения кинематики.Скачать
Сложное движение точки. Задача 1Скачать
Кинематика материальной точки за 20 минут (кратко и доступно) Кинематика точкиСкачать
Физика - уравнения равноускоренного движенияСкачать
Cложное движение точки. ТермехСкачать