Можно ли сократить степень в уравнении

Степенные или показательные уравнения.

Для начала вспомним основные формулы степеней и их свойства.

Произведение числа a само на себя происходит n раз, это выражение мы можем записать как a•a•…•a=a n

3. a n • a m = a n + m

5. a n b n = (ab) n

7. a n /a m = a n — m

Степенные или показательные уравнения – это уравнения в которых переменные находятся в степенях (или показателях), а основанием является число.

Примеры показательных уравнений:

В данном примере число 6 является основанием оно всегда стоит внизу, а переменная x степенью или показателем.

Приведем еще примеры показательных уравнений.
2 x *5=10
16 x — 4 x — 6=0

Теперь разберем как решаются показательные уравнения?

Возьмем простое уравнение:

Такой пример можно решить даже в уме. Видно, что x=3. Ведь чтобы левая и правая часть были равны нужно вместо x поставить число 3.
А теперь посмотрим как нужно это решение оформить:

Для того, чтобы решить такое уравнение, мы убрали одинаковые основания (то есть двойки) и записали то что осталось, это степени. Получили искомый ответ.

Теперь подведем итоги нашего решения.

Алгоритм решения показательного уравнения:
1. Нужно проверить одинаковые ли основания у уравнения справа и слева. Если основания не одинаковые ищем варианты для решения данного примера.
2. После того как основания станут одинаковыми, приравниваем степени и решаем полученное новое уравнение.

Теперь прорешаем несколько примеров:

Начнем с простого.

Основания в левой и правой части равны числу 2, значит мы можем основание отбросить и приравнять их степени.

x+2=4 Получилось простейшее уравнение.
x=4 — 2
x=2
Ответ: x=2

В следующем примере видно, что основания разные это 3 и 9.

Для начала переносим девятку в правую сторону, получаем:

Теперь нужно сделать одинаковые основания. Мы знаем что 9=3 2 . Воспользуемся формулой степеней (a n ) m = a nm .

Получим 9 х+8 =(3 2 ) х+8 =3 2х+16

3 3х = 3 2х+16 теперь видно что в левой и правой стороне основания одинаковые и равные тройке, значит мы их можем отбросить и приравнять степени.

3x=2x+16 получили простейшее уравнение
3x — 2x=16
x=16
Ответ: x=16.

Смотрим следующий пример:

2 2х+4 — 10•4 х = 2 4

В первую очередь смотрим на основания, основания разные два и четыре. А нам нужно, чтобы были — одинаковые. Преобразовываем четверку по формуле (a n ) m = a nm .

4 х = (2 2 ) х = 2 2х

И еще используем одну формулу a n • a m = a n + m :

2 2х+4 = 2 2х •2 4

Добавляем в уравнение:

2 2х •2 4 — 10•2 2х = 24

Мы привели пример к одинаковым основаниям. Но нам мешают другие числа 10 и 24. Что с ними делать? Если приглядеться видно, что в левой части у нас повторяется 2 2х ,вот и ответ — 2 2х мы можем вынести за скобки:

2 2х (2 4 — 10) = 24

Посчитаем выражение в скобках:

2 4 — 10 = 16 — 10 = 6

Все уравнение делим на 6:

Представим 4=2 2 :

2 2х = 2 2 основания одинаковые, отбрасываем их и приравниваем степени.
2х = 2 получилось простейшее уравнение. Делим его на 2 получаем
х = 1
Ответ: х = 1.

9 х – 12*3 х +27= 0

Преобразуем:
9 х = (3 2 ) х = 3 2х

Получаем уравнение:
3 2х — 12•3 х +27 = 0

Основания у нас одинаковы равны трем.В данном примере видно, что у первой тройки степень в два раза (2x) больше, чем у второй (просто x). В таком случаем можно решить методом замены. Число с наименьшей степенью заменяем:

Тогда 3 2х = (3 х ) 2 = t 2

Заменяем в уравнении все степени с иксами на t:

t 2 — 12t+27 = 0
Получаем квадратное уравнение. Решаем через дискриминант, получаем:
D=144-108=36
t1 = 9
t2 = 3

Возвращаемся к переменной x.

3 х = 9
3 х = 3 2
х1 = 2

Один корень нашли. Ищем второй, из t2:
t2 = 3 = 3 х
3 х = 3 1
х2 = 1
Ответ: х1 = 2; х2 = 1.

На сайте Вы можете в разделе ПОМОГИТЕ РЕШИТЬ задавать интересующие вопросы мы Вам обязательно ответим.

Видео:Математика| СтепениСкачать

Математика| Степени

Формулы степеней и корней.

Формулы степеней используют в процессе сокращения и упрощения сложных выражений, в решении уравнений и неравенств.

Число c является n-ной степенью числа a когда:

Можно ли сократить степень в уравнении

Операции со степенями.

1. Умножая степени с одинаковым основанием их показатели складываются:

2. В делении степеней с одинаковым основанием их показатели вычитаются:

Можно ли сократить степень в уравнении

3. Степень произведения 2-х либо большего числа множителей равняется произведению степеней этих сомножителей:

(abc…) n = a n · b n · c n …

4. Степень дроби равняется отношению степеней делимого и делителя:

5. Возводя степень в степень, показатели степеней перемножают:

Каждая вышеприведенная формула верна в направлениях слева направо и наоборот.

Операции с корнями.

1. Корень из произведения нескольких сомножителей равняется произведению корней из этих сомножителей:

Можно ли сократить степень в уравнении

2. Корень из отношения равен отношению делимого и делителя корней:

Можно ли сократить степень в уравнении

3. При возведении корня в степень довольно возвести в эту степень подкоренное число:

Можно ли сократить степень в уравнении

4. Если увеличить степень корня в n раз и в тоже время возвести в n-ую степень подкоренное число, то значение корня не поменяется:

Можно ли сократить степень в уравнении

5. Если уменьшить степень корня в n раз и в тоже время извлечь корень n-ой степени из подкоренного числа, то значение корня не поменяется:

Можно ли сократить степень в уравнении

Степень с отрицательным показателем. Степень некоторого числа с неположительным (целым) показателем определяют как единицу, деленную на степень того же числа с показателем, равным абсолютной величине неположительного показателя:

Можно ли сократить степень в уравнении

Формулу a m :a n =a m — n можно использовать не только при m > n , но и при m 4 :a 7 = a 4 — 7 = a -3 .

Чтобы формула a m :a n =a m — n стала справедливой при m=n, нужно присутствие нулевой степени.

Степень с нулевым показателем. Степень всякого числа, не равного нулю, с нулевым показателем равняется единице.

Степень с дробным показателем. Чтобы возвести действительное число а в степень m/n, необходимо извлечь корень n–ой степени из m-ой степени этого числа а:

Можно ли сократить степень в уравнении

Видео:Сокращаем дроби со степенями №2. Алгебра 8 класс.Скачать

Сокращаем дроби со степенями №2. Алгебра 8 класс.

Формулы степеней.

6. a n = Можно ли сократить степень в уравнении— деление степеней;

7. Можно ли сократить степень в уравнении— деление степеней;

8. a 1/n = Можно ли сократить степень в уравнении;

Видео:Уравнение четвертой степениСкачать

Уравнение четвертой степени

Как сокращать алгебраические дроби?

Можно ли сократить степень в уравнении

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:СЛОЖИТЕ ДВА КОРНЯСкачать

СЛОЖИТЕ ДВА КОРНЯ

Определение

Алгебраическая дробь — это дробь, в числителе и/или знаменателе которой стоят алгебраические выражения (буквенные множители). Вот так:

Можно ли сократить степень в уравнении

Алгебраическая дробь содержит буквенные множители и степени.

Необыкновенной алгебраическую дробь делают буквы. Если заменить их на цифры, то карета превратится в тыкву — алгебраическая дробь тут же станет обыкновенной.

Если вы засомневались, что должно быть сверху — числитель или знаменатель — переходите по ссылке и освежите знания по теме обыкновенных дробей.

Можно ли сократить степень в уравнении

Видео:Решение показательных неравенств шаг за шагомСкачать

Решение показательных неравенств шаг за шагом

Сокращение алгебраических дробей

Сократить алгебраическую дробь — значит разделить ее числитель и знаменатель на общий множитель. Общий множитель числителя и знаменателя в алгебраической дроби — многочлен и одночлен.

Если в 7 классе только и разговоров, что об обыкновенных дробях, то 8 класс сокращает исключительно алгебраические дроби.

Сокращение дробей с буквами и степенями проходит в три этапа:

  1. Определите общий множитель.
  2. Сократите коэффициенты.
  3. Поделите все числители и все знаменатели на общий множитель.

Для сокращения степеней в дробях применяем правило деления степеней с одинаковыми основаниями:

Можно ли сократить степень в уравнении

Пример сокращения дроби со степенями и буквами:

Можно ли сократить степень в уравнении

  1. Следуя формуле сокращения степеней в дробях, сокращаем x 3 и x 2
  2. Всегда делим на наименьшее значение в степени
  3. Вычитаем: 3 — 1

Получаем сокращенную дробь.

Запоминаем: сокращать можно только одинаковые буквенные множители. Иными словами, сокращать можно только дроби с одинаковыми буквами.

❌ Так нельзя✅ Так можно
Можно ли сократить степень в уравненииМожно ли сократить степень в уравнении

Примеры сокращения алгебраических дробей с одночленами:

Пример сокращения №1.

Можно ли сократить степень в уравнении

  1. Общий множитель для числителя и знаменателя — 8.
  2. Х и x 2 делим на x и получаем ответ.

Получаем сокращенную алгебраическую дробь.

Пример сокращения №2.

Можно ли сократить степень в уравнении

  1. Общий множитель для числителя и знаменателя — 7.
  2. b 3 и b делим на b.
  3. Вычитаем: 3 — 1 и получаем ответ.

Получаем сокращенную дробь.

Курсы по математике в онлайн-школе Skysmart помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.

Видео:Сократить дробь алгебра 8 классСкачать

Сократить дробь алгебра 8 класс

Сокращение алгебраических дробей с многочленами

Чтобы верно сократить алгебраическую дробь с многочленами, придерживайтесь двух главных правил:

  • сокращайте многочлен в скобках только с таким же многочленом в скобках;
  • сокращайте многочлен в скобках целиком — нельзя сократить одну его часть, а другую оставить. Не делайте из многочленов одночлены.
❌ Так нельзя✅ Так можно
Можно ли сократить степень в уравненииМожно ли сократить степень в уравнении

Запомните: многочлены в алгебраической дроби находятся в скобках. Между этими скобками вклиниться может только знак умножения. Всем остальным знакам там делать нечего.

Можно ли сократить степень в уравнении

Примеры сокращения алгебраических дробей с многочленами:

Можно ли сократить степень в уравнении

Последовательно сокращаем: сначала x, затем (x+c), далее сокращаем дробь на 6 (общий множитель).

Можно ли сократить степень в уравнении

Сокращаем многочлены a+b (в дроби их 3). Многочлен в числителе стоит в квадрате, поэтому мысленно оставляем его при сокращении.

Видео:11 класс, 3 урок, Уравнения высших степенейСкачать

11 класс, 3 урок, Уравнения высших степеней

Вынесение общего множителя при сокращении дробей

При сокращении алгебраических дробей иногда не хватает одинаковых многочленов. Для того, чтобы они появились, вынесите общий множитель за скобки.

Чтобы легко и непринужденно выносить множитель за скобки, пошагово выполняйте 4 правила:

  1. Найдите число, на которое делятся числа каждого одночлена.
  2. Найдите повторяющиеся буквенные множители в каждом одночлене.
  3. Вынесите найденные буквенные множители за скобку.
  4. Далее работаем с многочленом, оставшимся в скобках.

Алгебра не терпит неточность. Всегда проверяйте, верно ли вынесен множитель за скобки — сделать это можно по правилу умножения многочлена на одночлен.

Для умножения одночлена на многочлен нужно умножить поочередно все члены многочлена на этот одночлен.

Пример 1.

Можно ли сократить степень в уравнении

  1. Выносим общий множитель 6
  2. Делим 42/6
  3. Сокращаем получившиеся одинаковые многочлены.

Пример 2.

Можно ли сократить степень в уравнении

Как решаем: выносим общий множитель a за скобки и сокращаем оставшиеся в скобках многочлены.

Видео:КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примереСкачать

КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примере

Сокращение дробей. Формулы сокращенного умножения

Перед формулами сокращенного умножения не устоит ни одна дробь — даже алгебраическая.

Чтобы легко ориентироваться в формулах сокращенного умножения, сохраняйте и заучивайте таблицу. Формулы подскажут вам, как решать алгебраические дроби.

Квадрат суммы(a+b) 2 = a 2 + 2ab + b 2
Квадрат разности(a-b) 2 = a 2 — 2ab — b 2
Разность квадратовa 2 – b 2 = (a – b)(a+b)
Куб суммы(a+b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3
Куб разности(a-b) 3 = a 3 — 3a 2 b + 3ab 2 — b 3
Сумма кубовa 3 + b 3 = (a + b)(a 2 — ab+b 2 )
Разность кубовa 3 — b 3 = (a — b)(a 2 + ab+b 2 )

Примеры сокращения дробей с помощью формул сокращенного умножения:

Можно ли сократить степень в уравнении

Применяем формулу квадрата разности (a-b) 2 = a 2 — 2ab — b 2 и сокращаем одинаковые многочлены.

Можно ли сократить степень в уравнении

Чтобы раскрыть тему сокращения алгебраических дробей и полностью погрузиться в мир числителей и знаменателей, решите следующие примеры для самопроверки.

Примеры сокращения дробей за 7 и 8 классы

Можно ли сократить степень в уравнении

Тема сокращения алгебраических дробей достаточно обширна, и требует к себе особого внимания. Чтобы знания задержалась в голове хотя бы до ЕГЭ, сохраните себе памятку по сокращению дробей. Этот алгоритм поможет не растеряться при встрече с алгебраическими дробями лицом к лицу.

  • Чтобы сократить дробь, найдите общий множитель числителя и знаменателя.
  • Поделите числитель и знаменатель на общий множитель.
  • Чтобы разделить многочлен на множители, вынесите общий множитель за скобку.
  • Второй способ разделить многочлен на множители — применить формулы сокращенного умножения.
  • Выучите все формулы сокращенного умножения — они помогут легко преобразовывать выражения и экономить время при решении задач.
  • Можно забыть свое имя, но формулу разности квадратов помнить обязательно — она будет встречаться чаще других.
  • Всегда проверяйте результат сокращения: алгебра — точна, коварна и не любит давать вторые шансы.

Возможно тебе будет полезно — Формулы сокращённого умножения (ФСУ)

💥 Видео

397 Алгебра 9 класс. Степень УравненияСкачать

397 Алгебра 9 класс. Степень Уравнения

Как решать уравнения четвёртой степени. Формула Феррари | #БотайСоМной #026 | Борис ТрушинСкачать

Как решать уравнения четвёртой степени. Формула Феррари | #БотайСоМной #026 | Борис Трушин

Как решать уравнения с дробью? #shortsСкачать

Как решать уравнения с дробью? #shorts

Алгебра 7 класс №1 Контрольная работа В-1 К-4 сократите дробьСкачать

Алгебра 7 класс №1 Контрольная работа В-1 К-4 сократите дробь

Как решать уравнения 4 степени Решите уравнение четвертой степени Разложить на множители Безу столбиСкачать

Как решать уравнения 4 степени Решите уравнение четвертой степени Разложить на множители Безу столби

Можно ли решить уравнение 5-й степени? – математик Алексей Савватеев | НаучпопСкачать

Можно ли решить уравнение 5-й степени? – математик Алексей Савватеев | Научпоп

Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать

Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnline

Алгебра 8. Урок 2 - Сокращение дробейСкачать

Алгебра 8. Урок 2 - Сокращение дробей

Корни n-й степени. Вебинар | МатематикаСкачать

Корни n-й степени. Вебинар | Математика

Как расставлять коэффициенты в уравнении реакции? Химия с нуля 7-8 класс | TutorOnlineСкачать

Как расставлять коэффициенты в уравнении реакции? Химия с нуля 7-8 класс | TutorOnline

Как решать уравнения высших степеней, очень лёгкий способ!!!Скачать

Как решать уравнения высших степеней, очень лёгкий способ!!!

Как решают уравнения в России и СШАСкачать

Как решают уравнения в России и США
Поделиться или сохранить к себе: