Нерешаемые задачи — это 7 интереснейших математических проблем. Каждая из них была предложена в свое время известными учеными, как правило, в виде гипотез. Вот уже много десятилетий над их решением ломают головы математики во всем мире. Тех, кто добьется успеха, ждет вознаграждение в миллион американских долларов, предложенное институтом Клэйя.
- Предыстория
- Институт Клэйя
- Задачи тысячелетия
- Что доказал Григорий Перельман
- Теория Янга-Миллса
- Уравнения Навье-Стокса
- Задача Берча — Свиннертон-Дайера
- Равенство классов p и np
- Гипотеза Римана
- Гипотеза о циклах Ходжа
- Математики нашли проблему в знаменитых уравнениях для описания жидкостей
- Два математика доказали, что при определённых экстремальных условиях уравнения Навье-Стокса выдают бессмыслицу
- Взрывая уравнения
- Нарушение потока
- От слабых к гладким
- Множество миров
- Гидродинамика Шрёдингера на пальцах
- Вступление
- Решение классической гидродинамики на пальцах
- Классическое решения уравнения Навье-Стокса
- Адвекция
- Проекция
- Важные особенности классического подхода
Видео:Science show. Выпуск 51. Уравнение Навье - СтоксаСкачать
Предыстория
В 1900 году великий немецкий математик-универсал Дэвид Гильберт, представил список из 23-х проблем.
Исследования, осуществленные с целью их решения, оказали огромное влияние на науку 20 века. На данный момент большинство из них уже перестали быть загадками. В числе нерешенных или решенных частично остались:
- проблема непротиворечивости арифметических аксиом;
- общий закон взаимности на пространстве любого числового поля;
- математическое исследование физических аксиом;
- исследование квадратичных форм при произвольных алгебраических числовых коэффициентах;
- проблема строгого обоснования исчислительной геометрии Федора Шуберта;
- и пр.
Видео:Уравнение Навье-Стокса на пальцах. МЛФ#2Скачать
Институт Клэйя
Под таким названием известна частная некоммерческая организация, штаб-квартира которой находится в Кембридже, штат Массачусетс. Она была основана в 1998 году гарвардским математиком А. Джеффи и бизнесменом Л. Клэйем. Целью деятельности института является популяризация и развитие математических знаний. Для ее достижения организация выдает премии ученым и спонсирует многообещающие исследования.
В начале 21 столетия Математический институт Клэйя предложил премию тем, кто решит проблемы, которые известны, как самые сложные нерешаемые задачи, назвав свой список Millennium Prize Problems. Из «Списка Гильберта» в него вошла только гипотеза Римана.
Видео:Но там нет ничего сложного, там ошибка. Мэри решает уравнение. Одарённая. 2017Скачать
Задачи тысячелетия
В список института Клэйя изначально входили:
- гипотеза о циклах Ходжа;
- уравнения квантовой теории Янга — Миллса;
- гипотеза Пуанкаре;
- проблема равенства классов Р и NP;
- гипотеза Римана;
- уравнения Навье Стокса, о существовании и гладкости его решений;
- проблема Берча — Свиннертон-Дайера.
Эти открытые математические проблемы представляют огромный интерес, так как могут иметь множество практических реализаций.
Видео:Уравнение Навье — Стокса для чайниковСкачать
Что доказал Григорий Перельман
В 1900 году известный ученый-философ Анри Пуанкаре предположил, что всякое односвязное компактное 3-мерное многообразие без края гомеоморфно 3-мерной сфере. Ее доказательство в общем случае не находилось в течение века. Лишь в 2002-2003 годах петербургский математик Г. Перельман опубликовал ряд статей с решением проблемы Пуанкаре. Они произвели эффект разорвавшейся бомбы. В 2010 году гипотеза Пуанкаре была исключена из списка «Нерешенные задачи» института Клэйя, а самому Перельману было предложено получить полагающееся ему немалое вознаграждение, от которого последний отказался, не объяснив причин своего решения.
Самое понятное объяснение того, что удалось доказать российскому математику, можно дать, представив, что на бублик (тор), натягивают резиновый диск, а затем пытаются стянуть края его окружности в одну точку. Очевидно, что это невозможно. Другое дело, если произвести этот эксперимент с шаром. В таком случае вроде бы трехмерная сфера, получившаяся из диска, окружность которого стянули в точку гипотетическим шнуром, будет трехмерной в понимании обычного человека, но двумерной с точки зрения математики.
Пуанкаре предположил, что трехмерная сфера является единственным трехмерным «предметом», поверхность которой можно стянуть в одну точку, а Перельману удалось это доказать. Таким образом, список «Нерешаемые задачи» сегодня состоит из 6 проблем.
Видео:Уравнения Навье-Стокса - Numberphile на русском.Скачать
Теория Янга-Миллса
Эта математическая проблема была предложена ее авторами в 1954-м году. Научная формулировка теории имеет следующий вид: для любой простой компактной калибровочной группы квантовая пространственная теория, созданная Янгом и Милльсом, существует, и при этом имеет нулевой дефект массы.
Если говорить на языке, понятном для обычного человека, взаимодействия между природными объектами (частицами, телами, волнами и пр.) делятся на 4 типа: электромагнитное, гравитационное, слабое и сильное. Уже много лет физики пытаются создать общую теорию поля. Она должна стать инструментом для объяснения всех этих взаимодействий. Теория Янга-Миллса — это математический язык, с помощью которого стало возможно описать 3 из 4-х основных сил природы. Она не применима к гравитации. Поэтому нельзя считать, что Янгу и Миллсу удалось создать теорию поля.
Кроме того, нелинейность предложенных уравнений делает их крайне сложными для решения. При малых константах связи их удается приближенно решить в виде ряда теории возмущений. Однако пока непонятно, как можно решить эти уравнения при сильной связи.
Видео:Вывод уравнений Навье-Стокса - Лекция 3Скачать
Уравнения Навье-Стокса
С помощью этих выражений описываются такие процессы, как воздушные потоки, течение жидкостей и турбулентность. Для некоторых частных случаев аналитические решения уравнения Навье-Стокса уже были найдены, однако сделать это для общего пока никому не удалось. В то же время, численное моделирование для конкретных значений скорости, плотности, давления, времени и так далее позволяет добиться прекрасных результатов. Остается надеяться, что у кого-нибудь получится применить уравнения Навье-Стокса в обратном направлении, т. е. вычислить с их помощью параметры, либо доказать, что метода решения нет.
Видео:Она говорила не о своей смерти...Решение уравнения взамен на Мэри. Одарённая. 2017.Скачать
Задача Берча — Свиннертон-Дайера
К категории «Нерешенные задачи» относится и гипотеза, предложенная английскими учеными из Кембриджского университета. Еще 2300 лет назад древнегреческий ученый Эвклид дал полное описание решений уравнения x2 + y2 = z2.
Если для каждого из простых чисел посчитать количество точек на кривой по его модулю, получится бесконечный набор целых чисел. Если конкретным образом «склеить» его в 1 функцию комплексной переменной, тогда получится дзета-функция Хассе-Вейля для кривой третьего порядка, обозначаемая буквой L. Она содержит информацию о поведении по модулю всех простых чисел сразу.
Брайан Берч и Питер Свиннертон-Дайер выдвинули гипотезу относительно эллиптических кривых. Согласно ей, структура и количество множества ее рациональных решений связаны с поведением L-функции в единице. Недоказанная на данный момент гипотеза Берча — Свиннертон-Дайера зависит от описания алгебраических уравнений 3 степени и является единственным сравнительно простым общим способом расчета ранга эллиптических кривых.
Чтобы понять практическую важность этой задачи, достаточно сказать, что в современной криптографии на эллиптических кривых основан целый класс асимметричных систем, и на их применении основаны отечественные стандарты цифровой подписи.
Видео:Но там нет ничего сложного, там ошибка Мэри решает уравнение. момент из фильма Одарённая 2017Скачать
Равенство классов p и np
Если остальные «Задачи тысячелетия» относятся к чисто математическим, то эта имеет отношение к актуальной теории алгоритмов. Проблема, касающаяся равенства классов р и np, известная также, как проблема Кука-Левина, понятным языком может быть сформулирована следующим образом. Предположим, что положительный ответ на некий вопрос можно проверить достаточно быстро, т. е. за полиномиальное время (ПВ). Тогда правильно ли утверждение, что ответ на него можно довольно быстро отыскать? Еще проще эта задача звучит так: действительно ли решение задачи проверить не труднее, чем его найти? Если равенство классов р и np будет когда-либо доказано, то все проблемы подбора можно будет решать за ПВ. На данный момент многие специалисты сомневаются в истинности этого утверждения, хотя не могут доказать обратное.
Видео:Уравнение навье стоксаСкачать
Гипотеза Римана
Вплоть до 1859 года не было выявлено какой-либо закономерности, которая описывала бы, как распределяются простые числа среди натуральных. Возможно, это было связано с тем, что наука занималась другими вопросами. Однако к середине 19 столетия ситуация изменилась, и они стали одними из наиболее актуальных, которыми начала заниматься математика.
Гипотеза Римана, появившаяся в этот период — это предположение о том, что в распределении простых чисел существует определенная закономерность.
Сегодня многие современные ученые считают, что если она будет доказана, то придется пересмотреть многие фундаментальные принципы современной криптографии, составляющие основу значительной части механизмов электронной коммерции.
Согласно гипотезе Римана, характер распределения простых чисел, возможно, существенно отличается от предполагаемого на данный момент. Дело в том, что до сих пока не было обнаружено какой-либо системы в распределения простых чисел. Например, существует проблема «близнецов», разность между которыми равна 2. Этими числами являются 11 и 13, 29. Другие простые числа образуют скопления. Это 101, 103, 107 и др. Ученые давно подозревали, что подобные скопления существуют и среди очень больших простых чисел. Если их найдут, то стойкость современных криптоключей окажется под вопросом.
Видео:Задача на миллион. Уравнение Навье-СтоксаСкачать
Гипотеза о циклах Ходжа
Эта нерешенная до сих пор задача сформулирована в 1941 году. Гипотеза Ходжа предполагает возможность аппроксимации формы любого объекта путем «склеивания» вместе простых тел большей размерности. Этот способ был известен и успешно применяется достаточно давно. Однако не известно, до какой степени можно производить упрощение.
Теперь вы знаете, какие нерешаемые задачи существуют на данный момент. Они являются предметом исследования тысяч ученых во всем мире. Остается надеяться, что в ближайшее время они будут решены, а их практическое применение поможет человечеству выйти на новый виток технологического развития.
Видео:Программа решения уравнений Навье-Стокса. Лекция 1. Введение.Скачать
Математики нашли проблему в знаменитых уравнениях для описания жидкостей
Видео:В А Садовничий, О А Олейник, Гагарин и уравнение Навье–СтоксаСкачать
Два математика доказали, что при определённых экстремальных условиях уравнения Навье-Стокса выдают бессмыслицу
Уравнения Навье-Стокса при помощи нескольких лаконичных членов описывают одно из самых распространённых явлений физического мира: течение жидкостей. Сегодня эти уравнения, появившиеся ещё в 1820-х, используются для описания всего, от океанских течений и турбулентности, следующей за самолётом до потока крови в сердце.
Хотя физики считают эти уравнения надёжными, как молоток, математики относятся к ним с недоверием. Для математика то, что эти уравнения вроде бы работают, мало что значит. Им нужны доказательства того, что уравнения безошибочны: что для любой жидкости и для долгосрочного прогноза, распространённого сколь угодно далеко в будущее, математика уравнений не подведёт. Такую гарантию оказалось нелегко отыскать. Первый человек или команда, которая сумеет доказать, что уравнения Навье-Стокса будут работать всегда — или представить пример, доказывающий, что они не работают — сможет получить награду за решение одной из «Задач тысячелетия», анонсированных математическим институтом Клэя, и миллионом долларов в придачу [по состоянию на 2017 год только одна из семи задач тысячелетия (гипотеза Пуанкаре) решена Григорием Перельманом / прим. перев.].
Математики разработали множество способов для решения этой задачи. Новая работа, опубликованная в сентябре, ставит серьёзные вопросы по поводу того, сможет ли добиться успеха один из самых популярных подходов к задаче, разрабатываемый в течение многих лет. Работа, которую написали Тристан Бакмастер и Влад Викол из Принстонского университета, представляет собой первый результат, показывающий, как при определённых условиях уравнения Навье-Стокса дают противоречивое описание физического мира.
«Мы пытаемся понять определённые проблемы, присущие этим уравнениям, и то, почему людям, вероятно, придётся их переосмыслить», — говорит Бакмастер.
Работа Бакмастера и Викола показывает, что, если принять при решении уравнений Навье-Стокса очень грубые допущения, они начинают выдавать бессмыслицу: утверждают, что одна и та же жидкость с одними и теми же начальными условиями может прийти в два или более различных состояний. Она может течь одним образом, или же совершенно другим. Если так, то эти уравнения не могут надёжно описывать физический мир, для которого они были разработаны.
Видео:Гладкое решение уравнения Навье — СтоксаСкачать
Взрывая уравнения
Чтобы понять, как уравнения могут сломаться, представьте себе океанское течение. В его рамках могут существовать локальные течения, в результате чего некоторые его части могут перемещаться в одном направлении и с одной скоростью, а другие — в другом направлении с другой скоростью. Локальные течения взаимодействуют друг с другом в постоянном взаимном действии трения и давления воды, определяющих её поток.
Математики моделируют это взаимодействие при помощи карты, сообщающей вам о направлениях и скорости потока в любой точке жидкости. Эта карта, называемая векторным полем — снимок внутренней динамики жидкости. Уравнения Навье-Стокса берут этот снимок и воспроизводят его, как видео, сообщая, как именно будет выглядеть векторное поле в каждый последующий момент времени.
Карта ветров (windy.com) работает похожим на векторное поле образом. В каждой точке у ветра есть определённое направление и сила
Эти уравнения работают. Они описывают течение жидкости так же надёжно, как уравнения Ньютона предсказывают будущие положения планет; физики постоянно используют их, и они постоянно совпадают с результатами экспериментов. Однако математикам нужно нечто большее, чем эпизодическое подтверждение — им нужно доказательство того, что уравнения не нарушаются, что вне зависимости от того, с какого векторного поля вы начнёте, и от того, как далеко в будущее вы будете его воспроизводить, уравнения всегда дадут вам новое, уникальное векторное поле.
Это и есть тема Задачи тысячелетия, спрашивающей, есть ли у уравнений Навье-Стокса решения (решение, по сути, и есть векторное поле) для всех начальных точек во все моменты времени. Эти решения должны обеспечить точное направление и силу потока в каждой точке жидкости. Решения, дающие информацию с таким бесконечно мелким разрешением, называются «гладкими». У гладкого решения каждая точка поля имеет связанный с ней вектор, позволяющий вам «гладко» путешествовать по полю, не застревая в точках, где вектор отсутствует — в точке, дальнейшее движение из которой вам будет непонятно.
Гладкие решения — полное представление физического мира, но с математической точки зрения они могут существовать не всегда. Математики, работающие над уравнениями, подобными этим, переживают по поводу такой ситуации: вы запускаете уравнения Навье-Стокса и наблюдаете за изменениями векторного поля. По прошествии какого-то конечного времени уравнения говорят вам, что некая частица жидкости двигается с бесконечной скоростью. Тогда у вас будут проблемы. В уравнения входит измерение изменений таких свойств, как давление, трение, скорость жидкости — говоря жаргонным языком, они берут производные этих величин — но производную от бесконечной величины взять не проще, чем поделить на ноль. Так что если уравнения выдают бесконечное значение, можно сказать, что они отказали вам, или «взорвались». Они уже не могут описывать последующие состояния вашей жидкости.
Такой «взрыв» — свидетельство того, что в уравнениях не хватает описания каких-то свойств физического мира, который они должны описывать. «Возможно, уравнения охватывают не все эффекты реальной жидкости, поскольку в реальной жидкости мы не ожидаем» бесконечной скорости движения частиц, как говорит Бакмастер.
Решение Задачи тысячелетия состоит либо в том, чтобы показать, что уравнения Навье-Стокса никогда не взрываются, либо найти условия, при которых это происходит. Одна из стратегий, используемых математиками — смягчить требования к тому, как точно эти уравнения должны описывать требуемые решения.
Видео:Вывод уравнения неразрывности - Лекция 1Скачать
Нарушение потока
Уравнения Навье-Стокса должны описывать течение любой жидкости, с любыми начальными условиями, и распространять описание бесконечно далеко в будущее. Пытаясь доказать эту их способность, математики иногда «ослабляют», то есть, используют приближённые описания векторных полей, описывающих жидкость. Но с этим возникают трудности.
В идеале, математики хотят доказать, что применение уравнений Навье-Стокса к любой непрерывной, «гладкой» жидкости выдаст один уникальный результат.
Однако проще работать со «слабыми», не такими детализированными векторными полями. И вот математики обнаружили, что некоторые слабые описания выдают неуникальные результаты — позволяют одной и той же жидкости в одних и тех же начальных условиях течь двумя способами.
Видео:Вычислительная гидродинамика (ВГД). Уравнение Рейнольдса и метод конечных объемовСкачать
От слабых к гладким
Когда математики изучают такие уравнения, как эти, они иногда начинают расширять определение того, что считается решением. Гладким решениям требуется максимум информации — в случае с Навье-Стоксом им требуется, чтобы в каждой точке векторного поля, связанного с жидкостью, существовал вектор. Но что, если ослабить требования, и сказать, что вам нужно подсчитывать вектора только для некоторых точек поля, или нужно получить только примерные значения векторов? Такие решения называют «слабыми». Они позволяют математикам почувствовать поведение уравнения без утомительной работы по поиску абсолютно всех решений (что на практике может оказаться и невозможным).
Тристан Бакмастер, математик из Принстонского университета
«С какой-то точки зрения слабые решения ещё легче описать, чем реальные, поскольку знать нужно гораздо меньше», — сказал Камилло Де Леллис, в соавторстве с Лазло Щекелихиди написавший несколько важных работ, заложивших фундамент для работы Бакмастера и Викола.
Слабые решения бывают разной градации. Если представить себе гладкое решение в виде математического изображения жидкости с бесконечным разрешением, то слабые решения будут представлять собой нечто вроде 32-битных, 16-битных или 8-битных версий этого изображения.
В 1934 году французский математик Жан Лере определил важный класс слабых решений. Вместо работы с точными векторами, «решения Лере» берут среднее значение векторов в небольшой окрестности векторного поля. Лере доказал, что всегда можно решить уравнения Навье-Стокса, позволяя вашим решениям принимать форму такого вида. Иначе говоря, решения Лере не взрываются.
Достижение Лере определило новый подход к задаче Навье-Стокса: начать с решений Лере, о существовании которых уже известно, и посмотреть, можно ли превратить их в гладкие решения, существование которых вы хотите доказать. Этот процесс напоминает тот, где вы начинаете с грубой картинки, и смотрите, нельзя ли постепенно подкрутить разрешение, чтобы достичь идеального изображения реальности.
«Одна из возможных стратегий — показать, что эти слабые решения Лере гладкие, и если вы сможете показать, что они гладкие — вы решите Задачу тысячелетия», — сказал Бакмастер.
Влад Вкол представляет собой половину команды, вскрывшей проблемы в подходе к проверке уравнений Навье-Стокса.
Есть и ещё один подвох. Решения уравнений Навье-Стокса соответствуют реальным физическим событиям, а физические события происходят одним возможным образом. Учитывая это, хотелось бы, чтобы у ваших уравнений был только один набор уникальных решений. Если уравнения дают вам множество возможных решений, они не справляются со своей задачей.
Поэтому математики смогут использовать решения Лере для решения Задачи тысячелетия, только если решения Лере уникальны. Неуникальные решения Лере будут означать, что, согласно правилам Навье-Стокса, одна и та же жидкость с одними и теми же начальными условиями может прийти к двум разным физическим состояниям, что не имеет физического смысла, и подразумевает, что уравнения на самом деле не описывают то, что должны.
Новый результат Бакмастера и Викола — первый намёк на то, что для определённых определений слабых решений может происходить именно это.
Видео:Обзор математики в фильме "Одаренная"Скачать
Множество миров
В своей новой работе Бакмастер и Викол рассматривают ещё более слабые решения, чем решения Лере — решения, в которых используется тот же принцип усреднения, что у и Лере, но ослаблено ещё одно дополнительное требование (известное, как неравенство энергий). Они используют метод «выпуклого интегрирования», берущий начало из работ по геометрии математика Джона Нэша, и позднее привлечённый к изучению жидкостей Де Леллисом и Щекелихиди.
Используя такой подход, Бакмастер и Викол доказывают, что эти очень слабые решения уравнений Навье-Стокса неуникальны. Они, к примеру, демонстрируют, что если начать с полностью спокойной жидкости, к примеру, со стакана с водой рядом с кроватью, возможны два вида развития событий. Первый очевиден: вода начинает со спокойного состояния и остаётся спокойной всегда. Второй фантастичный, но математически возможный: вода начинает со спокойного состояния, взрывается в середине ночи, а затем возвращается в спокойное состояние.
«Это доказывает отсутствие уникальности, поскольку из начальных данных можно сконструировать по меньшей мере два объекта», — говорит Викол.
Бакмастер и Викол доказали существование множества неуникальных слабых решений (не только тех двух, что описаны выше) уравнений Навье-Стокса. Важность этого доказательства ещё предстоит понять. В какой-то момент слабые решения могут стать настолько слабыми, что они перестанут быть связанными с более гладкими решениями, которые должны имитировать. Если так и есть, тогда результат, полученный Бакмастером и Виколом, мало к чему приведёт.
«Такой результат однозначно является предупреждением, но можно спорить о том, что это предупреждение касается самой слабой идеи слабых решений. Существует множество слоёв более сильных решений, на гораздо лучшее поведение которых можно возлагать надежду» в случае уравнений Навье-Стокса, — говорит Де Леллис.
Бакмастер и Викол также мыслят в терминах слоёв, и он нацелились на решения Лере — на доказательство того, что и те допускают множественную физику, в которой одна и та же жидкость из одного и того же состояния может прийти к разным формам в будущем.
«Мы с Тристаном считаем, что решения Лере неуникальны. Мы пока этого не доказали, но наша работа закладывает плацдарм для атаки на эту задачу», — сказал Викол.
Видео:Выскочек никто не любит / Одарённая (2017)Скачать
Гидродинамика Шрёдингера на пальцах
В этой статье в качестве эксперимента я постараюсь максимально доступно рассказать, как работает новый метод расчёта гидродинамики, основанный на решении уравнения Шрёдингера.
Всем привет. В этой статье я хотел бы рассказать о новом методе расчёта гидродинамики, основанном на решении уравнения Шрёдингера вместо уравнений, типично используемых для гидродинамики вроде Навье-Стокса. Сам метод очень подробно и полно раскрыт в диссертации Albert Chern’а, названной «Fluid Dynamics with Incompressible Schrödinger Flow». Однако, статья Chern’а кому-то может показаться написанной на не самом доступном языке, поэтому своей статьёй я бы хотел в первую очередь если не объяснить в деталях, как работает этот метод, то хотя бы объяснить, какими интересными свойствами он обладает, и что же именно скрывается за его математикой. Попутно я кратко расскажу о том, как устроены классические методы расчёта гидродинаимики и как новый подход от них отличается. В качестве эксперимента я бы хотел попробовать написать статью так, чтобы каждый, кто отдалённо интересуется программированием физики, нашёл в ней что-то интересное, понятное, и новое для себя — от начинающего программиста до бывалых расчётчиков.
Видео:"Проблема тысячелетия" решена казахстанским математикомСкачать
Вступление
Почему это важно? В первую очередь потому, что это обозначает глубинное родство квантовомеханических и гидродинамических систем. В диссертации того паренька больше сотни страниц уделено тому, как это вообще так получилось. С участием явления сверхтекучести, которая является загадочным связующим звеном, так как проявляет очевидные свойства идеальной жидкости, являющиеся исключительно следствием квантовой механики. Я же в этой статье далее я рассмотрю только некоторые из параллелей, которые из этого, простите, вытекают.
Следующее очень важное следствие эквивалентности уравнения Шрёдингера и Навье-Стокса — это что решение одного из них эквивалентно решению другого. Так вот уравнение Навье-Стокса — нелиненое, его очень неудобно и неэффективно в общем случае решать, в то время как уравнение Шрёдингера — линеное и его решать гораздо проще. Чтобы составить представление, насколько же неудобным по сей день считается уравнение Навье-Стокса, могу сообщить, что существует целый международный фонд грантов для исследователей, которым хоть какую-то базу под них подстроит, так как(цитата):
Even basic properties of the solutions to Navier–Stokes have never been proven.
Уравнение Шрёдингера же, хоть и описывает мутную квантовую физику, поддаётся решению гораздо легче и эффективнее. Короче, я могу очень долго гудеть про то, как это невероятно и офигенно, но давайте уже перейдём к чему-то более конкретному.
Видео:Мэри на курсах в колледже. Конец фильма. Одарённая. 2017.Скачать
Решение классической гидродинамики на пальцах
Что вообще такое — уравнение гидродинамики? Что такое уравнение Навье-Стокса и как его понять? С ответом на этот вопрос гораздо лучше меня справились миллионы авторов статей по этому делу, например, классическая статья от нвидии, по которой многие начинали: https://developer.download.nvidia.com/books/HTML/gpugems/gpugems_ch38.html Однако, я попробую написать очень сжато и на пальцах, что это всё значит и что с этим обычно делают.
Уравнение Навье-Стокса описывает закон, которому обязана подчиняться скорость каждой точки пространства, заполненного равномерной несжимаемой жидкостью. Представьте себе, например, бассейн с водой, в котором выделили некоторый куб, достаточно далеко от стенок, поверхности и дна, в котором нет ничего кроме воды. Вода в нём может как угодно течь, но не может ни образовывать пузырей, ни с чем-то сталкиваться (мы для простоты опустим эти эффекты). Тогда само уравнение Навье-Стокса описывает закон, которому будет подчиняться скорость каждой точки воды в этом кубе:
(frac=-(vec u cdot vec nabla)vec u-fracvec nabla p + nu ^2 vec u + vec F)
(vec nabla vec u = 0)
прежде чем вообще смотреть на это уравнение, предлагаю сразу из него выбросить ненужное — то, что нам всё равно не пригодится для понимания и только место занимает. Это член, отвечающий за диффузию (nu ^2 vec u) (у идеальной жидкости один фиг диффузии нет), и за внешнюю силу (vec F) (так как мы обойдёмся без неё). Остаётся система:
(frac=-(vec u cdot vec nabla)vec u-fracvec nabla p)
(vec nabla vec u = 0)
Здесь перевёрнутый треугольник называется оператором Набла, который обозначает дифференцирование. Причём смысл этого оператора меняется в зависимости от того, где именно он стоит (например, перед вектором или скаляром). Я постараюсь объяснить смысл каждого его вхождения по порядку. На пальцах смысл всей формулы в следующем. (vec u(vec x)) — это значение скорости жидкости, которое определяется в каждой точке пространства (vec x) . Уравнение описывает закономерности, которым обязана подчиняться эта величина, если она описывает поведение несжимаемой жидкости. Работает хоть для двумерного, хоть для трёхмерного случая. В левой части первого уравнения стоит (frac) — это величина называется производной по времени и показывает, как быстро и куда(это вектор) изменится скорость в точке (vec x) в момент времени (t) .
Нулевой вектор производной по времени обозначает, что скорость в этой точке сейчас не меняется, а, например, вектор (10, 0)[м/c 2 ] обозначает, что за следующую секунду скорость вырастет на 10[м/с] по оси x(если сама производная не поменяется).
Слагаемое вида (-(vec v cdot vec nabla)vec u) называется адвекцией и говорит, что поле скоростей (vec u) в этой точке утекает в направлении (vec v) . В нашем же случае (vec u = vec v) , то есть поле скоростей сносит само себя. Это, кстати, и называется нелинейностью и из-за этого возникает миллион проблем при решении этого уравнения.
В принципе, смысл этого члена достаточно интуитивно можно представить именно как утекание каждой точки воды по вектору её скорости. Однако, в общем случае производная векторного поля (vec u) по направлению (vec v) обозначается как ((vec v cdot vec nabla)vec u) и обозначает, как меняется функция (vec u) в направлении (vec v) для этой точки.
Слагаемое же (-fracvec nabla p) является ускорением, которое получает жидкость в точке из-за градиента давления.
Оператор (vec nabla) , действующий на скалярное поле(например, давление), называется градиентом. Если слева от некоторой точки давление больше, чем справа, то градиент в ней будет направлен вправо и будет увлекать за собой жидкость в этом направлении. Например, ветер всегда дует в направлении, обратном градиенту давления воздуха (отсюда и минус). Электрический ток течёт в направлении градиента электрического потенциала:
(E=vec nabla phi)
Второе уравнение (vec nabla vec u = 0) называется уравнение непрерывности, а оператор (vec nabla) здесь действует на вектор и называется дивергенцией.
Оператор дифференцирования, действующий на вектор, называется дивергенцией. Дивергенция, равная нулю, говорит, что для каждого маленького кубика сколько в него жидкости втекает, столько и вытекает. А так как любой объём можно разбить на маленькие кубики, то свойство будет справедливо и для объёма любой формы. Это свойство называют также условием несжимаемости, так как если бы в какой-то объём втекало больше жидкости, чем вытекало, это бы означало, что жидкость в объёме накапливается, сжимаясь. Другой случай применения дивергенции, который может помочь её представить — это теорема Гаусса:
(vec nabla E=rho)
Эта теорема говорит, что напряжённость электрического поля, которая «вытекает» из некоторого объёма, всегда вызвана электрическим зарядом плотности (rho) внутри этого объёма. Если в объёме заряда нет, то и дивергенция нулевая.
То есть, одним предложением уравнение Навье-Стокса можно описать так: темп изменения скорости определяется течением и градиентом давления, но жидкость при этом не может сжиматься.
Видео:Одно уравнениеСкачать
Классическое решения уравнения Навье-Стокса
Посмотрим теперь, как это уравнение можно программно решить. Для этого можно использовать подход, который называется расщеплением — разбить сложный физический процесс, состоящий из нескольких элементарных, на отдельные чередующиеся стадии и считать, что на каждой стадии работает только один элементарный процесс, а остальные выключены. Как ни странно, можно доказать (см. статью выше), что это — на самом деле математически обоснованная стратегия. Поэтому будем считать, что состояние скоростей для каждой точки в текущий момент времени (vec u(vec x, t)) нам известно. А для расчёта состояния в следующий момент времени (t+dt) , разобьём сложный процесс гидродинамической эволюции на простые стадии:
1) снесём поле скоростей по течению. это может немного «сжать» жидкость.
2) найдём такое давление, чтобы жидкость «расжалась».
Первый шаг называется адвекцией, второй — проекцией.
Адвекция
Адвекция, или течение, можно приближённо посчитать достаточно легко — если известно, что в точке (vec x) , в момент времени (t) скорость равна (vec u(vec x, t)) , то в момент времени (t+dt) скорость в неё притечёт жидкость из точки (vec x — vec u(x, t)cdot dt) .
(vec u^*(vec x, t+dt)=vec u(vec x — vec u(vec x, t), t))
То есть мы получили промежуточное значение скорости, котороже уже утекло по течению, но теперь в нём нарушено условие непрерывности.
Это особенно удобно программируется на GPU, так как это можно посчитать, если хранить скорость в текстуре и её обновлять, просто читая тексели со смещением (- vec u(x, t)cdot dt) и используя стандартную аппаратную линейную интерполяцию.
Проекция
Проекция берёт скорость, для которой нарушено условие непрерывности (vec u^*) и ищет такое давление, которое её «выправит» до нормальной скорости (vec u) . Умные мужики доказали, что такое поле можно найти единственным образом и оно всегда будет градиентом некоторого скалярного поля (давления, в нашем случае):
(vec u(vec x, t+dt)=vec u^*(vec x, t+dt) + vec nabla p)
Помножим обе стороны этого равенства на оператор дифференцирования:
(vec nabla vec u(vec x, t+dt)=vec nabla vec u^*(vec x, t+dt) + vec nabla^2 p)
«ПОГОДИ-КА СУСЕЛ, ЭТО ЕЩЁ ЧТО» — можете меня спросить вы. Всё по порядку, но на самом деле отсюда для общего понимания достаточно знать, что если (vec u^*(vec x)) известно(а оно известно), то отсюда можно найти давление (p(vec x)) . Если вспомнить, что в нашем случае дивергенция скорости равна нулю, то остаётся вот такое выражение.
(vec nabla^2 p=-vec nabla u^*)
В правой части этого равенства стоит дивергенция скорости, которую можно легко приблизительно посчитать, если известна скорость (vec u^*) (а она известна). В левой части стоит штука, которая называется лапласианом давления.
Лапласиан — это оператор дифференцирования (ещё называется оператор набла) в квадрате, то есть применённый дважды к скалярному полю. Первый раз применяем оператор дифференцирования — получаем градиент. Второй раз — получаем дивергенцию. Таким образом оператор лапласа — это дивергенция градиента скалярного поля. Его можно представить как изменение потока скорости через маленький кубик, которое будет вызвано давлением в точке. Ещё одна аналогия — как поменяется дивергенция электрического поля в объёмчике, если в него положить заряд плотностью (rho) (опять же, теорема Гаусса):
(vec nabla vec E = rho) , (vec nabla phi=vec E) => (vec nabla^2 vec phi = rho)
Уравнение вида «лапласиан чего-то неизвестного равен чему-то известному» называется уравнением Пуассона. Что бы это ни значило, существует стандартный итеративный алгоритм, который позволяет его решить, то есть найти такое давление, чтобы его лапласиан был равен чему угодно. «Что угодно» мы знаем — это дивергенция промежуточной скорости, поэтому считаем по ней давление. Далее для давления считаем градиент и вычитаем результат из промежуточной скорости, чтобы получить окончательную скорость для следующего шага по времени:
(vec u=vec u^* + vec nabla p)
Шаги адвекции и проекции повторяем до посинения, рассчитывая всё дальше и дальше эволюцию поля течений по времени. Для визуализации можно, например, напускать частиц, которые могу сноситься этим полем скоростей. Результат выглядит так:
Важно понять, что в этом видосе, равно как и во всех остальных гифках этой статьи, жидкость на самом деле находится в большом кубе (границы которого не показаны), а не только там, где видны частицы. Частицы только уносятся полем скоростей, как, например, частицы дыма уносятся полем скоростей воздухе. Сами частицы никакой роли в физике процесса не играют и только позволяют относительно наглядно его продемонстрировать. Частицы обычно добавляются заранее туда, где ожидаются какие-то интересные турбулентности.
Важные особенности классического подхода
«Всё здорово, сусел, но в названии статьи ты написал что-то там про Шрёдингера! Он вообще где? Зачем нам это всё?» — спросите вы. Вопрос резонный. Но всю крутость подхода со Шрёдингером можно осознать, только если иметь представление о слабых сторонах классического солвера, который мы рассмотрели в предыдущей главе. В чём же они заключаются? Давайте об этом поговорим.
Основа любого расчётного метода — это то, как в нём представлены моделируемые данные. В рассмотренном нами подходе мы храним значение скорости для каждой точки. Например, в текселях двумерной или трёхмерной текстуры. Этот способ здорово работает, если требуется описать ровное поле течений, в котором нет особенностей (так называются завихрения и разные другие неоднородности). Неоднородностей обычно нет в вязких жидкостях вроде мёда или майонеза, поэтому метод очень здорово подходит, чтобы моделировать майонез. Но более текучие среды (например, вода, воздух и дым) отличаются тем, что в них существенную роль играют злополучные турбулентные течения — мелкие завихрения, имеющие очень сложную и нерегулярную структуру, даже образующие фракталы, которые очень неудобно описывать просто их значениями в каждой точке текстуры/массива. Если попытаться их моделировать, то все мелкие особенности быстро смазываются и расплываются, что соответствует поведению вязкой жидкости. Такое поведение называется численной вязкостью — это вязкость жидкости, которая появляется не потому что она является частью уравнения, которое мы решаем, а это паразитная вязкость, всплывающая как паразитное следствие нашего метода решения. Более того, напомню, что первое, что мы сделали, не успев взглянуть на уравнение Навье-Стокса — выкинули из него вязкость, так в ней недостатка точно не будет.
А вот избавиться от вязкости гораздо труднее, чем случайно её посчитать. Один из способов — это измельчать расчётную сетку. Чтобы таким методом получить что-то хоть как-то похожее на дым, понадобится сетка минимум 1024x1024x1024, то есть как минимум гигабайт памяти, если хранить по 1 байту на узел. А хранить захочется как минимум трёхкомпонентную скорость, то есть, скорее всего, 32 гигабайта в сумме. Это не только не разумно с точки зрения затрат памяти, это ещё и очень медленно. Другой способ — это представлять скорость не её направлением в каждой точке, а как сумму маленьких элементарных вихрей. Этот метод называется также методом дискретных вихрей. В нём вообще всё не так просто с процессами порождения новых вихрей и удаления старых, с поддержанием нужной плотности (так как вихри друг друга уносят, как частицы) и ещё миллион проблем, можете сами почитать, если интересно. Другой подход основан на том, что в реальных течениях вихри имеют свойство образовывать вращающиеся нити. Представьте медленно движущийся жгут, вокруг которого быстро вращается жидкость. Если такой жгут замыкается в кольцо, получается тороидальный вихрь, образующий знакомое кольцо дыма:
Существуют подходы, которые вместо хранения величины скорости в точках, хранят именно параметры таких жгутов. Но такие методы полагаются на топологию, поэтому в них необходимо считать, как жгуты взаимодействуют, сливаются, распадаются и вообще происходящее быстро теряет простоту и наглядность.
Однако, у классического метода есть одно очень важное положительное свойство — в нём вообще нет параметров. Обратите внимание, что для расчёта используется только скорость и больше вообще ничего — ни вязкости, ни даже плотности. В уравнении Навье-Стокса без вязкости есть плотность, но её можно «спрятать» в нормировку давления, поэтому можно сказать, что в исходном уравнении параметров также нет. Забегая вперёд, замему, что в солвере на уравнении Шрёдинге будет параметр. Загадочный.
На следующей странице мы рассмотрим, как же применить уравнения Шрёдингера, чтобы смоделировать тот же самый процесс, и какой в этом профит. Будет много картинок.