Яблонский задание К.1. Определение скорости и ускорения точки по заданным уравнениям ее движения.
По заданным уравнениям движения точки M установить вид ее траектории и для момента времени t=t1 (с) найти положение точки на траектории, ее скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории. Необходимые для решения данные приведены в таблице 20.
Дополнение к заданию К.1. Данное задание может быть использовано для определения скорости и ускорения точки при ее движении по пространственной траектории. Для этого к двум уравнениям движения (см. табл. 20) добавляется третье уравнение (табл. 22).
Общий порядок выполнения задания в этом случае такой же, как и в приведенном примере.
Видео:Траектория и уравнения движения точки. Задача 1Скачать

КИНЕМАТИКА
Точка В движется в плоскости ху(рис. К1.0 – К1.9, табл.К1; траектория точки на рисунках показана условно). Закон движения точки задан уравнениями: х = f2 (t),y = f2 (t), где хи увыражены в сантиметрах, t– в секундах.
Найти уравнение траектории точки; для момента времени t1 =1сопределить скорость и ускорение точки, а также ее касательное и нормальное ускорения и радиус кривизны в соответствующей точке траектории.
Зависимость x = f1 (t) указана непосредственно на рисунках, а зависимость y = f2 (t) дана в табл.К1 (для рис. 0-2 в столбце 2, для рис. 3-6 в столбце 3, для рис. 7-9 в столбце 4).
Указания. Задача К1 относится к кинематике точки и решается с помощью формул, по которым определяются скорость и ускорение точки в декартовыхкоординатах (координатный способ задания движения точки), а также формул, по которым определяются касательное и нормальное ускорение точки.
В данной задаче все искомые величины нужно определить только для момента времени t1 = 1c. В некоторых вариантах задачи при определении траектории или при последующих расчетах (для их упрощения) следует учесть известные из тригонометрии формулы:
cos2a = 1 – 2sin 2 a =2cos 2 α –1,
sin2a = 2sina× cos a
Рис. К1.0-9
![]() |
Пример К1.Даны уравнения движения точки в плоскости ху:

(х,у – в сантиметрах, t – в секундах).
Определить уравнение траектории точки; для момента времени t1 = 1с найти скорость и ускорение точки, а также ее касательное и нормальное ускорение и радиус кривизны в соответствующей точке траектории.
Решение. 1. Для определения уравнения траектории точки исключим из данных уравнений движения время t.
Таблица К1
| № условия | У = f2 (t) | |
| Рис. 0 – 2 | Рис. 3 — 6 | Рис. 7 — 9 |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | 2t 3 | ![]() |
![]() | ![]() | ![]() |
Поскольку t входит в аргументы тригонометрических функций, где один аргумент вдвое больше другого, используем формулу
Из уравнений движения находим выражения соответствующих функций и подставляем в равенство (1). Получим
следовательно,
Откуда окончательно находим следующее уравнение траектории точки (парабола, рис.К1):

проекциям на координатные оси:
|

3. Аналогично найдем ускорение точки:



4. Касательное ускорение найдем, дифференцируя по времени равенство



Числовые значения всех величин, входящих в правую часть выражения (5), определены и даются равенствами (3) и (4). Подставив сюда эти числа, найдем сразу, что при t1 =1c, a1t =0,66см/c 2 .
5. Нормальное ускорение точки 
6. Радиус кривизны траектории r =u 2 /an . Подставляя сюда числовые значения u1 и a1n , найдем, что при t1 = 1c r1 = 3,05см.
Плоский механизм состоит из: колёс 1, 2 и 3, планки 4 и груза 5. Диски и груз соединены между собой нерастяжимыми нитями. Диски, касающиеся планки, при движении механизма не проскальзывают.
Схемы механизмов показаны на рис. К2.0-9, необходимые для расчёта данные помещены в таблице К2.
| Дано | Найти | |||||||
| № условия | уравнение движения груза | ![]() | ![]() | ![]() | ![]() | ![]() | скорости | ускорения |
| см | см | см | см | см | с | |||
![]() | , ![]() | , , ![]() | ||||||
![]() | , ![]() | , , ![]() | ||||||
![]() | , ![]() | , , ![]() | ||||||
![]() | , ![]() | , , ![]() | ||||||
![]() | , ![]() | , , ![]() | ||||||
![]() | , ![]() | , , ![]() | ||||||
![]() | , ![]() | , , ![]() | ||||||
![]() | , ![]() | , , , | ||||||
![]() | , ![]() | , , ![]() | ||||||
![]() | , ![]() | , , ![]() |
По заданному направлению поступательного движения груза 5 определить в заданной момент времени угловые скорости и ускорения тел и линейные скорости и ускорения точек, указанных в таблице К2.
Указания. Студенту при решении задач следует учесть следующее. 1. Что скорости точек контакта тел, находящихся в зацеплении, равны между собой. 2. Два вращающихся тела связаны нерастяжимой ременной передачей, и скорости точек ремня равны скоростям соприкасающихся с ним точек тел. 3. Тело 1 представляет собой ступенчатое колесо с радиусами : 


Рис. К2.0-9
Пример К2.Груз 5 подвешен на нерастяжимой нити, намотанной на большую ступень колеса 1. Движение груза задано уравнением: 



Рис. К2.10 | Определить скорости точек и Е , , ускорения точки Е и рейки 4 , , а также угловую скорость колеса 1 и угловое ускорение колеса 2 в момент времени = 2 с. Решение Обозначим точки контакта взаимодействующих тел через K, L, M, D, E. Груз 5 опускаясь приводит во вращательное движение колесо 1. Скорость точки K контакта колеса и нити равна скорости груза, т. е. . Вектор скорости направлен в сторону увеличения координаты , вектор — по касательной к окружности радиуса . Искомая угловая скорость колеса 1 — . |
Чтобы определить скорость точки 






Зубчатая рейка 4 связана с колесом 2 и 1, как показано на рисунке К2.10, и движется в направляющих поступательно. Линейные скорости точек 






Ускорение планки 






Тогда, угловая скорость колеса 2 








Таким образом 
Вектор 






Подставляя в найденные аналитические выражения заданное значения параметра 








Плоский механизм состоит из стержней 1, 2, 3, 4 и ползунов В и Е(рис.К3.0.–7) или из стержней 1, 2, 3 и ползунов В и Е (рис К3.8-9), соединенных друг с другом и с неподвижными опорами О1, О2шарнирами; точка D находится в середине стержня АВ. Длины стержней равны соответственно : l1 =0,4м, l2 = 1,2 м, l3 =1,4м, l4 = 0,6м. Положение механизма определяется углами a, b, g, j, q. Значения этих углов и других заданных величин указаны в табл.К3.1 (для рис. К3.0 –4) или в табл.К3.2 (для рис.К3.5–9). Определить величины, указанные в таблицах в столбцах «Найти».
Дуговые стрелки на рисунках показывают, как при построении чертежа механизма должны откладываться соответствующие углы: по ходу или против хода часовой стрелки (например, угол g на рис. К2.8 следует отложить от DB по ходу часовой стрелки, а на рис. К2.9 – против часовой стрелки).
![]() |
Рис. К3.0-9
Таблица К3.1 (к рис. К3.0-К3.4)
| Номер условия | Углы, градусы | Дано | Найти | |||||
| a | b | g | j | q | w1 рад/с | w2 рад/с | Скорости точек | w звена |
| — | В,Е | DE | ||||||
| — | A,E | AB | ||||||
| — | B,E | AB | ||||||
| — | A,E | DE | ||||||
| — | D,E | AB | ||||||
| — | A,E | AB | ||||||
| — | B,E | DE | ||||||
| — | A,E | DE | ||||||
| — | D,E | AB | ||||||
| — | A,E | DE |
Таблица К3.2 (к рис. К3.5-К3.9)
| Номер условия | Углы, градусы | Дано | Найти | |||||
| a | b | g | j | q | w1, рад/с | uВ, м/с | Скорости точек | w звена |
| — | B,E | AB | ||||||
| — | A,E | DE | ||||||
| — | B,E | AB | ||||||
| — | A,E | AB | ||||||
| — | B,E | DE | ||||||
| — | D,E | DE | ||||||
| — | B,E | DE | ||||||
| — | A,E | AB | ||||||
| — | B,E | DE | ||||||
| — | D,E | AB |
Указания. Построение чертежа начинать со стержня, направление которого определяется углом a. Заданную угловую скорость считать направленной против часовой стрелки, а заданную скорость 
Задача К3 – на исследование плоскопараллельного движения твердого тела. При ее решении для определения скоростей точек механизма и угловых скоростей его звеньев следует воспользоваться теоремой о проекциях скоростей двух точек тела и понятием о мгновенном центре скоростей, применяя эту теорему (или это понятие) к каждому звену механизма в отдельности.
Пример К3. Механизм (рис.К3.10) состоит из двух стержней 1,2,3,4 и ползуна В,соединенных друг с другом и неподвижными опорами О2 и О2шарнирами.
Дано: a = 60 0 , b =150 0 , g = 90 0 , j = 30 0 , q = 30 0 , AD = DB, l1= 0,4 м, l2 = 1,2 м, l3 = 1,4 м, w2 = 2 рад/c (направление w1 – против хода часовой стрелки). Определить: VВ, VЕ, ω2.
1. Строим положение механизма в соответствии с заданными углами (рис.К2.11); на этом рисунке изображаем все векторы скоростей.
2. Определяем 






Направление 
Рис. К2.10 Рис. К2.11
![]() | ![]() |
Теперь, зная 




3. Определяем 








Чтобы вычислить C3 D и C3 B, заметим, что ∆ АС3 В – прямоугольный, так что острые углы в нем равны 30 0 и 60 0 , и что С3В = АB sin 30 0 = 0,5 AB =BD.
Тогда ∆ ВС3 D является равносторонним и С3 В = С3 D. В результате равенство (3) дает

Так как точка Е принадлежит одновременно стержню 4, вращающемуся вокруг О2, то 






Составив теперь пропорцию, найдем, что

4. Определяем 




Ответ: VB = 0,46 м /c; VЕ = 0,46 м / с; ω2 = 0,67 рад / c.


Направление 
Теперь, зная 




3. Определяем 








Чтобы вычислить C3 D и C3 B, заметим, что ∆ АС3 В – прямоугольный, так что острые углы в нем равны 30 0 и 60 0 , и что С3В = АB sin 30 0 = 0,5 AB =BD.
Тогда ∆ ВС3 D является равносторонним и С3 В = С3 D. В результате равенство (3) дает

Так как точка Е принадлежит одновременно стержню 4, вращающемуся вокруг О2, то 






Составив теперь пропорцию, найдем, что

4. Определяем 




Видео:К1 Определение скорости и ускорения точки по заданным уравнениям ее движенияСкачать

Примеры решения задач. Движение точки задано уравнениями (х, у — в метрах, t — в секундах).
Задача 2.1.
Движение точки задано уравнениями (х, у — в метрах, t — в секундах).

Определить траекторию, скорость и ускорение точки.
Решение.
![]() |
| Рис. 2.9. К задаче 2.1 |
Для определения траектории исключаем из уравнений движения время t. Умножая обе части первого уравнения на 3, а обе части второго — на 4 и почленно вычитая из первого равенства второе, получим: 

Следовательно, траектория — прямая линия, наклоненная к оси Ох под углом α, где 
Определяем скорость точки. По формулам (2.1) получаем:


Теперь находим ускорение точки. Формулы (2.1) дают:
Направлены векторы 

Заметим, наконец, что при 









Итак, заданные в условиях задачи уравнения движения рассказывают нам всю историю движения точки. Движение начинается из точки О с начальной скоростью 


Задача 2.2.
Движение точки задано уравнениями:
где 
Решение.
![]() |
| Рис. 2.10. К задаче 2.2 |
Возводя первые два уравнения почленно в квадрат и складывая, получаем

Следовательно, траектория лежит на круглом цилиндре радиуса R, ось которого направлена вдоль оси Oz (рис. 2.10). Определяя из последнего уравнения t и подставляя в первое, находим

Таким образом, траекторией точки будет линия пересечения синусоидальной поверхности, образующие которой параллельны оси Оу (синусоидальный гофр) с цилиндрической поверхностью радиуса R. Эта кривая называется винтовой линией. Из уравнений движения видно, что один виток винтовой линий точка проходит за время 


Найдем скорость и ускорение точки. Дифференцируя уравнения движения по времени, получаем:

Стоящие под знаком радикала величины постоянны. Следовательно, движение происходит с постоянной по модулю скоростью, направленной по касательной к траектории. Теперь по формулам (2.1) вычисляем проекции ускорения;

Итак, движение происходит с постоянным по модулю ускорением, Для определения направления ускорения имеем формулы:




где α и β —углы, образуемые с осями Ох и Оу радиусом R, проведенным от оси цилиндра к движущейся точке. Так как косинусы углов α1 и β1 отличаются от косинусов α и β только знаками, то отсюда заключаем, что ускорение точки все время направлено по радиусу цилиндра к его оси.
Заметим, что хотя в данном случае движение и происходит со скоростью, постоянной по модулю, ускорение точки не равно нулю, так как направление скорости изменяется.
Задача 2.3.
На шестерню 1 радиуса r1 действует пара сил с моментом m1 (рис. 46, а). Определить момент m2 пары, которую надо приложить к шестерне 2 радиуса r2, чтобы сохранить равновесие.
Решение.
![]() |
| Рис. 2.11. К задаче 2.3 |
Рассмотрим сначала условия равновесия шестерни 1. На нее действует пара с моментом m1, которая может быть уравновешена только действием другой пары, в данном случае пары 




Теперь рассмотрим условия равновесия шестерни 2 (рис. 46, б). По закону равенства действия и противодействия на нее со стороны шестерни 1 будет действовать сила 



Естественно, что пары с моментами m1 и m2 не удовлетворяют условию равновесия , так как они приложены к разным телам.
Полученная в процессе решения задачи величина Q1 (или Q2) называется окружным усилием, действующим на шестерню. Как видим, окружное усилие равно моменту вращающей пары, деленному на радиус шестерни: Q1=m1/r1 =m2/r2.
Задача 2.4.
Человек ростом h удаляется от фонаря, висящего на высоте H, двигаясь прямолинейно со скоростью 
Решение.
![]() |
| Рис. 2.12. К задаче 2.4 |
Для решения задачи найдем сначала закон, по которому движется конец тени. Выбираем начало отсчета в точке О, находящейся на одной вертикали с фонарем, и направляем вдоль прямой, по которой движется конец тени, координатную ось Ох (рис. 2.12). Изображаем человека в произвольном положении на расстоянии x1 от точки О. Тогда конец его тени будет находиться от начала О на расстоянии х2.
Из подобия треугольников ОАМ и DAB находим:

Это уравнение выражает закон движения конца тени М, если закон движения человека, т.е. 
Взяв производную по времени от обеих частей равенства и замечая, что по формуле (2.1) 


Если человек движется с постоянной скоростью ( 

Обращаем внимание на то, что при составлении уравнений движения надо изображать движущееся тело или механизм в произвольном положении. Только тогда мы поучим уравнения, определяющие положение движущейся точки (или тела) в любой момент времени.
Задача 2.5.
Определить траекторию, скорость и ускорение середины М шатуна кривошипно-ползунного механизма (рис. 2.13), если OA=AB=2b, а угол 

![]() |
| Рис. 2.13. К задаче 2.5. |
Начинаем с определения уравнений движения точки М. Проводя оси и обозначая координаты точки М в произвольном положении через х и у находим

Заменяя 

Для определения траектории точки М представим уравнения движения в виде

Возводя эти равенства почленно в квадрат и складывая, получим

Итак, траектория точки М — эллипс с полуосями 3b и b.
Теперь по формуле (2.1) находим скорость точки М:

Скорость оказывается величиной переменной, меняющейся с течением времени в пределах от 

Далее по формулам (2.1) определяем проекции ускорения точки М;


где 
Определелим направление ускорения
Отсюда находим, что ускорение точки М все время направлено вдоль МО к центру эллипса.
Задача 2.6.
Вал, делающий n=90 об/мин, после выключения двигателя начинает вращаться равнозамедленно и останавливается через t1=40 с. Определить, сколько оборотов сделал вал за это время.
Решение.
Так как вал вращается равнозамедленно, то для него, считая 

Начальной угловой скоростью при замедленном вращении является та, которую вал имел до выключения двигателя. Следовательно,

В момент остановки при t=t1 угловая скорость вала ω1=0. Подставляя эти значения во второе из уравнений (2.2), получаем:


Если обозначить число сделанных валом за время t1 оборотов через N (не смешивать с n; n — угловая скорость), то угол поворота за то же время будет равен 



Задача 2.7.
Маховик радиусом R=0,6 м вращается равномерно, делая n=90 об/мин. Определить скорость и ускорение точки, лежащей на ободе маховика.
Решение.
Скорость точки обода 



Далее, так как 

Ускорение точки направлено в данном случае к оси вращения.
Задача 2.8.
Найти скорость точки М обода колеса, катящегося по прямолинейному рельсу без скольжения (рис. 2.14), если скорость центра С колеса равна 
![]() |
| Рис. 2.14. К задаче 2.8. |
Решение
Приняв точку С, скорость которой известна, за полюс, найдем, что 













Параллелограмм, построенный на векторах 









Задача 2.9.
Определить скорость точки М обода катящегося колеса, рассмотренного в предыдущей задаче, с помощью мгновенного центра скоростей.
Решение.
![]() |
| Рис. 2.15. К задаче 2.9. |
Точка касания колеса Р (рис. 2.15) является мгновенным центром скоростей, поскольку 



что 


Чем точка М дальше от Р, тем ее скорость больше; наибольшую скорость 
Аналогичная картина распределения скоростей имеет место при качении колеса или шестерни по любой цилиндрической поверхности.
Задача 2.10.
Центр О колеса, катящегося по прямолинейному рельсу (рис. 2.16), имеет в данный момент времени скорость 

Решение.
![]() |
| Рис. 2.16. К задаче 2.10. |
1) Так как 

2) Определение ω. Точка касания Р является мгновенным центром скоростей; следовательно, угловая скорость колеса

3) Определение ε. Так как величина PO=R остается постоянной при любом положении колеса, то
Знаки ω и ε совпадают, следовательно, вращение колеса ускоренное.
а) не следует думать, что если по условиям задачи 




б) в данном случае 

4) Определение 

Учитывая, что в нашем случае BO=R, находим:

Показав на чертеже точку B отдельно, изображаем (без соблюдения масштаба) векторы, из которых слагается ускорение 



5) Вычисление 


Аналогичным путем легко найти и ускорение точки P: 
Задача 2.11.
Колесо катится по прямолинейному рельсу так, что скорость 
Решение.
![]() |
| Рис. 2.17. К задаче 2.11. |
Так как по условиям задачи 

В результате ускорение точки М

Таким образом, ускорение любой точки М обода (в том числе и точки Р) равно 




Зажача 2.12.
Плоский механизм состоит из стержней 1, 2, 3, 4 и ползуна С, соединенных друг с другом и с неподвижными опорами О1 и О2 шарнирами (рис.2.17 а). Точка D находится в середине стержня АВ. Длины стержней равны соответственно L1=0,4 м, L2 =1,2 м, L3=1,4 м, L4=0,6 м.
Дано: 

Найти: скорости точек В и C; угловую скорость 
| а) | ![]() |
| б) | ![]() |
| Рис.2.17. К задаче 2.12. |
Решение (рис.2.12б)
1. Определим скорость точки А. Стержень OAвращается вокруг точко O1, поэтому скорость точки А определяется по формуле 

2. Определим угловую скорость стержня АВ. Точка В вращается вокруг центра О2, поэтому ее скорость перпендикулярна отрезку O2B. Для нахождения мгновенного центра скоростей отрезка АВ в точках А и В восстановим перпендикуляры к векторам 






3. Определим скорость точки В по формуле 
по формуле 
4. Определим скорость точки С. Так как точка С движется прямолинейно, то ее скорость направлена вдоль движения ползуна. Для нахождения мгновенного центра скоростей отрезка CD в точках C и D восстановим перпендикуляры к векторам 





5. Определим угловую скорость отрезка О2В. Известно, что центром скоростей этого стержня является точка О2В , а также скорость точки B. Поэтому угловая скорость четвертого стержня вычисляется по формуле 

6. Определим ускорение точки А. Так как первый стержень вращается равномерно, то точка А имеет относительно О1 только нормальное ускорение, которое вычисляется по формуле 
7. Определим ускорение точки В, которая принадлежит двум стержням — АВ и О2В. Поэтому ускорение точки В определяется с помощью двух формул









Можно составить уравнение

Решив полученную систему двух уравнений с двумя неизвестными, получим:

8. Определим угловое ускорение стержня АВ, используя формулу 
Задача 2.13.
Круглая пластина радиуса R=60 см вращается вокруг неподвижной оси по закону 



Найти абсолютную скорость и абсолютное ускорение точки М в момент времени t=1 с.
| а) | ![]() |
| б) | ![]() |
| Рис.2.18. К задаче 2.13. |
Решение (рис.2.13 б)
В качестве подвижной системы координат xyz примем точку С. Эта система совершает вращательное движение с угловой скоростью 







Вычислим путь, относительную скорость и ускорение точки M. Ее положение определяется величиной дуги S, в данный момент времени S = 



Абсолютная скорость точки M определяется по формуле
Где — 

По теореме Пифагора 
Абсолютное ускорение точки M определяется по формуле
Где 







🔍 Видео
Кинематика точки Задание К1Скачать

Теормех Кинематика точки. Определение кинематических характеристик. Задача (траектория-эллипс)Скачать

Кинематика точки. Три способа задания движения. Скорость, ускорениеСкачать

кинематика точкиСкачать

Кинематика точки К1Скачать

Скорость и ускорение точки в полярных координатахСкачать

Теоретическая механика. Задание К1 (часть 2) из сборника ЯблонскогоСкачать

Теоретическая механика. Задание К1 (часть 1) из сборника ЯблонскогоСкачать

Лекция 5.3 | Уравнение траектории | Александр Чирцов | ЛекториумСкачать

Как решать первую задачу К1. Кинематика точки. К1-1Скачать

Физика - перемещение, скорость и ускорение. Графики движения.Скачать

Урок 7. Механическое движение. Основные определения кинематики.Скачать

Лекция 3.4 | Перемещение и скорость материальной точки | Александр Чирцов | ЛекториумСкачать

Способы описания движения. Траектория. Путь. ПеремещениеСкачать

Кинематика материальной точки за 20 минут (кратко и доступно) Кинематика точкиСкачать

Сложное движение точки. Задача 1Скачать

Cложное движение точки. ТермехСкачать

Физика - уравнения равноускоренного движенияСкачать












































, 

, 
, 

, 






Рис. К2.10
,
, ускорения точки Е и рейки 4
,
, а также угловую скорость колеса 1
в момент времени
= 2 с. Решение Обозначим точки контакта взаимодействующих тел через K, L, M, D, E. Груз 5 опускаясь приводит во вращательное движение колесо 1. Скорость точки K контакта колеса и нити равна скорости груза, т. е.
. Вектор скорости
направлен в сторону увеличения координаты
, вектор
— по касательной к окружности радиуса
.



































