Найти корень уравнения log6 3 x log6 11

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Видео:ЕГЭ база #7 / Логарифмические уравнения / Свойства, определение логарифма / решу егэСкачать

ЕГЭ база #7 / Логарифмические уравнения / Свойства, определение логарифма / решу егэ

Калькулятор онлайн.
Решение логарифмических уравнений.

Этот математический калькулятор онлайн поможет вам решить логарифмическое уравнение. Программа для решения логарифмического уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения ответа.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >>
С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> ln(b) или log(b) или log(e,b) — натуральный логарифм числа b
log(10,b) — десятичный логарифм числа b
log(a,b) — логарифм b по основанию a

Введите логарифмическое уравнение
Решить уравнение

Видео:🔴 Найдите корень уравнения 2+9x=4x+3 | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 7 | ШКОЛА ПИФАГОРАСкачать

🔴 Найдите корень уравнения 2+9x=4x+3 | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 7 | ШКОЛА ПИФАГОРА

Немного теории.

Видео:ЕГЭ по математике. Профильный уровень. Задание 5. Найдите корень уравненияСкачать

ЕГЭ по математике. Профильный уровень. Задание 5. Найдите корень уравнения

Логарифмическая функция. Логарифмы

Задача 1. Найти положительный корень уравнения x 4 = 81
По определению арифметического корня имеем ( x = sqrt[4] = 3 )

Задача 2. Решить уравнение 3 x = 81
Запишем данное уравнение так: 3 x = 3 4 , откуда x = 4

В задаче 1 неизвестным является основание степени, а в задаче 2 — показатель степени. Способ решения задачи 2 состоял в том, что левую и правую части уравнения удалось представить в виде степени с одним и тем же основанием 3. Но уже, например, уравнение 3 x = 80 таким способом решить не удаётся. Однако это уравнение имеет корень. Чтобы уметь решать такие уравнения, вводится понятие логарифма числа.
Уравнение a x = b, где a > 0, ( a neq 1 ), b > 0, имеет единственный корень. Этот корень называют логарифмом числа b no основанию a и обозначают logab
Например, корнем уравнения 3 x = 81 является число 4, т.е. log381 = 4.

Определение. Логарифмом положительного числа b по основанию a, где a > 0, ( a neq 1 ), называется показатель степени, в которую надо возвести число a, чтобы получить b

log77 = 1, так как 7 1 = 7

Определение логарифма можно записать так:

Действие нахождения логарифма числа называют логарифмированием.
Действие нахождения числа по его логарифму называют потенцированием.

Вычислить log64128
Обозначим log64128 = х. По определению логарифма 64 x = 128. Так как 64 = 2 6 , 128 = 2 7 , то 2 6x = 2 7 , откуда 6x = 7, х = 7/6.
Ответ log64128 = 7/6

Вычислить ( 3^ )
Используя свойства степени и основное логарифмическое тождество, находим

Решить уравнение log3(1-x) = 2
По определению логарифма 3 2 = 1 — x, откуда x = -8

Видео:Математика 5 класс. Уравнение. Корень уравненияСкачать

Математика 5 класс. Уравнение. Корень уравнения

Свойства логарифмов

При выполнении преобразований выражений, содержащих логарифмы, при вычислениях и при решении уравнений часто используются различные свойства логарифмов. Рассмотрим основные из них.

Пусть а > 0, ( a neq 1 ), b > 0, c > 0, r — любое действительное число. Тогда справедливы формулы:

Видео:🔴 Найдите корень уравнения (x-8)^2=(x-2)^2 | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 7 | ШКОЛА ПИФАГОРАСкачать

🔴 Найдите корень уравнения (x-8)^2=(x-2)^2 | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 7 | ШКОЛА ПИФАГОРА

Десятичные и натуральные логарифмы

Для логарифмов чисел составлены специальные таблицы (таблицы логарифмов). Логарифмы вычисляют также с помощью микрокалькулятора. И в том и в другом случае находятся только десятичные или натуральные логарифмы.

Определение. Десятичным логарифмом числа называют логарифм этого числа по основанию 10 и пишут
lg b вместо log10b

Определение. Натуральным логарифмом числа называют логарифм этого числа по основанию e, где e — иррациональное число, приближённо равное 2,7. При этом пишут ln b вместо logeb

Иррациональное число e играет важную роль в математике и её приложениях. Число e можно представить как сумму:
$$ e = 1 + frac + frac + frac + dots + frac + dots $$

Оказывается, что достаточно знать значения только десятичных или только натуральных логарифмов чисел, чтобы находить логарифмы чисел по любому основанию.
Для этого используется формула замены основания логарифма:

Следствия из формулы замены основания логарифма.
При c = 10 и c = e получаются формулы перехода к десятичным и натуральным логарифмам:
$$ log_a b = frac , ;; log_a b = frac $$

Видео:Логарифмы с нуля за 20 МИНУТ! Introduction to logarithms.Скачать

Логарифмы с нуля за 20 МИНУТ! Introduction to logarithms.

Логарифмическая функция, её свойства и график

В математике и её приложениях часто встречается логарифмическая функция
y = logax
где а — заданное число, a > 0, ( a neq 1 )

Логарифмическая функция обладает свойствами:
1) Область определения логарифмической функции — множество всех положительных чисел.

2) Множество значений логарифмической функции — множество всех действительных чисел.

3) Логарифмическая функция не является ограниченной.

4) Логарифмическая функция y = logax является возрастающей на промежутке ( (0; +infty) ), если a > 1,
и убывающей, если 0 1, то функция y = logax принимает положительные значения при х > 1,
отрицательные при 0 1.

Ось Oy является вертикальной асимптотой графика функции y = logax

Найти корень уравнения log6 3 x log6 11 Найти корень уравнения log6 3 x log6 11

Отметим, что график любой логарифмической функции y = logax проходит через точку (1; 0).
При решении уравнений часто используется следующая теорема:

Логарифмическая функция y = logax и показательная функция y = a x , где a > 0, ( a neq 1 ), взаимно обратны.

Видео:🔴 Найдите корень уравнения (1/7)^(x-5)=49 | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 7 | ШКОЛА ПИФАГОРАСкачать

🔴 Найдите корень уравнения (1/7)^(x-5)=49 | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 7 | ШКОЛА ПИФАГОРА

Логарифмические уравнения

Решить уравнение log2(x+1) + log2(x+3) = 3
Предположим, что х — такое число, при котором равенство является верным, т.е. х — корень уравнения. Тогда по свойству логарифма верно равенство
log2((x+1)(x+3)) = 3
Из этого равенства по определению логарифма получаем
(x+1)(x+3) = 8
х 2 + 4х + 3 = 8, т.е. х 2 + 4x — 5 = 0, откуда x1 = 1, х2 = -5
Так как квадратное уравнение является следствием исходного уравнения, то необходима проверка.
Проверим, являются ли числа 1 и -5 корнями исходного уравнения.
Подставляя в левую часть исходного уравнения х = 1, получаем
log2(1+1) + log2(1+3) = log22 + log24 = 1 + 2 = 3, т.е. х = 1 — корень уравнения.
При х = -5 числа х + 1 и х + 3 отрицательны, и поэтому левая часть уравнения не имеет смысла, т.е. х = -5 не является корнем этого уравнения.
Ответ x = 1

Решить уравнение lg(2x 2 — 4x + 12) = lg x + lg(x+3)
По свойству логарифмов
lg(2x 2 — 4x + 12) = lg(x 2 + 3x)
откуда
2x 2 — 4x + 12 = x 2 + 3x
x 2 — 7x + 12 = 0
x1 = 3, х2 = 4
Проверка показывает, что оба значения х являются корнями исходного уравнения.
Ответ x1 = 3, х2 = 4

Решить уравнение log4(2x — 1) • log4x = 2 log4(2x — 1)
Преобразуем данное уравнение:
log4(2x — 1) • log4x — 2 log4(2x — 1) = 0
log4(2х — 1) • (log4 x — 2) = 0
Приравнивая каждый из множителей левой части уравнения к нулю, получаем:
1) log4 (2х — 1) = 0, откуда 2х — 1 = 1, х1 = 1
2) log4 х — 2 = 0, откуда log4 = 2, х2 = 16
Проверка показывает, что оба значения х являются корнями исходного уравнения.
Ответ x1 = 1, х2 = 16

Видео:log6(2x - 3) = log6(12) - log6(3), solve for xСкачать

log6(2x - 3) = log6(12) - log6(3), solve for x

Решение логарифмических уравнений

Данный калькулятор позволяет найти решение логарифмических уравнений.
Логарифмическое уравнение – это уравнения, в которых переменная величина находится под знаком логарифма. Логарифмическая функция всегда монотонна и может принимать любые значения. Кроме того, переменный аргумент логарифма должен быть больше нуля и переменное основание логарифма должно быть положительным и не равным единице.

При решении логарифмических уравнений зачастую необходимо логарифмировать или потенцировать обе части уравнения. Логарифмировать алгебраическое выражение — выразить его логарифм через логарифмы отдельных чисел, входящих в это выражение. Потенцирование – нахождение выражения, от которого получен результат логарифмирования.

Для того чтобы найти корни логарифмического уравнения, нужно ввести это уравнение в ячейку и нажать на кнопку «Вычислить». В ответе отображаются корни уравнения и график логарифмической функции.

Калькулятор поможет найти решение логарифмических уравнений онлайн.
Для получения полного хода решения нажимаем в ответе Step-by-step.

Основные функции

Найти корень уравнения log6 3 x log6 11

  • Найти корень уравнения log6 3 x log6 11: x^a

Видео:Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать

Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСС

Решение логарифмических уравнений и систем уравнений. Подготовка к ЕГЭ

Разделы: Математика

Ученик проходит в несколько лет дорогу, на которую человечество употребило тысячелетие.
Однако его следует вести к цели не с завязанными глазами, а зрячим:
он должен воспринимать истину, не как готовый результат, а должен её открывать.
Учитель должен руководить этой экспедицией открытий, следовательно, также присутствовать
не только в качестве простого зрителя. Но ученик должен напрягать свои силы;
ему ничто не должно доставаться даром.
Даётся только тому, кто стремится.
(А. Дистервег)

Форма урока: комбинированный урок

Тип урока: Урок повторного контроля знаний.

Обобщение и закрепление пройденного материала.

Цели урока:

  • Образовательная — обобщение знаний учащихся по теме «Логарифмические уравнения и системы уравнений; закрепить основные приемы и методы решения логарифмических уравнений и систем уравнений; ознакомить учащихся с видами заданий повышенной сложности по данной теме в ЕГЭ.
  • Развивающая — развитие логического мышления для сознательного восприятия учебного материала, внимание, зрительную память, активность учащихся на уроке. Предоставить каждому из учащихся проверить свой уровень подготовки по данной теме.
  • Воспитывающая — воспитание познавательной активности, формирование личностных качеств: точность и ясность словесного выражения мысли; сосредоточенность и внимание; настойчивость и ответственность, положительной мотивации к изучению предмета, аккуратности, добросовестности и чувство ответственности. Осуществить индивидуальный подход и педагогическую поддержку каждого ученика через разноуровневые задания и благоприятную психологическую атмосферу.

Задачи урока:

  • выработать у учащихся умение пользоваться алгоритмом решения логарифмических уравнений.
  • осуществить формирование первоначальных знаний в виде отдельных навыков после определенной тренировки решения уравнений и систем уравнений.
  • познакомить учащихся с частными случаями и отработать навыки по решению таких уравнений и систем уравнений.

Методы и педагогические приемы:

  • Методы самообучения
  • Приемы устного опроса.
  • Приемы письменного контроля.
  • Коллективная учебная деятельность.
  • Организация работы в группах.
  • Повышение интереса к учебному материалу.

Оборудование:

  • компьютер, мультимедийный проектор и экран;
  • тетради;

Раздаточный материал: задания для самостоятельной работы.

План урока:

  1. Организационный момент (1 мин)
  2. Проверка домашнего задания (3 мин)
  3. Входной контроль (повторение теоретического материала) (15 мин)
  4. Этап обобщения знаний учащихся. Решение уравнений и систем уравнений (45 мин)
  5. Разноуровневая самостоятельная работа (проверка знаний учащихся) (20 мин)
  6. Итоги урока (4 мин)
  7. Домашнее задание (2 мин)

1. Организационный момент

Взаимное приветствие; проверка готовности учащихся к уроку, организация внимания.

2. Проверка домашнего задания

Установить правильность и осознанность выполнения домашнего задания всеми учащимися; установить пробелы в знаниях.

3. Входной контроль (повторение теоретического материала)

Организация устной фронтальной работы с классом по повторению логарифмических формул и способов решения логарифмических уравнений.

Решение простейших уравнений:

а) Найти корень уравнения log6 3 x log6 11и Найти корень уравнения log6 3 x log6 11

б) Найти корень уравнения log6 3 x log6 11и Найти корень уравнения log6 3 x log6 11

2) Найдите Х, если х>0:

Найти корень уравнения log6 3 x log6 11[1/5]

Найти корень уравнения log6 3 x log6 11[4]

Найти корень уравнения log6 3 x log6 11 Найти корень уравнения log6 3 x log6 11

Найти корень уравнения log6 3 x log6 11Найти корень уравнения log6 3 x log6 11

Перечислите: основные способы решения логарифмических уравнений.

Способы решения логарифмических уравнений

  • По определению логарифма.
  • Метод потенцирования.
  • Метод введения новой переменной.
  • Решение уравнений логарифмированием его обеих частей.
  • Функционально-графический способ.

На экране уравнения:

  1. log2(3 — 6x) = 3
  2. lg(х 2 — 2х) = lg (2х + 12)
  3. 5 х + 1 — 5 х — 1 = 24
  4. х lg х = 10000
  5. 3 2х + 5 = 3 х + 2 + 2
  6. log3 2 x — log3 x = 3
  7. log2x — log4x = 3
  8. 2 x = x 2 — 2x

Среди данных уравнений выбрать логарифмические. Определить способ решения каждого уравнения. Решите уравнения.

По окончанию работы правильность решения уравнений осуществляется с помощью экрана.

Устно ответить на следующие вопросы (если имеется не один корень):

  • Найти наименьший корень уравнения.
  • Найти сумму корней уравнения.
  • Найти разность корней уравнения.
  • Найти произведение корней уравнения.
  • Найти частное корней уравнения

Самооценка и взаимооценка деятельности учащихся (результаты заносятся в листы самоконтроля).

4. Этап обобщения знаний учащихся

Решение логарифмических уравнений из заданий ЕГЭ части В и С.

№ 1 (В) Найдите корень (или сумму корней, если их несколько) уравнения log6(3x + 88) — log6 11 = log6 x. [1]

№ 2 (B) Найдите произведение всех корней уравнения

Найти корень уравнения log6 3 x log6 11. [1]

№ 3 (B) Найдите сумму корней уравнения Найти корень уравнения log6 3 x log6 11= log4 (x — 3) + 2. [2]

№ 4 (C) найти наибольший корень уравнения: log2(2Найти корень уравнения log6 3 x log6 11+5)+ log0,5(-х-0,5) = 1 [-4]

№ 5 (C) Решите уравнение Найти корень уравнения log6 3 x log6 11— log6 x + 34 = (Найти корень уравнения log6 3 x log6 11) 2 + x. [2]

Уравнения №1-3 решает по два ученика на обратных крыльях доски с последующей проверкой решения всем классом.

Уравнение №4,5 решает ученик с подробным комментарием.

По окончании самооценка и взаимооценка учащихся (результаты заносятся в листы самоконтроля).

Простейшими логарифмическими уравнениями будем называть уравнения следующих видов:

log a x = b, a > 0, a Найти корень уравнения log6 3 x log6 111.

log a f(x) = b, a > 0, a Найти корень уравнения log6 3 x log6 111.

Эти уравнения решаются на основании определения логарифма: если logb a = c, то a = b c .

Решить уравнение log2 x = 3.

Решение. Область определения уравнения x > 0. По определению логарифма x = 2 3 , x = 8 принадлежит области определения уравнения.

Уравнения вида loga f(x) = b, a > 0, a Найти корень уравнения log6 3 x log6 111.

Уравнения данного вида решаются по определению логарифма с учётом области определения функции f(x).

Обычно область определения находится отдельно, и после решения уравнения f(x) = a b проверяется, принадлежат ли его корни области определения уравнения.

Пример. Решить уравнение log3(5х — 1) = 2.

ОДЗ: 5х — 1 > 0; х > 1/5.

Пример. Решить уравнение Найти корень уравнения log6 3 x log6 11

Решение. Область определения уравнения находится из неравенства 2х 2 — 2х — 1 > 0. Воспользуемся определением логарифма:

Применим правила действий со степенями, получим 2х 2 — 2х — 1 = 3. Это уравнение имеет два корня х = -1; х = 2. Оба полученные значения неизвестной удовлетворяют неравенству 2х 2 — 2х — 1 > 0, т.е. принадлежат области определения данного уравнения, и, значит, являются его корнями.

Уравнения этого вида решаются по определению логарифма с учётом области определения уравнения. Данное уравнение равносильно следующей системе

Чаще всего, область определения логарифмического уравнения находится отдельно, и после решения уравнения (f(x)) c = b или равносильного уравнения Найти корень уравнения log6 3 x log6 11проверяется, принадлежат ли его корни найденной области.

Пример. Решить уравнение

Решение. Данное уравнение равносильно системе

Найти корень уравнения log6 3 x log6 11

Суть метода заключается в переходе от уравнения

На основании свойства монотонности логарифмической функции заключаем, что f(x) = g(x).

Нужно отметить, что при таком переходе может нарушиться равносильность уравнения. В данном уравнении f(x) > 0, g(x) > 0, а в полученном после потенцирования эти функции могут быть как положительными, так и отрицательными. Поэтому из найденных корней уравнения f(x) = g(x) нужно отобрать те, которые принадлежат области определения данного уравнения. Остальные корни будут посторонними.

Решение. Область определения уравнения найдётся из системы неравенств:

х> -1,5+ Найти корень уравнения log6 3 x log6 11, х 2 — 3х — 5 = 7 — 2х,

х 2 — х — 12 = 0, откуда х1 = -3, х2 = 4. Число 4 не удовлетворяет системе неравенств.

Cведение уравнений к виду log a f(x) = log a g(x) с помощью свойств логарифмов по одному основанию.

Если уравнение содержит логарифмы по одному основанию, то для приведения их к виду log a f(x) = log a g(x) используются следующие свойства логарифмов:

logb a + logb c = logb (a*c), где a > 0; c > 0; b > 0, b Найти корень уравнения log6 3 x log6 111,

logb a — logb c = logb (a/c), где a > 0; c > 0; b > 0, b Найти корень уравнения log6 3 x log6 111,

m logb a = logb a m , где a > 0; b > 0, b Найти корень уравнения log6 3 x log6 111; m Найти корень уравнения log6 3 x log6 11 R.

Пример 1. Решить уравнение log6 (x — 1) = 2 — log6 (5x + 3).

Решение. Найдём область определения уравнения из системы неравенств

Найти корень уравнения log6 3 x log6 11

Применяя преобразования, приходим к уравнению

log6 ((x — 1)(5x + 3)) = 2, далее, потенцированием, к уравнению

(х — 1)(5х + 3) = 36, имеющему два корня х = -2,6; х = 3. Учитывая область определения уравнения, х = 3.

Пример 2. Решить уравнение

Найти корень уравнения log6 3 x log6 11

Решение. Найдём область определения уравнения, решив неравенство (3x — 1)(x + 3) > 0 методом интервалов.

Найти корень уравнения log6 3 x log6 11

Учитывая, что разность логарифмов равна логарифму частного, получим уравнение log5 (x + 3) 2 = 0. По определению логарифма (х + 3) 2 = 1, х = -4, х = -2. Число х = -2 посторонний корень.

Пример 3. Решить уравнение log2 (6 — x) = 2 log6 x.

Решение. На области определения 0 2 , откуда х = -3, х = 2. Число х = -3 посторонний корень.

Метод потенцирования применяется в том случае, если все логарифмы, входящие в уравнение, имеют одинаковое основание. Для приведения логарифмов к общему основанию используются формулы:

Найти корень уравнения log6 3 x log6 11

Найти корень уравнения log6 3 x log6 11

Найти корень уравнения log6 3 x log6 11

Найти корень уравнения log6 3 x log6 11

Пример 1. Решить уравнение Найти корень уравнения log6 3 x log6 11

Решение. Область определения уравнения 1 1. Приведём логарифмы к основанию 3, используя формулу (4).

Найти корень уравнения log6 3 x log6 11

Пример 3. Решить уравнение Найти корень уравнения log6 3 x log6 11

Решение. Область определения уравнения x > -1, x Найти корень уравнения log6 3 x log6 110. Приведём логарифмы к основанию 3, используя формулу (2).

Найти корень уравнения log6 3 x log6 11

Умножим обе части уравнения на log 3(x + 1) ? 0 и перенесем все слагаемые в левую часть уравнения. Получим (log 3(x + 1)-1) 2 = 0, откуда log 3(x + 1) = 1 и x = 2.

3. Введение новой переменной

Рассмотрим два вида логарифмических уравнений, которые введением новой переменной приводятся к квадратным.

Найти корень уравнения log6 3 x log6 11

Найти корень уравнения log6 3 x log6 11

Найти корень уравнения log6 3 x log6 11

где a > 0, a Найти корень уравнения log6 3 x log6 111, A, В, Сдействительные числа.

Пусть t = loga f(x), t Найти корень уравнения log6 3 x log6 11 R. Уравнение примет вид t 2 + Bt + C = 0.

Решив его, найдём х из подстановки t = loga f(x). Учитывая область определения, выберем только те значения x, которые удовлетворяют неравенству f(x) > 0.

Пример 1. Решить уравнение lg 2 x — lg x — 6 = 0.

Решение. Область определения уравнения — интервал (0; Найти корень уравнения log6 3 x log6 11).Введём новую переменную t = lg x, t Найти корень уравнения log6 3 x log6 11R.

Уравнение примет вид t 2 — t — 6 = 0. Его корни t1 = -2, t2 = 3.

Вернёмся к первоначальной переменной lg x = -2 или lg x = 3, х = 10 -2 или х = 10 3 .

Оба значения x удовлетворяют области определения данного уравнения (х > 0).

Пример 2. Решить уравнение

Найти корень уравнения log6 3 x log6 11

Решение. Найдём область определения уравнения

Найти корень уравнения log6 3 x log6 11

Применив формулу логарифма степени, получим уравнение

Найти корень уравнения log6 3 x log6 11

Так как х 2 — 4t + 4 = 0

имеет два равных корня t1,2 = 2. Вернёмся к первоначальной переменной log3 (-x) = 2, отсюда —х = 9, х = -9. Значение неизвестной принадлежит области определения уравнения.

Найти корень уравнения log6 3 x log6 11

где a > 0, a Найти корень уравнения log6 3 x log6 111, A, В, Сдействительные числа, A Найти корень уравнения log6 3 x log6 110, В Найти корень уравнения log6 3 x log6 110.

Уравнения данного вида приводятся к квадратным умножением обеих частей его на loga f(x) Найти корень уравнения log6 3 x log6 110. Учитывая, что loga f(x) logf(x) a=1

(свойство logb a = 1/ loga b), получим уравнение

Найти корень уравнения log6 3 x log6 11

Замена loga f(x)=t, t Найти корень уравнения log6 3 x log6 11 R приводит его к квадратному At 2 + Ct + B = 0.

Из уравнений loga f(x)= t1, logb f(x)= t2 найдем значения x и выберем среди них принадлежащие области определения уравнения:

f(x) > 0, f(x) Найти корень уравнения log6 3 x log6 111.

Пример. Решить уравнение

Найти корень уравнения log6 3 x log6 11

Решение. Область определения уравнения находим из условий x+2>0, x+2 Найти корень уравнения log6 3 x log6 111, т.е. x >-2, x Найти корень уравнения log6 3 x log6 11-1.

Умножим обе части уравнения на log5 (x+2) Найти корень уравнения log6 3 x log6 110, получим

Найти корень уравнения log6 3 x log6 11

или, заменив log5 (x+2) = t, придем к квадратному уравнению

Возвращаемся к первоначальной переменной:

Оба корня принадлежат области определения уравнения.

ОДЗ: x > 0, х Найти корень уравнения log6 3 x log6 111

Используя формулу перехода к новому основанию, получим

Найти корень уравнения log6 3 x log6 11

Найти корень уравнения log6 3 x log6 11

Ответ: Найти корень уравнения log6 3 x log6 11

4. Приведение некоторых уравнений к логарифмическим логарифмированием обеих частей.

Переход от уравнения вида f(x) = g(x) к уравнению loga f(x) = loga g(x), который возможен если f(x) >0, g(x) >0, a >0, a Найти корень уравнения log6 3 x log6 111, называется логарифмированием.

Методом логарифмирования можно решать:

Уравнения вида Найти корень уравнения log6 3 x log6 11

Область определения уравнения — интервал (0, Найти корень уравнения log6 3 x log6 11). Прологарифмируем обе части уравнения по основанию a, затем применим формулы логарифма степени и произведения

Найти корень уравнения log6 3 x log6 11

Найти корень уравнения log6 3 x log6 11

Приведем подобные и получим линейное уравнение относительно loga x.

Пример. Решить уравнение 3 2log 4 x+2 =16x 2 .

Решение. Область определения x >0. Прологарифмируем обе части по основанию 4.

Найти корень уравнения log6 3 x log6 11

Используя свойства логарифмов, получим

Найти корень уравнения log6 3 x log6 11

Найти корень уравнения log6 3 x log6 11

Найти корень уравнения log6 3 x log6 11

Найти корень уравнения log6 3 x log6 11

Область определения уравнения — интервал (0, Найти корень уравнения log6 3 x log6 11). Прологарифмируем обе части уравнения по основанию a, получим

Найти корень уравнения log6 3 x log6 11

Применим формулы логарифма степени и логарифма произведения

Найти корень уравнения log6 3 x log6 11

Введем новую переменную t=loga x , t Найти корень уравнения log6 3 x log6 11 R. Решив квадратное уравнение At 2 + (B-а)t-loga C=0, найдем его корни t1 и t2. Значение x найдем из уравнений t1 = loga x и t2=loga x и выберем среди них принадлежащие области определения уравнения.

Пример 1. Решить уравнение

Решение. Область определения уравнения х > 0. Так как при х > 0 обе части уравнения положительны, а функция y = log3 t монотонна, то

Найти корень уравнения log6 3 x log6 11

Введём новую переменную t, где t = log3 x, t Найти корень уравнения log6 3 x log6 11R.

Пример 2. Решить уравнение

Решение. Область определения уравнения х >1. Обе части уравнения положительны, прологарифмируем их по основанию 2, получим

Найти корень уравнения log6 3 x log6 11

Применим формулы логарифма степени и логарифма частного:

Найти корень уравнения log6 3 x log6 11

Введем новую переменную t=log2x, получим квадратное уравнение t 2 — 3t + 2 = 0,

1) Найти наибольший корень уравнения: lq(x+6) — 2 = 1 /2lq(2x -3) — lq25

3) Пусть (х0;y0) — решение системы уравнений

Найти корень уравнения log6 3 x log6 11

Найти корень уравнения log6 3 x log6 11 Найти корень уравнения log6 3 x log6 11 Найти корень уравнения log6 3 x log6 11Найти корень уравнения log6 3 x log6 11

4) Пример .Решите систему уравнений

Решение. Решим эту систему методом перехода к новым переменным:

Заметим, что x>0 и у Найти корень уравнения log6 3 x log6 11R является областью определения данной системы.

Логарифмируя обе части второго уравнения по основанию 3, получим:

Тогда по обратной теореме Виета переменные и и v являются корнями квадратного уравнения

z 2 -z-12 = 0 Найти корень уравнения log6 3 x log6 11

Следовательно, решения данной системы найдем как множество решений совокупности двух систем а) и б):

а) Найти корень уравнения log6 3 x log6 11 Найти корень уравнения log6 3 x log6 11б) Найти корень уравнения log6 3 x log6 11

Решениями указанных систем являются соответственно пары (27;4), (Найти корень уравнения log6 3 x log6 11; -3).

Ответ: (27; 4), (Найти корень уравнения log6 3 x log6 11; -3).

5) Пример. Решите систему уравнений

Перейдем к новым переменным:

x = 2 u >0, 1оg2 у = v, у = 2 v >0.

В новых переменных данная система имеет вид:

Найти корень уравнения log6 3 x log6 11 Найти корень уравнения log6 3 x log6 11Найти корень уравнения log6 3 x log6 11Найти корень уравнения log6 3 x log6 11

Следовательно, и и v являются корнями квадратного уравнения :

z 2 -42 + 3 = 0 Найти корень уравнения log6 3 x log6 11

Отсюда следует, что достаточно решить систему

Найти корень уравнения log6 3 x log6 11 Найти корень уравнения log6 3 x log6 11 Найти корень уравнения log6 3 x log6 11Найти корень уравнения log6 3 x log6 11

Другое решение найдем из-за симметричности х и у, т. е. если (х; y) — решение, то (у; х) также является решением.

5. Самостоятельная работа.

1. Вычислите значение выражения: 11-3log3 Найти корень уравнения log6 3 x log6 11

2. Решите уравнения:

3.Решите систему уравнений :

Найти корень уравнения log6 3 x log6 11

1. Вычислите значение выражения: 13-3log2 Найти корень уравнения log6 3 x log6 11

2. Решите уравнения:

Найти корень уравнения log6 3 x log6 11

6.Подведение итогов урока:

Учитывая контингент учащихся данного класса, можно сделать вывод о том, что в целом учащиеся усвоили материал по данной теме.

📽️ Видео

Найдите наименьший положительный корень уравнения sin pi x/3=-(корень из 3)/2 (проф. ЕГЭ задача №6)Скачать

Найдите наименьший положительный корень уравнения sin pi x/3=-(корень из 3)/2 (проф. ЕГЭ задача №6)

Сложные уравнения. Как решить сложное уравнение?Скачать

Сложные уравнения. Как решить сложное уравнение?

🔴 Найдите корень уравнения 2(3-2x)-7=-3x+8 | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 7 | ШКОЛА ПИФАГОРАСкачать

🔴 Найдите корень уравнения 2(3-2x)-7=-3x+8 | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 7 | ШКОЛА ПИФАГОРА

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?

Решение логарифмических уравнений #shortsСкачать

Решение логарифмических уравнений #shorts

Логарифмические уравнения. 11 класс.Скачать

Логарифмические уравнения. 11 класс.

Найдите корень уравнения 2^(4-2x) = 64Скачать

Найдите корень уравнения 2^(4-2x) = 64

Найдите корни уравнения: cosπ(x−7)/3=1/2 В ответ запишите наибольший отрицательный корень.Скачать

Найдите корни уравнения: cosπ(x−7)/3=1/2 В ответ запишите наибольший отрицательный корень.

11 класс, 17 урок, Логарифмические уравненияСкачать

11 класс, 17 урок, Логарифмические уравнения

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Решение логарифмических уравнений. Вебинар | МатематикаСкачать

Решение логарифмических уравнений. Вебинар | Математика
Поделиться или сохранить к себе: