Написать уравнение прямой проходящей через точку параллельно вектору

Уравнения прямой в пространстве векторное, общее, канонические, параметрические (Таблица)

Способ задания прямой в пространстве

Вид уравнения прямой

Векторное уравнение прямой, проходящей через точку М параллельно заданному вектору s .

Написать уравнение прямой проходящей через точку параллельно вектору

s — направляющий вектор прямой

Написать уравнение прямой проходящей через точку параллельно вектору

где t — скалярный множитель (параметр)

Написать уравнение прямой проходящей через точку параллельно вектору

Канонические уравнения прямой, проходящей через точку M0(x0,y0,z0) и параллельно вектору s =

Написать уравнение прямой проходящей через точку параллельно вектору

Параметрические уравнения прямой, проходящей через точку (x0,y0,z0) параллельно вектору s = <m,n,p]

Написать уравнение прямой проходящей через точку параллельно вектору

Прямая как линия пересечения двух непараллельных плоскостей (общие уравнения прямой)

Видео:12. Уравнения прямой в пространстве Решение задачСкачать

12. Уравнения прямой в пространстве Решение задач

Математический портал

Видео:Записать уравнение прямой параллельной или перпендикулярной данной.Скачать

Записать уравнение прямой параллельной или перпендикулярной данной.
  • Вы здесь:
  • HomeНаписать уравнение прямой проходящей через точку параллельно вектору
  • Аналитическая геометрияНаписать уравнение прямой проходящей через точку параллельно вектору
  • Прямая в пространстве.

Написать уравнение прямой проходящей через точку параллельно векторуНаписать уравнение прямой проходящей через точку параллельно векторуНаписать уравнение прямой проходящей через точку параллельно векторуНаписать уравнение прямой проходящей через точку параллельно векторуНаписать уравнение прямой проходящей через точку параллельно вектору

Видео:1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примерыСкачать

1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примеры

Прямая в пространстве, всевозможные уравнения.

Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.

Существуют такие формы записи уравнения прямой в пространстве:

1) $left<beginA_1x+B_1y+C_1z+D_1=0quad (P_1)\ A_2x+B_2y+C_2z+D_2=0quad (P_2)endright. — $ общее уравнение прямой $L$ в пространстве, как линии пересечения двух плоскостей $P_1$ и $P_2.$

Написать уравнение прямой проходящей через точку параллельно вектору

2) $frac=frac=frac

-$ каноническое уравнение прямой $L,$ которая проходит через точку $M(x_0, y_0, z_0)$ параллельно вектору $overline=(m, n, p).$ Вектор $overline S$ является направляющим вектором прямой $L.$

Написать уравнение прямой проходящей через точку параллельно вектору

3) $frac=frac=frac -$ уравнение прямой, которая проходит через две точки $A(x_1, y_1, z_1)$ и $B(x_2, y_2, z_2).$

4) Приравнивая каждую из частей канонического уравнения 2 к прараметру $t,$ получаем параметрическое уравнение прямой:

Расположение двух прямых в пространстве.

Условие параллельности двух прямых: Прямые $L_1$ и $L_2$ параллельны тогда и только тогда, когда $overline_1paralleloverline_2Leftrightarrow$ $frac=frac=frac

.$

Условие перпендикулярности двух прямых: $L_1perp L_2Leftrightarrow$ $overline_1perpoverline_2Leftrightarrow$ $cdot+cdot+p_1cdot p_2=0.$

Угол между прямыми:

Написать уравнение прямой проходящей через точку параллельно вектору

Расстояние от точки до прямой равно длине перпендикуляра, опущенного из точки на данную прямую.

Пусть прямая $L$ задана уравнением $frac=frac=frac

,$ следовательно $overline S=(m, n, p).$ Пусть также $M_2=(x_2, y_2, z_2) -$ произвольная точка, принадлежащая прямой $L.$ Тогда расстояние от точки $M_1=(x_1, y_1, z_1)$ до прямой $L$ можно найти по формуле: $$d(M_1, L)=frac<|[overline, overline S]|>.$$

Написать уравнение прямой проходящей через точку параллельно вектору

Примеры.

2.198. Написать каноническое уравнение прямой, проходящей через точку $M_0(2, 0, -3)$ параллельно:

а) вектору $q(2, -3, 5);$

е) прямой $x=-2+t, y=2t, z=1-fract.$

Решение.

а) Воспользуемся формулой (2) уравнения прямой в пространстве:

$frac=frac=frac

-$ каноническое уравнение прямой $L,$ которая проходит через точку $M(x_0, y_0, z_0)$ параллельно вектору $overline=(m, n, p).$

По условию $M_0(2, 0, -3)$ и $overline=q(2,-3,5).$

б) Прямая, параллельная заданной прямой, должна быть параллельна ее направляющему вектору. Направляющий вектор прямой $frac=frac=frac$ имеет координаты $overline S(5, 2, -1).$ Далее, находим уравнение прямой проходящей точку $M_0(2, 0, -3)$ параллельно вектору $overline S(5, 2, -1)$ как и в пункте а):

в) ось OX имеет направляющий вектор $i=(1, 0, 0).$ Таким образом, ищем уравнение прямой проходящей точку $M_0(2, 0, -3)$ параллельно вектору $i(1, 0, 0):$

д) Прямая, заданная как пересечение двух плоскостей перпендикулярна нормалям обеих плоскостей , поэтому Направляющий вектор прямой

Написать уравнение прямой проходящей через точку параллельно вектору

$left<begin3x-y+2z-7=0,\ x+3y-2z-3=0; endright.$ можно найти как векторное произведение нормалей заданных плоскостей.

Для плоскости $P_1:$ $3x-y+2z-7=0$ нормальный вектор имеет координаты $N_1(3, -1, 2);$

для плосости $P_2:$ $x+3y-2z-3,$ нормальный вектор имеет координаты $N_2(1, 3, -2).$

Находим векторное произведение:

Таким образом, направляющий вектор прямой $left<begin3x-y+2z-7=0,\ x+3y-2z-3=0; endright.$ имеет координаты $overline S (-4, 8, 10).$

Далее нам необходимо найти уравнение прямой проходящей точку $M_0(2, 0, -3)$ параллельно вектору $overline S(-4, 8, 10):$

е) Найдем направляющий вектор прямой $x=-2+t, y=2t, z=1-fract.$ Для этого запишем уравнение этой прямой в каноническом виде:

Отсюда находим направляющий вектор $overline Sleft(1, 2, -fracright).$ Умножим координаты направляющего вектора на 2 (чтобы избавиться от дроби): $overline S_1(2, 4, -1).$

Далее нам необходимо найти уравнение прямой проходящей точку $M_0(2, 0, -3)$ параллельно вектору $overline S(2, 4, -1):$

2.199(a). Написать уравнение прямой, проходящей через две заданные точки $M_1 (1, -2, 1)$ и $M_2(3, 1, -1).$

Решение.

Воспользуемся формулой (3) уравнения прямой в пространстве:

$frac=frac=frac -$ уравнение прямой, которая проходит через две точки $A(x_1, y_1, z_1)$ и $B(x_2, y_2, z_2).$

Подставляем заданные точки:

2.204. Найти расстояние между параллельными прямыми

Решение.

Расстояние между параллельными прямыми $L_1$ и $L_2$ равно расстоянию от произвольной точки прямой $L_1$ до прямой $L_2.$ Следовательно, его можно найти по формуле $$d(L_1, L_2)=d(M_1, L_2)=frac<|[overline, overline S]|>,$$ где $M_1-$ произвольная точка прямой $L_1,$ $M_2 — $произвольная точка прямой $L_2,$ $overline S -$ направляющий вектор прямой $L_2.$

Из канонических уравнений прямых берем точки $M_1=(2, -1, 0)in L_1,$ $M_2=(7, 1, 3)in L_2,$ $overline S=(3, 4, 2). $

Отсюда находим $overline=(7-2, 1-(-1),3-0)=(5, 2, 3);$

Ответ: 3.

2.205 (а). Найти расстояние от точки $A(2, 3, -1)$ до заданной прямой $L:$ $left<begin2x-2y+z+3=0,\ 3x-2y+2z+17=0 endright.$

Решение.

Для того, чтобы найти расстояние от точки $A$ до прямой $L,$ нам необходимо выбрать произвольную точку $M,$ принадлежащую прямой $L$ и найти направляющий вектор этой прямой.

Выбираем точку $M.$ Пусть координата $z=0.$ Подставим это значение в данную систему:

Таким образом, $M=(-14, -frac, 0)$

Направляющий вектор найдем, как векторное произведение нормалей заданных плоскостей:

Для плоскости $P_1:$ $2x-2y+z+3=0$ нормальный вектор имеет координаты $N_1(2, -2, 1);$

для плосости $P_2:$ $3x+2y+2z+17=0,$ нормальный вектор имеет координаты $N_2(3, -2, 2).$

Находим векторное произведение:

Таким образом, направляющий вектор прямой $left<begin2x-2y+z+3=0,\ 3x-2y+2z+17=0 endright.$

имеет координаты $overline S (-2, -1, 2).$

Теперь можно воспользоваться формулой $$d(A, L)=frac<|[overline, overline S]|>.$$

$overline=left(2-(-14),3-left(-fracright),-1-0right)=left(16, 15frac, -1right)$

Ответ: $d(A, L)=15.$

2.212. Написать каноническое уравнение прямой, которая проходит через точку $M_0(3, -2, -4)$ параллельно плоскости $P: 3x-2y-3z-7=0$ и пересекает прямую $L: frac=frac=frac.$

Решение.

Запишем уравнение плоскости $P_1,$ которая проходит через точку $M_0(3, -2, -4)$ параллельно плоскости $3x-2y-3z-7=0:$

$P: 3x-2y-3z-7=0Rightarrow overline N=(3; -2; -3).$ Искомая плоскость проходит через точку $M_0(3, -2, -4)$ перпендикулярно вектору $overline N(3, -2, -3).$

$P_1: 3x-9-2y-4-3z-12=0 Rightarrow$

Далее найдем точку пересечения плоскости $P_1$ и прямой $L.$ Для этого запишем уравнение прямой $L$ в параметрической форме:

Далее, подставим значения $x, y$ и $z,$ выраженные через $t$ в уравнение плоскости $P_1,$ и из полученного уравнения выразм $t:$

Подставляя найденное занчение $t$ в уравнение прямой $L,$ найдем координаты точки пересечения:

Таким образом, прямая $L$ и плоскость $P_1$ пересекаются в точке $M_1(8, -8, 5).$

Теперь запишем уравнение прямой, проходящей через точки $M_0(3, -2. -4)$ и $M_1(8, -8, 5)$— это и будет искомая прямая. Воспользуемся формулой ( 3) $frac=frac=frac :$

2.199.

б) Написать уравнение прямой, проходящей через две заданные точки $M_1 (3, -1, 0)$ и $M_2(1, 0, -3).$

б) Найти расстояние от точки $A(2, 3, -1)$ до заданной прямой $ L:$ $left<beginx=3t+5,\ y=2t,\z=-2t-25. endright.$

2.206. Доказать, что прямые $L_1: left<begin2x+2y-z-10=0,\ x-y-z-22=0, endright.$ и $L_2: frac=frac=frac.$ параллельны и найти расстояние $rho(L_1, L_2)$

2.207. Составить уравнения прямой, проходящей через точки пересечения плоскости $x-3y+2z+1=0$ с прямыми $frac=frac=frac$ и $frac=frac=frac.$

2.211. Написать уравнение прямой, проходящей через точку $M_0(7, 1, 0)$ параллельно плоскости $2x+3y-z-15=0$ и пересекающей прямую $frac=frac=frac.$

Видео:Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Уравнение параллельной прямой

Альтернативная формула:
Прямая, проходящая через точку M1(x1; y1) и параллельная прямой Ax+By+C=0 , представляется уравнением

назначение сервиса . Онлайн-калькулятор предназначен для составления уравнения параллельной прямой (см. также как составить уравнение перпендикулярной прямой).

Пример №2 . Написать уравнение прямой, параллельной прямой 2x + 5y = 0 и образующей вместе с осями координат треугольник, площадь которого равна 5.
Решение. Так как прямые параллельны, то уравнение искомой прямой 2x + 5y + C = 0. Площадь прямоугольного треугольника Написать уравнение прямой проходящей через точку параллельно вектору, где a и b его катеты. Найдем точки пересечения искомой прямой с осями координат:
Написать уравнение прямой проходящей через точку параллельно вектору Написать уравнение прямой проходящей через точку параллельно вектору Написать уравнение прямой проходящей через точку параллельно векторуНаписать уравнение прямой проходящей через точку параллельно вектору;
Написать уравнение прямой проходящей через точку параллельно векторуНаписать уравнение прямой проходящей через точку параллельно вектору.
Итак, A(-C/2,0), B(0,-C/5). Подставим в формулу для площади: Написать уравнение прямой проходящей через точку параллельно вектору. Получаем два решения: 2x + 5y + 10 = 0 и 2x + 5y – 10 = 0 .

Пример №3 . Составить уравнение прямой, проходящей через точку (-2; 5) и параллельной прямой 5x-7y-4=0 .
Решение. Данную прямую можно представить уравнением y = 5 /7x – 4 /7 (здесь a = 5 /7). Уравнение искомой прямой есть y – 5 = 5 / 7(x – (-2)), т.е. 7(y-5)=5(x+2) или 5x-7y+45=0 .

Пример №4 . Решив пример 3 (A=5, B=-7) по формуле (2), найдем 5(x+2)-7(y-5)=0.

Пример №5 . Составить уравнение прямой, проходящей через точку (-2;5) и параллельной прямой 7x+10=0.
Решение. Здесь A=7, B=0. Формула (2) дает 7(x+2)=0, т.е. x+2=0. Формула (1) неприменима, так как данное уравнение нельзя разрешить относительно y (данная прямая параллельна оси ординат).

🎦 Видео

Уравнение плоскости через 2 точки параллельно векторуСкачать

Уравнение плоскости через 2 точки параллельно вектору

Как составить уравнение прямой, проходящей через две точки на плоскости | МатематикаСкачать

Как составить уравнение прямой, проходящей через две точки на плоскости | Математика

Задача 8. Написать уравнение плоскости, проходящей через точку перпендикулярно вектору.Скачать

Задача 8. Написать уравнение плоскости, проходящей через точку перпендикулярно вектору.

9 класс, 7 урок, Уравнение прямойСкачать

9 класс, 7 урок, Уравнение прямой

Видеоурок "Канонические уравнения прямой"Скачать

Видеоурок "Канонические уравнения прямой"

Уравнение прямой, проходящей через точку параллельно OX, OY или через начало координат. Урок 5. 8 клСкачать

Уравнение прямой, проходящей через точку параллельно OX, OY или через начало координат. Урок 5. 8 кл

Уравнение параллельной прямойСкачать

Уравнение параллельной прямой

Линейная функция. Составить уравнение прямой проходящей через точку и перпендикулярно прямой.Скачать

Линейная функция. Составить уравнение прямой проходящей через точку и перпендикулярно прямой.

10. Параллельность и перпендикулярность плоскостей Решение задачСкачать

10. Параллельность и перпендикулярность плоскостей Решение задач

2. Уравнение плоскости примеры решения задач #1Скачать

2. Уравнение плоскости примеры решения задач #1

Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.

4. Уравнение плоскости проходящей через три точки / в отрезках / доказательство и примерыСкачать

4. Уравнение плоскости проходящей через три точки / в отрезках / доказательство и примеры

Аналитическая геометрия, 6 урок, Уравнение прямойСкачать

Аналитическая геометрия, 6 урок, Уравнение прямой

Написать канонические и параметрические уравнения прямой в пространствеСкачать

Написать канонические и параметрические уравнения прямой в пространстве

Уравнение прямой в пространстве через 2 точки. 11 класс.Скачать

Уравнение прямой в пространстве через 2 точки. 11 класс.
Поделиться или сохранить к себе: