Найдите абсциссу вершины параболы которая задается уравнением y 3×2 6x 5

Как найти вершину параболы: три формулы

Парабола присутствует в мире математики, физики и других наук. По траектории параболы передвигаются искусственные спутники, которые стремятся покинуть пределы Солнечной системы, мяч при игре в волейбол тоже описывает её траекторию. Нужно уметь строить параболу. А чтобы это не составляло труда, надо знать, как найти вершину параболы.

Найдите абсциссу вершины параболы которая задается уравнением y 3x2 6x 5

Видео:Прямая y=7x-5 параллельна касательной к графику функции y=x^2+6x-8 Найдите абсциссу точки касания.Скачать

Прямая y=7x-5 параллельна касательной к графику функции y=x^2+6x-8  Найдите абсциссу точки касания.

Нахождение вершины параболы: способы, примеры, советы

График функции y = ax 2 + bx + c, где a — первый коэффициент, b — второй коэффициент, c — свободный член, называется параболой. Но обратите внимание на тот факт, что a ≠0.

У каждой точки параболы есть симметричная ей, кроме одной точки, и эта точка называется вершиной. Для того чтобы найти точку, которая является вершиной, нужно определиться, что такое точка на графике. Точка на графике – это определённая координата по оси абсцисс и по оси ординат. Она обозначается как (x; y). Давайте разбираться, как найти заветные числа.

Первый способ

Если вы хотите знать, как необходимо правильно вычислять координаты вершины, то нужно только выучить формулу x0 = -b/2a. Подставляя полученное число в функцию, получим y0.

Например, y =x 2 –8 x +15;

находим первый, второй коэффициенты и свободный член;

подставляем значения a и b в формулу;

вычисляем значения y;

Значит, вершина находится в точке (4;-1).

Ветви параболы симметричны относительно оси симметрии, которая идёт через вершину параболы. Зная корни уравнения, можно без особых трудностей посчитать абсциссу вершины параболы. Предположим, что k и n — корни квадратичного уравнения. Тогда точка x0 равноудалена от точек k и n, и её можно вычислить по формуле: x0 = (k + n)/2.

Рассмотрим на примере y =x 2 –6x+5

1) Приравниваем к нулю:

2) Находим дискриминант, используя формулу: D = b 2 –4 ac:

3) Находим корни уравнения по формуле (-b±√ D)/2a:

  • 1 — первый корень;
  • 5 — второй корень.

Найдите абсциссу вершины параболы которая задается уравнением y 3x2 6x 5

Второй способ

Дополнение до полного квадрата – отличный способ узнать, где располагается вершина. Используя этот способ, вы сможете вычислить точки x и y одновременно, без нужды подставлять x в начальный пример. Рассмотрим этот метод на примере функции: y=x 2 +8 x +10.

1. Сначала нужно приравнять выражение с переменной к 0. Потом перенести c в правую сторону с противоположным знаком, то есть у нас получается выражение x 2 + 8x = -10.

2. Теперь в левой части нужно сделать полный квадрат. Для этого посчитайте (b/2) 2 и увеличьте обе части уравнения результат. В этом случае нужно подставит 8 вместо b.

У нас получается 16. Теперь прибавьте это число к обеим частям уравнения:

3. Видно, что полученное выражение – полный квадрат. Его можно представить в форме: (x + 4) 2 = 6.

4. Используйте это выражение для поиска координат вершины параболы. Чтобы посчитать x, нужно приравнять его к 0. Получаем, x =-4. Координата y равна тому, что находится в правой части, то есть y =6. Вершина параболы этого уравнения (-4, 6).

Третий способ

Если вы знаете, что такое производная, то для вас есть другая формула. Несмотря на то, куда смотрят «рога» параболы, её вершина — точка экстремума. Для этого способа надо применить следующий алгоритм:

1. Нахождение первой производной по формуле f'(x) = (ax² + bx + c)’ = 2ax + b.

2. Приравнивание производной к 0. В итоге вы получите 0 = 2ax + b, отсюда можно найти то, что нас интересует.

Рассмотрим этот способ подробнее.

Дана функция y = 4x²+16x-17;

  • Записываем производную и приравниваем к нулю.

f'(x) = (4x²+16x-17)’ = 8x+16 =0

Найдите абсциссу вершины параболы которая задается уравнением y 3x2 6x 5

Видео:КАК НАЙТИ ВЕРШИНУ ПАРАБОЛЫСкачать

КАК НАЙТИ ВЕРШИНУ ПАРАБОЛЫ

Построение параболы

Самое трудное при построении – это верно найти точки функции. Для подробного построения нужно просчитать 5–7 точек (для школьного курса хватит этого). Для этого выбираем какое-либо значение x и подставляем его в данную функцию. Итогом подсчётов будет число точки по оси ординат. После этого ставим на координатную плоскость полученные нами точки. В итоге у нас получается парабола.

Рассмотрим подробнее вопрос о нахождении точек, которые нужно отметить. Для примера возьмём функцию y =-x 2 +11 x -24 с вершиной в точке (5,5;-6,25).

1) Строим таблицу

X5,5
Y

2) Заполняем таблицу

Так как парабола имеет осевую симметрию, то можно считать только значения справа или слева от вершины. Лучше считать те значения, которые ближе к 0, так удобнее. В нашем случае эти значения 4 и 5.

X455,567
Y-4-6-6,25-6-4

Видео:Квадратичная функция. Вершина параболы и нули функции. 8 класс.Скачать

Квадратичная функция. Вершина параболы и нули функции. 8 класс.

Советы

Правильно находите коэффициенты.

Пишите промежуточные вычисления на бумаге. Это не только облегчит нахождение вершины, но и поможет найти свои ошибки.

Делайте всё поэтапно. Следуйте алгоритму.

Обратите ваше внимание на то, что:

  • Нужно проверять правильно ли ваше решение.
  • Необходимо успокоиться. Решение любых задач по математике требует опыта. Просто нужно отработать данную тему, и тогда непременно у вас всё получится.

Видео:Парабола. Квадратичная функцияСкачать

Парабола. Квадратичная функция

Видео

Это видео поможет вам научиться находить вершину параболы

Видео:Найти абсциссу второй точки пересечения параболы и прямойСкачать

Найти абсциссу второй точки пересечения параболы и прямой

Найдите абсциссу вершины параболы которая задается уравнением y 3×2 6x 5

Ответ:

а)координаты вершины параболы (0;6), нули функции: х₁=√6, х₂=-√6;

б) координаты вершины параболы (-10; 48), нули функции: х₁=-2, х₂=-8

Объяснение:

для вычисления координат вершины параболы можно воспользоваться формулами и :

чтобы найти нули функции, надо в уравнение графика подставить вместо у значение 0, иными словами, решить уравнение f(x)=0:

Видео:Задача 7 ЕГЭ по математике #2Скачать

Задача 7 ЕГЭ по математике #2

Координаты вершины параболы онлайн

Парабола — это функция, заданная уравнением:

Её график имеет следующий вид:

Найдите абсциссу вершины параболы которая задается уравнением y 3x2 6x 5

Причем, в зависимости от знака коэффициента , ветви параболы направлены вверх (если ) или вниз (если ).

В школьном курсе алгебры возникает задача нахождения координат вершины параболы. Их можно найти по формулам:

Вершина параболы, отмечена оранжевой точкой на приведённом выше графике.

Наш онлайн калькулятор позволяет найти координаты вершины параболы с описанием подробного хода решения на русском языке. Для работы калькулятора, необходимо ввести уравнение параболы и указать её переменную. Уравнение параболы можно вводить в различных форматах, а коэффициентами могут быть не только числа или дроби, но и параметры. Нажмите на кнопку «Примеры», расположенную на панели калькулятора, чтобы посмотреть различные форматы ввода.

💡 Видео

Всё о квадратичной функции. Парабола | Математика TutorOnlineСкачать

Всё о квадратичной функции. Парабола | Математика TutorOnline

ЕГЭ задание 9 Точки перечечения параболСкачать

ЕГЭ задание 9 Точки перечечения парабол

Прямая y=6х-5 касательная к графику функции y=3х^2+bх+7 Найдите b ( абсцисса точки касания больше 0)Скачать

Прямая y=6х-5 касательная к графику функции y=3х^2+bх+7 Найдите b ( абсцисса точки касания больше 0)

10 задание. Все графики ЕГЭ по математике 2023Скачать

10 задание. Все графики ЕГЭ по математике 2023

Найдите вершину A параллелограмма ABCD, если B(3; −4; 7), C(−5; 3; −2) и D(1; 2; −3)Скачать

Найдите вершину A параллелограмма ABCD, если B(3; −4; 7), C(−5; 3; −2) и D(1; 2; −3)

ЭЛЕМЕНТАРНО, ВАТСОН! Квадратичная Функция и ее график ПараболаСкачать

ЭЛЕМЕНТАРНО, ВАТСОН! Квадратичная Функция и ее график Парабола

Прямая y=8x+11 параллельна касательной к графику функции y=x^2+7x-7. Найдите абсциссу точки касания.Скачать

Прямая y=8x+11 параллельна касательной к графику функции y=x^2+7x-7. Найдите абсциссу точки касания.

№ 40130 РешуЕгэ найти абсциссу точки, в которой касательная к графику функции параллельна прямойСкачать

№ 40130 РешуЕгэ  найти абсциссу точки, в которой касательная к графику функции параллельна прямой

Как найти абсциссу точки пересечения двух прямых?Скачать

Как найти абсциссу точки пересечения двух прямых?

Задание 11 (часть 1) | ЕГЭ 2024 Математика (профиль) | ГрафикиСкачать

Задание 11 (часть 1) | ЕГЭ 2024 Математика (профиль) | Графики

Найти абсциссу точки пересечения графиков двух линейных функцийСкачать

Найти абсциссу точки пересечения графиков двух линейных функций

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Графики функций f(x)=5x+9 и g(x)=ax^2+bx+c пересекаются в точках A и B. Найдите абсциссу точки B.Скачать

Графики функций f(x)=5x+9 и g(x)=ax^2+bx+c пересекаются в точках A и B. Найдите абсциссу точки B.

Вершина параболы и ось симметрии. ПримерСкачать

Вершина параболы и ось симметрии. Пример
Поделиться или сохранить к себе: