Классы: 9 , 10 , 11
Ключевые слова: модуль числа , свойства модуля , геометрический смысл модуля
Цель: Актуализировать знания школьников о смысле понятия «модуль». Учить их применять эти знания при решении уравнении, неравенств и систем уравнении с модулями.
Для того, чтобы научиться решать уравнения и неравенства с модулем, необходимо хорошо разобраться с понятием модуля, его геометрическим смыслом и свойствами.
С рассмотрения этого материала мы и начнем наше занятие.
1. Определение: Модулем числа называется само число, если оно неотрицательно, или число противоположное данному, если оно отрицательно.
Следовательно, при любых значениях переменной |а| есть число неотрицательное.
2. Рассмотрим основные свойства модуля, которые используются при решении уравнений и неравенств, содержащих модуль.
Свойства модуля
— Модуль числа есть величина неотрицательная: |а|>0 или равно 0.
— Модули противоположенных чисел равны: |а|= |-а|
— Модуль произведения равен произведению модулей множителей: |а*в|= |а|*|в|.
— Модуль частного равен частному модулей числителя и знаменателя: |а/в|=|а|/|в|, где в не равен нулю.
— Квадрат модуля равен квадрату подмодульного выражения: |а| 2 =а 2 .
— Модуль суммы не больше суммы модулей ее слагаемых: |а+в|≤|а|+|в|.
При этом равенство |а+в|=|а|+|в| имеет место тогда и только тогда, когда слагаемые одного знака или одно из слагаемых равно нулю.
— Два числа, модули которых равны, либо равны между собой, либо отличаются только знаками, то есть являются противоположными: |а|=|в|, если, а=в или, а=–в.
Преобразование выражений, содержащих модули
При решении уравнении и неравенств с модулем, часто приходится преобразовывать их, раскрывая знак модуля.
Рассмотрим, по каким правилам раскрывается модуль.
Из определения модуля следует: чтобы раскрыть знак модуля, надо знать знак подмодульного выражения.
Составим схему раскрытия модуля:
а) если знак подмодульного выражения неотрицателен, то знак модуля опускается: |а| =а.
б) если знак подмодульного выражения отрицателен, то подмодульное выражение умножается на (-1), то есть заменяется противоположенным выражением: |а| =-1а.
Рассмотрим несколько примеров.
Пример 1.1
а) т.к. с 0, то -7х 5;
б) |3+х|, если х 5, то х-2 > 0, поэтому |х-2|=х-2;
в) т.к. х 0, |8-х|= 8 – х, х-6 (=) 2/3 3х – 2 >(=)0, следовательно, |3[ — 2|= 3х – 2.
4. Задания для самостоятельной работы
б) |- 3/7х|, если х 2 |, если а > 0;
г) |8 + х|, если х > -7;
д) |х — 5| — |х + 4|, если -3 13.
3. Решить неравенство самостоятельно:
4. Решить уравнение:
5. Решить уравнение:
6. Решить неравенство:
7. Найдите наибольшее натуральное значение параметра с при котором решение неравенства
- ||2х + 4| — 7| — 13 ≤ 2с 2 удовлетворяет условию х [-37; 35].
Это задание можно предложить сильным школьникам для домашней работы с последующей проверкой на уроке.
Решения и ответы:
1. Для решения уравнении используем рисунок на доске и правило: «Модуль — это расстояние»:
2. Для решения неравенства сделаем ещё два рисунка.
Значение выражения, стоящего под модулем, не должно превышать 2, значит
Значение выражения, стоящего под модулем, должно быть больше, чем 48 единиц, значит:
18 – х ≥ 48 или 18 – х ≤ -48 => х ≤ -30 или х ≥66.
Видео:Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать
Модуль числа
О чем эта статья:
Видео:МодульСкачать
Определение модуля числа
Алгебра дает четкое определение модуля числа. Модуль числа в математике — это расстояние от начала отсчёта до точки координатной прямой, соответствующей этому числу.
Если мы возьмем некоторое число «a» и изобразим его на координатной прямой точкой A — расстояние от точки A до начала отсчёта (то есть до нуля) длина отрезка OA будет называться модулем числа «a».
Знак модуля: |a| = OA.
Разберем на примере:
Точка В, которая соответствует числу −3, находится на расстоянии 3 единичных отрезков от точки O (то есть от начала отсчёта). Значит, длина отрезка OB равна 3 единицам.
Число 3 (длину отрезка OB) называют модулем числа −3.
Обозначение модуля: |−3| = 3 (читают: «модуль числа минус три равен трём»).
Точка С, которая соответствует числу +4, находится на расстоянии четырех единичных отрезков от начала отсчёта, то есть длина отрезка OС равна четырем единицам.
Число 4 называют модулем числа +4 и обозначают так: |+4| = 4.
Также можно опустить плюс и записать значение, как |4| = 4.
Онлайн-курсы математики для детей помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.
Видео:Уравнения с модулем. Что такое модуль числа. Алгебра 7 класс.Скачать
Свойства модуля числа
Давайте рассмотрим семь основных свойств модуля. Независимо от того, в какой класс перешел ребенок — эти правила пригодятся всегда.
1. Модуль числа — это расстояние, а расстояние не может быть отрицательным. Поэтому и модуль числа не бывает отрицательным:
2. Модуль положительного числа равен самому числу.
3. Модуль отрицательного числа равен противоположному числу.
4. Модуль нуля равен нулю.
5. Противоположные числа имеют равные модули.
6. Модуль произведения равен произведению модулей этих чисел.
−(a · b), когда a · b
Видео:Модуль числа. Практическая часть. 6 класс.Скачать
Геометрическая интерпретация модуля
Как мы уже знаем, модуль числа — это расстояние от нуля до данного числа. То есть расстояние от точки −5 до нуля равно 5.
Нарисуем числовую прямую и отобразим это на ней.
Эта геометрическая интерпретация используется для решения уравнений и неравенств с модулем. Давайте рассмотрим на примерах.
Решим уравнение: |х| = 5.
Мы видим, что на числовой прямой есть две точки, расстояние от которых до нуля равно 5. Это точки 5 и −5. Значит, уравнение имеет два решения: x = 5 и x = −5.
Когда у нас есть два числа a и b, то их разность |a — b| равна расстоянию между ними на числовой прямой или длине отрезка АВ.
Расстояние от точки a до точки b равно расстоянию от точки b до точки a, тогда |a — b| = |b — a|.
Решим уравнение: |a — 3| = 4 . Запись читаем так: расстояние от точки а до точки 3 равно 4. Отметим на числовой прямой точки, удовлетворяющие этому условию.
Уравнение имеет два решения: −1 и 7. Мы из 3 вычли 4 — и это один ответ, а также к 3 мы прибавили 4 — и это второй ответ.
Решим неравенство: |a + 7|
Видео:10 класс, 5 урок, Модуль действительного числаСкачать
График функции
График функции равен y = |х|.
Для x > 0 имеем y = x.
Этот график можно использовать при решении уравнений и неравенств.
Видео:Модуль действительного числа и его свойства | Алгебра 8 класс #18 | ИнфоурокСкачать
Корень из квадрата
В контрольной работе или на ЕГЭ может встретиться задачка, в которой нужно вычислить √ a 2 , где a – некоторое число или выражение.
При этом, √ a 2 = |a|.
По определению арифметического квадратного корня √ a 2 — это такое неотрицательное число, квадрат которого равен a 2 .
Оно равно a при а > 0 и −а, при а
Видео:Модуль числа. 6 класс.Скачать
Модуль рационального числа
Как найти модуль рационального числа — это расстояние от начала отсчёта до точки координатной прямой, которая соответствует этому числу.
Видео:Контрольная работа. Уравнения с МОДУЛЕМСкачать
Модуль
В этой статье введем и очень подробно разберем такое важное понятие, как модуль числа. Разберемся, откуда модуль взялся, какими свойствами обладает. Научимся решать уравнения и неравенства с модулем.
Видео:6 класс, 28 урок, Модуль числаСкачать
«Величина» числа
Сначала попытаемся сформулировать понятие о «величине» числа. Из этого понятия естественным образом получим понимание, откуда взялся и как определить модуль.
Геометрический смысл
Представьте, что вы стоите в точке 0 на числовой оси. Слева от вас, в точке − 1 0 0 , находится школа. Справа, в точке 5 0 , находится ваш дом. Математически число − 1 0 0 меньше, чем 5 0 . Но вот идти до школы 1 0 0 метров влево гораздо дольше, чем пройти 5 0 метров до дома вправо. В этом смысле «величина» пройденного расстояния в − 1 0 0 метров больше, чем 5 0 метров.
Пусть теперь школа находится в точке − 1 0 , а дом в точке 1 0 . Математически вновь получаем, что − 1 0 меньше 1 0 . Но вот нам, находящимся в 0 , совершенно нет разницы: идти − 1 0 метров влево или 1 0 метров вправо. В обоих случаях мы пройдем 1 0 метров. То есть, по «величине» числа − 1 0 и 1 0 равны.
Количественный смысл
Рассмотрим числа 5 0 и − 1 0 0 . В математическом смысле − 1 0 0 гораздо меньше 5 0 . А давайте посмотрим на эти числа под другим углом. У вас есть всего 5 0 рублей и вы задолжали другу. Ваш долг составляет − 1 0 0 рублей. В этом смысле «величина» вашего долга в − 1 0 0 рублей гораздо больше имеющихся у вас 5 0 рублей. Получается, что математически − 1 0 0 меньше 5 0 , но по «величине» − 1 0 0 больше 5 0 .
Теперь рассмотрим числа − 1 0 и 1 0 . Математически, опять же, − 1 0 меньше 1 0 . Но, пользуясь нашей аналогией с долгом, своими 1 0 рублями вы полностью покроете долг в − 1 0 рублей. То есть, по «величине» число − 1 0 равно числу 1 0 .
Понятие величины
Мы поняли, что каждое число имеет свою «величину». Причем эта величина не зависит от того, положительным или отрицательным является число. Можно даже сказать, что «величина» числа это и есть само число, от которого «отбросили» его знак.
Видео:Уравнения с модулемСкачать
Модуль числа
Сформулируем на строгом языке математики наше интуитивное представление о «величине» числа, которое мы сформировали в предыдущем разделе.
Модуль или абсолютная величина вещественного числа x — само число x , если оно неотрицательно, иначе − x .
Допустим, мы хотим найти модуль какого-то числа a . Согласно определению, нам надо провести элементарную проверку. Если число a положительное или равно 0 , то модулем a и является само a . Если же a меньше 0 , то результатом модуля будет − a .
∣ 5 ∣ = 5 ∣ 0 ∣ = 0 ∣ − 1 2 ∣ = − ( − 1 2 ) = 1 2
Легко убедиться, что модуль числа полностью соответсвует по смыслу «величине» числа, рассмотренной в предыдущем разделе. Там мы утверждали, что по «величине» − 1 0 0 больше 5 0 , а − 1 0 равно 1 0 . И действительно:
∣ − 1 0 0 ∣ = 1 0 0 ∣ − 1 0 ∣ = 1 0 ∣ 5 0 ∣ = 5 0 ∣ − 1 0 0 ∣ > ∣ 5 0 ∣ ∣ 1 0 ∣ = 1 0 ∣ − 1 0 ∣ = ∣ 1 0 ∣
Положение знака нестрогого неравенства в определении модуля не имеет значения:
Обозначим второе определение модуля числа x как ∣ x ∣ ′ . Покажем, что какой x не возьми, будет выполняться ∣ x ∣ = ∣ x ∣ ′ .
Пусть x > 0 . По классическому определению ∣ x ∣ = x . По второму: ∣ x ∣ ′ = x . То есть ∣ x ∣ = ∣ x ∣ ′ .
Пусть x = 0 . По классическому определению ∣ 0 ∣ = 0 . А вот во втором определении 0 попадает уже под второе условие, то есть ∣ 0 ∣ ′ = − 0 = 0 . Опять имеем ∣ 0 ∣ = ∣ 0 ∣ ′ .
Наконец, пусть x 0 . По классическому определению ∣ x ∣ = − x . У второго определения та же ситуация: ∣ x ∣ ′ = − x . Получается, что и в этом случае ∣ x ∣ = ∣ x ∣ ′ .
Итак, мы рассмотрели все возможные значения для x и во всех случаях ∣ x ∣ = ∣ x ∣ ′ . Это и означает, что между двумя определениями нет никакой разницы ■
Такое определение иногда бывает полезно. Например, если x лежит в следующих пределах: − 1 0 ≤ x ≤ 0 , то можно сразу сказать, что ∣ x ∣ = − x , даже несмотря на то, что для x = 0 так выражаться будет некорректно, ведь ∣ 0 ∣ = 0 , а не − 0 .
Видео:Модуль числа, 6 классСкачать
Свойства модуля
У модуля есть очень много полезных свойств, которые сильно помогают при решении уравнений, неравенств, доказательстве теорем и так далее. Рассмотрим самые полезные из них. Все свойства ниже формулируем для любых вещественных чисел x и y .
Очевидные свойства
Наиболее очевидные свойства модуля напрямую вытекают из рассмотренного ранее понятия о «величине» числа. Например, мы определили «величину» числа как само число с «отброшенным» знаком. Это означает, что «величина» не может быть отрицательной.
📺 Видео
Уравнение с модулемСкачать
8 класс, 16 урок, Модуль действительного числа. Функция у=x по модулюСкачать
Абсолютная величина или модуль числа | ПОСМОТРИ ПЕРВЫМ!Скачать
Модуль числа. Практическая часть. 6 класс.Скачать
Модуль числа в выражениях. Как решать уравнения с модулем. Сравнение модулей чисел. Математика 6 кл.Скачать
Модуль в модуле в уравнении. Алгебра 7 класс.Скачать
#Урок 10. Модуль действительного числа и его свойстваСкачать
Свойства модуля с нуля на примерах | PARTAСкачать
Алгебра 8 класс. Модуль числа. Уравнения с модулем.Скачать