Алгебра 8 класс решить уравнение по теореме виета

Видео:ТЕОРЕМА ВИЕТА // Как решать Квадратные Уравнения по АЛГЕБРЕ 8 классСкачать

ТЕОРЕМА ВИЕТА // Как решать Квадратные Уравнения по АЛГЕБРЕ 8 класс

Теорема Виета для квадратного уравнения

Алгебра 8 класс решить уравнение по теореме виета

О чем эта статья:

Видео:ТЕОРЕМА ВИЕТА ЗА 2 МИНУТЫСкачать

ТЕОРЕМА ВИЕТА ЗА 2 МИНУТЫ

Основные понятия

Квадратное уравнение — это ax 2 + bx + c = 0, где a — первый коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Существует три вида квадратных уравнений:

  • не имеют корней;
  • имеют один корень;
  • имеют два различных корня.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Формула для его поиска записывается так: D = b 2 − 4ac. Его свойства:

  • если D 0, есть два различных корня.

В случае, когда второй коэффициент четный, можно воспользоваться формулой нахождения дискриминанта , где .

В математике теоремой принято называть утверждение, у которого ранее было сформулировано доказательство.

Видео:Теорема Виета. 8 класс.Скачать

Теорема Виета. 8 класс.

Формула Виета

Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:

Рассмотрим квадратное уравнение, в котором первый коэффициент равен 1: . Такие уравнения называют приведенными квадратными уравнениями. Сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:

Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.

Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:

Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:

Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:
2 + 4x + 3 = 0″ height=»215″ src=»https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE» width=»393″>

Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.
2 + 4x + 3 = 0″ height=»52″ src=»https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG» width=»125″>

Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:
2 + 4x + 3 = 0″ height=»52″ src=»https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo» width=»112″>

Результат проделанных вычислений в том, что мы убедились в справедливости выражения:

Обучение на курсах по математике помогает быстрее разобраться в новых темах и подтянуть оценки в школе.

Видео:Алгебра 8 класс (Урок№30 - Решение приведённых квадратных уравнений. Теорема Виета.)Скачать

Алгебра 8 класс (Урок№30 - Решение приведённых квадратных уравнений. Теорема Виета.)

Доказательство теоремы Виета

Дано квадратное уравнение x 2 + bx + c = 0. Если его дискриминант больше нуля, то оно имеет два корня, сумма которых равна второму коэффициенту с противоположным знаком, а произведение корней равно свободному члену:

Докажем, что следующие равенства верны

  • x₁ + x₂ = −b,
  • x₁ * x₂ = c.

Чтобы найти сумму корней x₁ и x₂ подставим вместо них то, что соответствует им из правой части формул корней. Напомним, что в данном квадратном уравнении x 2 + bx + c = 0 старший коэффициент равен единице. Значит после подстановки знаменатель будет равен 2.

    Объединим числитель и знаменатель в правой части.

Раскроем скобки и приведем подобные члены:

Сократим дробь полученную дробь на 2, остается −b:

Мы доказали: x₁ + x₂ = −b.

Далее произведем аналогичные действия, чтобы доказать о равенстве x₁ * x₂ свободному члену c.

    Подставим вместо x₁ и x₂ соответствующие части из формул корней квадратного уравнения:

Перемножаем числители и знаменатели между собой:

Очевидно, в числителе содержится произведение суммы и разности двух выражений. Поэтому воспользуемся тождеством (a + b) * (a − b) = a 2 − b 2 . Получаем:

Далее произведем трансформации в числителе:

Нам известно, что D = b2 − 4ac. Подставим это выражение вместо D.

Далее раскроем скобки и приведем подобные члены:

Сократим:

Мы доказали: x₁ * x₂ = c.

Значит сумма корней приведённого квадратного уравнения x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком (x₁ + x₂ = −b), а произведение корней равно свободному члену (x₁ * x₂= c). Теорема доказана.

Видео:ТЕОРЕМА ВИЕТА. §21 алгебра 8 классСкачать

ТЕОРЕМА ВИЕТА. §21  алгебра 8 класс

Обратная теорема Виета

Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Она формулируется так:

Обратная теорема Виета

Если числа x₁ и x₂ таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа являются корнями x 2 + bx + c = 0.

Обратные теоремы зачастую сформулированы так, что их утверждением является заключение первой теоремы. Так, при доказательстве теоремы Виета стало понятно, что сумма x₁ и x₂ равна −b, а их произведение равно c. В обратной теореме это является утверждением.

Видео:8 класс, 26 урок, Теорема ВиетаСкачать

8 класс, 26 урок, Теорема Виета

Докажем теорему, обратную теореме Виета

Корни x₁ и x₂ обозначим как m и n. Тогда утверждение будет звучать следующим образом: если сумма чисел m и n равна второму коэффициенту x 2 + bx + c = 0, взятому с противоположным знаком, а произведение равно свободному члену, то числа m и n являются корнями x 2 + bx + c = 0.

Зафиксируем, что сумма m и n равна −b, а произведение равно c.

Чтобы доказать, что числа m и n являются корнями уравнения, нужно поочередно подставить буквы m и n вместо x, затем выполнить возможные тождественные преобразования. Если в результате преобразований левая часть станет равна нулю, то это будет означать, что числа m и n являются корнями x 2 + bx + c = 0.

    Выразим b из равенства m + n = −b. Это можно сделать, умножив обе части на −1:

Подставим m в уравнение вместо x, выражение −m − n подставим вместо b, а выражение mn — вместо c:

При x = m получается верное равенство. Значит число m является искомым корнем.

  1. Аналогично докажем, что число n является корнем уравнения. Подставим вместо x букву n, а вместо c подставим m * n, поскольку c = m * n.

    При x = n получается верное равенство. Значит число n является искомым корнем.

Мы доказали: числа m и n являются корнями уравнения x 2 + bx + c = 0.

Видео:Теорема Виета. Алгебра, 8 классСкачать

Теорема Виета. Алгебра, 8 класс

Примеры

Для закрепления знаний рассмотрим примеры решения уравнений по теореме, обратной теореме Виета.

Дано: x 2 − 6x + 8 = 0.

Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.
2 − 6x + 8 = 0″ height=»59″ src=»https://lh6.googleusercontent.com/tFokx3SM93Hwlr7ZM9BqX1xiHKv_2dUIB9MoNa8RAwSTmQKXdCcqcFXxTZmxNGw7bOVek-RzRXqBkoCqnYMiqIYVwKhfnHeU-7mA03feEqJTlyKB7e-OsTTKgPaOlddfiaTGszcv» width=»99″>

Имея эти два равенства можно подобрать подходящие корни, которые будут удовлетворять как равенству обоим равенствам системы.

Подбор корней удобнее выполнять с помощью их произведения. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x₁ и x₂ надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x₁ + x₂ = 6. Значения 4 и 2 подходят обоим равенствам:

Значит числа 4 и 2 являются корнями уравнения x 2 − 6x + 8 = 0.
2 − 6x + 8 = 0″ height=»57″ src=»https://lh3.googleusercontent.com/rohB7Bvd-elMhTxEUuOhKqLJjqLAvo9VlJxZvOnMeDAHARfKT-SYOWb1WXTTWEN2h0oKbLl6wH7lc0IWL_vH3Si2AJGAGXVn8TPFDT_J1Wu2WeoQ-WP1qgXjCnZ99tWUkK2BOvF2″ width=»64″>

Видео:Теорема Виета за 4 минуты с примерами. Как решать квадратные уравнения быстрее учителя.Скачать

Теорема Виета за 4 минуты с примерами. Как решать квадратные уравнения быстрее учителя.

Неприведенное квадратное уравнение

Теорема Виета выполняется только тогда, когда квадратное уравнение является приведённым, то есть его первый коэффициент равен единице:

ax 2 + bx + c = 0, где а = 1.

Если квадратное уравнение не является приведенным, но задание связано с применением теоремы, нужно обе части разделить на коэффициент, который располагается перед x 2 .

  1. Получилось следующее приведенное уравнение:

    Получается, второй коэффициент при x равен, свободный член —. Значит сумма и произведение корней будут иметь вид:

Рассмотрим пример неприведенного уравнения: 4x 2 + 5x + 1 = 0. Разделим обе его части на коэффициент перед x 2 , то есть на 4.

  • Получилось приведённое квадратное уравнение. Второй коэффициент которого равен, а свободный член.
  • Тогда в соответствии с теоремой Виета получаем:

  • Метод подбора помогает найти корни: −1 и
  • Видео:№ 581- Алгебра 8 класс МакарычевСкачать

    № 581- Алгебра 8 класс Макарычев

    Алгебра. 8 класс

    Квадратное уравнение x 2 – 6x + 8 = 0 имеет два корня, x1 = 2; x2 = 4.
    x1x2 = 8 – равно свободному члену;
    x1 + x2 = 6 – равно второму коэффициенту, взятому с противоположным знаком.

    Таким свойством обладает любое приведённое квадратное уравнение, имеющее корни. Докажем это.

    Рассмотрим приведённое квадратное уравнение x 2 + px + q = 0.

    D = p 2 – 4q.
    Пусть D > 0, тогда уравнение имеет два действительных различных корня:
    и .

    Найдём сумму и произведение корней:

    Если дискриминант приведённого квадратного уравнения будет равен 0, то условимся считать, что тогда уравнение имеет не один корень, а два совпавших корня, и поэтому доказанная теорема будет также верна.

    Эта теорема называется теоремой Виета по имени французского математика Франсуа Виета.

    Любое квадратное уравнение можно привести к равносильному ему приведённому квадратному уравнению, разделив обе части уравнения на первый коэффициент. Тогда при наличии действительных корней у этого уравнения и согласно теореме Виета, получим вышеприведённые равенства. Это следствие из теоремы Виета – обобщённая теорема Виета.

    Используем теорему Виета для нахождения произведения и суммы корней уравнения 2x 2 + 9x + 7 = 0.

    D = b 2 – 4ac = 9 2 – 4 • 2 • 7 = 25 > 0, значит, уравнение имеет 2 корня. Эти же корни имеет приведённое квадратное уравнение .

    По теореме Виета

    На практике чаще всего используется теорема, обратная теореме Виета:

    тогда y и z – корни уравнения x 2 + px + q = 0.

    Запишем уравнение x 2 + px + q = 0 в виде x 2 – (y + z)x + yz = 0.

    Проверим, что у является корнем уравнения. Подставим его вместо х:
    y 2 – (y + z)y + yz = 0.

    Получим 0 = 0, значит, y – корень уравнения.

    Аналогично можно проверить, что и z является корнем уравнения.

    С помощью теоремы, обратной теореме Виета, можно проверять, правильно ли найдены корни квадратного уравнения.

    Значит, по теореме, обратной теореме Виета, числа 2 и 3 являются корнями данного уравнения.

    С помощью теоремы, обратной теореме Виета, также можно подбором находить корни приведённого квадратного уравнения.

    x 2 + 13x + 40 = 0
    D = 13 2 – 4 • 1 • 40 = 169 – 160 = 9 > 0, значит, уравнение имеет два корня.

    Подберём такие x1 и x2, чтобы

    Таким образом, по теореме, обратной теореме Виета, получим корни данного уравнения x1 = –5; x2 = –8.

    Алгебра. 8 класс: учеб. для общеобразоват. организаций / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. – 6-е изд. – М.: Просвещение, 2017.

    Видео:Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать

    Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | Математика

    Теорема Виета

    Видео:Как решать квадратные уравнения без дискриминантаСкачать

    Как решать квадратные уравнения без дискриминанта

    Что называют теоремой?

    Если человек обнаружил в математике какую-нибудь закономерность, позволяющую быстро решить ту или иную задачу, то ему не следует говорить о том, что он сделал открытие. Потому что может случиться так, что эта закономерность работает только для определённых случаев, а для других не работает или вовсе решает задачу неправильно.

    Чтобы поделиться своим открытием с другими людьми, найденную закономерность следует сформулировать в виде утверждения, а затем доказать это утверждение, приводя неоспоримые факты.

    Сформулированное утверждение называют теоремой. А доказательство теоремы состоит из фактов, логических рассуждений и вычислений, которые не оспариваются.

    Например, теоремой можно назвать следующее утверждение:

    «Если числитель и знаменатель обыкновенной дроби умнóжить на какое-нибудь число, то значение данной дроби не измéнится».

    А затем привести такое доказательство:

    Пусть, имеется дробь Алгебра 8 класс решить уравнение по теореме виета. Умнóжим числитель и знаменатель этой дроби на число с . Тогда полýчится дробь Алгебра 8 класс решить уравнение по теореме виета. Докáжем, что дроби Алгебра 8 класс решить уравнение по теореме виетаи Алгебра 8 класс решить уравнение по теореме виетаравны. То есть докажем, что равенство Алгебра 8 класс решить уравнение по теореме виетаявляется верным.

    Для доказательства этого равенства воспользуемся основным свойством пропорции:

    Алгебра 8 класс решить уравнение по теореме виета

    От перестановки мест сомножителей произведение не меняется. Поэтому в получившемся равенстве можно упорядочить правую часть по алфавиту:

    Алгебра 8 класс решить уравнение по теореме виета

    Поскольку равенство Алгебра 8 класс решить уравнение по теореме виетаявляется пропорцией, а пропорция это равенство двух отношений, то дроби Алгебра 8 класс решить уравнение по теореме виетаи Алгебра 8 класс решить уравнение по теореме виетаравны. Теорема доказана.

    Видео:Теорема ВиетаСкачать

    Теорема Виета

    Теорема Виета

    Французский математик Франсуа Виет выявил интересную взаимосвязь между коэффициентами приведённого квадратного уравнения и корнями этого же уравнения. Эта взаимосвязь представлена в виде теоремы и формулируется так:

    Сумма корней приведённого квадратного уравнения x 2 + bx + c = 0 равна второму коэффициенту, взятому с противоположным знáком, а произведение корней равно свободному члену.

    То есть, если имеется приведённое квадратное уравнение x 2 + bx + c = 0 , а его корнями являются числа x1 и x2 , то справедливы следующие два равенства:

    Алгебра 8 класс решить уравнение по теореме виета

    Знак системы (фигурная скобка) говорит о том, что значения x1 и x2 удовлетворяют обоим равенствам.

    Покажем теорему Виета на примере приведённого квадратного уравнения x 2 + 4x + 3 = 0 .

    Мы пока не знаем какие корни имеет уравнение x 2 + 4x + 3 = 0 . Но по теореме Виета можно записать, что сумма этих корней равна второму коэффициенту 4 , взятому с противоположным знáком. Если коэффициент 4 взять с противоположным знáком, то получим −4 . Тогда:

    Алгебра 8 класс решить уравнение по теореме виета

    А произведение корней по теореме Виета будет равно свободному члену. В уравнении x 2 + 4x + 3 = 0 свободным членом является 3 . Тогда:

    Алгебра 8 класс решить уравнение по теореме виета

    Теперь проверим действительно ли сумма корней равна −4 , и равно ли произведение 3 . Для этого найдём корни уравнения x 2 + 4x + 3 = 0 . А для удобства воспользуемся формулами для чётного второго коэффициента:

    Алгебра 8 класс решить уравнение по теореме виета

    Корнями уравнения являются числа −1 и −3 . По теореме Виета их сумма должна была равняться второму коэффициенту уравнения x 2 + 4x + 3 = 0 , взятому с противоположным знаком. Действительно, так оно и есть. Вторым коэффициентов в уравнении x 2 + 4x + 3 = 0 является 4 . Если взять его с противоположным знаком и приравнять сумму корней x1 + x2 к этому коэффициенту, то получается верное равенство:

    Алгебра 8 класс решить уравнение по теореме виета

    А произведение корней −1 и −3 по теореме Виета должно было равняться свободному члену уравнения x 2 + 4x + 3 = 0 , то есть числу 3 . Видим, что это условие тоже выполняется:

    Алгебра 8 класс решить уравнение по теореме виета

    Значит выражение Алгебра 8 класс решить уравнение по теореме виетаявляется справедливым.

    Рассмотрим квадратное уравнение x 2 − 8x + 15 = 0 . По теореме Виета сумма корней этого уравнения равна второму коэффициенту, взятому с противоположным знаком. Второй коэффициент равен −8 . Если взять его с противоположным знаком, то получим 8 . Тогда:

    Алгебра 8 класс решить уравнение по теореме виета

    А произведение корней равно свободному члену. В уравнении x 2 − 8x + 15 = 0 свободным членом является 15 . Тогда:

    Алгебра 8 класс решить уравнение по теореме виета

    Теперь проверим действительно ли сумма корней равна 8 , и равно ли произведение 15 . Для этого найдём корни данного уравнения. А для удобства воспользуемся формулами для чётного второго коэффициента. В этот раз пропустим нéкоторые подробные записи:

    Алгебра 8 класс решить уравнение по теореме виета

    Видим, что корнями уравнения x 2 − 8x + 15 = 0 являются числа 5 и 3 . Их сумма равна 8 . То есть сумма корней равна второму коэффициенту уравнения x 2 − 8x + 15 = 0 , взятому с противоположным знаком.

    А произведение чисел 5 и 3 равно 15 . То есть равно свободному члену уравнения x 2 − 8x + 15 = 0 .

    Значит выражение Алгебра 8 класс решить уравнение по теореме виетаявляется справедливым.

    Замечание. Чтобы теорема Виета выполнялась, квадратное уравнение обязательно должно быть приведённым и иметь корни.

    Например, рассмотрим квадратное уравнение x 2 − 2x + 4 = 0 . Напишем сумму и произведение корней этого уравнения:

    Алгебра 8 класс решить уравнение по теореме виета

    Но уравнение x 2 − 2x + 4 = 0 не имеет корней, сумма которых равна 2, а произведение которых равно 4 . Убедиться в этом можно, вычислив дискриминант:

    А значит записывать выражение Алгебра 8 класс решить уравнение по теореме виетане имеет смысла.

    Теорема Виета полезна тем, что позволяет до начала решения узнать знаки корней уравнения.

    Например, запишем для уравнения x 2 − 5x + 6 = 0 сумму и произведение его корней. Сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену:

    Алгебра 8 класс решить уравнение по теореме виета

    Посмотрев на эти два равенства можно сразу понять, что оба корня должны быть положительными. Потому что произведение x1 × x2 = 6 будет выполняться только в двух случаях: если значения x1 и x2 положительны либо они оба отрицательны. Если эти значения будут отрицательными, то не будет выполняться равенство x1 + x2 = 5 , поскольку его правая часть равна положительному числу. А значения x1 и x2 должны удовлетворять как равенству x1 + x2 = 5 , так и равенству x1 × x2 = 6.

    Ещё одна польза от теоремы Виета в том, что корни можно найти методом подбора. В данном примере корни должны быть такими, чтобы они удовлетворяли как равенству x1 + x2 = 5 так и равенству x1 × x2 = 6 . Очевидно, что таковыми являются корни 3 и 2

    Алгебра 8 класс решить уравнение по теореме виета

    Алгебра 8 класс решить уравнение по теореме виета

    Доказательство теоремы Виета

    Пусть дано приведённое квадратное уравнение x 2 + bx + c = 0 . Если его дискриминант больше нуля, то оно имеет два корня, сумма которых равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену:

    Алгебра 8 класс решить уравнение по теореме виета

    Вспомним формулы корней квадратного уравнения:

    Алгебра 8 класс решить уравнение по теореме виета

    Найдём сумму корней x1 и x2 . Для этого подставим в выражение x1 + x2 вместо x1 и x2 соответствующие выражения из правой части формул корней квадратного уравнения. Не забываем, что в приведённом квадратном уравнении x 2 + bx + c = 0 старший коэффициент a равен единице. Тогда в процессе подстановки знаменатель станет равен просто 2

    Алгебра 8 класс решить уравнение по теореме виета

    Запишем правую часть в виде дроби с одним знаменателем:

    Алгебра 8 класс решить уравнение по теореме виета

    Раскроем скобки в числителе и приведём подобные члены:

    Алгебра 8 класс решить уравнение по теореме виета

    Сократим дробь Алгебра 8 класс решить уравнение по теореме виетана 2 , тогда получим −b

    Алгебра 8 класс решить уравнение по теореме виета

    Теперь аналогично докажем, что произведение x1 × x2 равно свободному члену c .

    Подставим вместо x1 и x2 соответствующие выражения из формул корней квадратного уравнения. Не забываем, что коэффициент a всё ещё равен единице:

    Алгебра 8 класс решить уравнение по теореме виета

    Чтобы перемнóжить дроби, нужно перемнóжить их числители и знаменатели:

    Алгебра 8 класс решить уравнение по теореме виета

    В числителе теперь содержится произведение суммы двух выражений и разности этих же выражений. Воспользуемся тождеством (a + b)(a − b) = a 2 − b 2 . Тогда в числителе полýчится Алгебра 8 класс решить уравнение по теореме виетаА знаменатель будет равен 4

    Алгебра 8 класс решить уравнение по теореме виета

    Теперь в числителе выражение (−b) 2 станет равно b 2 , а выражение Алгебра 8 класс решить уравнение по теореме виетастанет равно просто D

    Алгебра 8 класс решить уравнение по теореме виета

    Но D равно b 2 − 4ac . Подстáвим это выражение вместо D , не забывая что a = 1 . То есть вместо b 2 − 4ac надо подставить b 2 − 4c

    Алгебра 8 класс решить уравнение по теореме виета

    В получившемся выражении раскроем скобки в числителе и приведём подобные члены:

    Алгебра 8 класс решить уравнение по теореме виета

    Сократим получившуюся дробь на 4

    Алгебра 8 класс решить уравнение по теореме виета

    Таким образом, сумма корней приведённого квадратного уравнения x 2 + bx + c = 0 равна второму коэффициенту, взятому с противоположным знáком ( x1 + x2 = −b ), а произведение корней равно свободному члену ( x1 × x2 = c ). Теорема доказана.

    Видео:Алгебра 8. Урок 10 - Теорема Виета и её применение в задачахСкачать

    Алгебра 8. Урок 10 - Теорема Виета и её применение в задачах

    Теорема, обратная теореме Виета

    Когда записана сумма и произведение корней приведённого квадратного уравнения, обычно начинается подбор подходящих корней к этому уравнению. В этот момент в работу включается так называемая теорема, обратная теореме Виета. Она формулируется так:

    Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знáком, а произведение чисел x1 и x2 равно свободному члену уравнения x 2 + bx + c = 0, то числа x1 и x2 являются корнями уравнения x 2 + bx + c = 0.

    Обратные теоремы бывают поставлены так, что их утверждением является заключение первой теоремы.

    Так, доказывая теорему Виета мы пришли к заключению, что сумма x1 и x2 равна −b , а произведение x1 и x2 равно c . В обратной же теореме это заключение служит утверждением.

    Ранее мы решили уравнение x 2 − 5x + 6 = 0 и написали для него такую сумму и произведение корней:

    Алгебра 8 класс решить уравнение по теореме виета

    А затем подобрали корни 3 и 2 . По сути мы применили теорему, обратную теореме Виета. Числа 3 и 2 таковы, что их сумма равна второму коэффициенту уравнения x 2 − 5x + 6 = 0 , взятому с противоположным знаком (числу 5 ), а произведение чисел 3 и 2 равно свободному члену (числу 6 ). Значит числа 3 и 2 являются корнями уравнения x 2 − 5x + 6 = 0 .

    Пример 2. Решить квадратное уравнение x 2 − 6x + 8 = 0 по теореме, обратной теореме Виета.

    В данном уравнении a = 1 . Значит квадратное уравнение является приведённым. Его можно решить по теореме, обратной теореме Виета.

    Сначала запишем сумму и произведение корней уравнения. Сумма корней будет равна 6 , поскольку второй коэффициент исходного уравнения равен −6 . А произведение корней будет равно 8

    Алгебра 8 класс решить уравнение по теореме виета

    Теперь имея эти два равенства можно подобрать подходящие корни. Они должны удовлетворять как равенству x1 + x2 = 6 , так и равенству x1 × x2 = 8

    Подбор корней удобнее выполнять с помощью их произведения. Используя равенство x1 × x2 = 8 нужно найти такие x1 и x2 , произведение которых равно 8.

    Число 8 можно получить если перемножить числа 4 и 2 либо 1 и 8.

    4 × 2 = 8
    1 × 8 = 8

    Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли не только равенству x1 × x2 = 8 , но и равенству x1 + x2 = 6 .

    Сразу делаем вывод, что значения 1 и 8 не годятся, поскольку они хоть и удовлетворяют равенству x1 × x2 = 8 , но не удовлетворяют равенству x1 + x2 = 6 .

    Зато значения 4 и 2 подходят как равенству x1 × x2 = 8 , так и равенству x1 + x2 = 6 , поскольку эти значения удовлетворяют обоим равенствам:

    Алгебра 8 класс решить уравнение по теореме виета

    Значит корнями уравнения x 2 − 6x + 8 = 0 являются числа 4 и 2 .

    Алгебра 8 класс решить уравнение по теореме виета

    Обратная теорема, как и любая теорема нуждается в доказательстве. Докажем теорему, обратную теореме Виета. Для удобства корни x1 и x2 обозначим как m и n . Тогда утверждение теоремы, обратной теореме Виета примет следующий вид:

    Если числа m и n таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знáком, а произведение чисел m и n равно свободному члену уравнения x 2 + bx + c = 0, то числа m и n являются корнями уравнения x 2 + bx + c = 0

    Для начала запишем, что сумма m и n равна −b , а произведение mn равно c

    Алгебра 8 класс решить уравнение по теореме виета

    Чтобы доказать, что числа m и n являются корнями уравнения x 2 + bx + c = 0 , нужно поочередно подстáвить буквы m и n в это уравнение вместо x , затем выполнить возможные тождественные преобразования. Если в результате преобразований левая часть станет равна нулю, то это будет означать, что числа m и n являются корнями уравнения x 2 + bx + c = 0 .

    Помимо букв m и n нам нужно знать чему равен параметр b . Выразим его из равенства m + n = −b . Легче всего это сделать, умножив обе части этого равенства на −1

    Алгебра 8 класс решить уравнение по теореме виета

    Теперь всё готово для подстановок. Подстáвим m в уравнение x 2 + bx + c = 0 вместо x , а выражение −m − n подставим вместо b

    Алгебра 8 класс решить уравнение по теореме виета

    Видим, что при x = m получается верное равенство. Значит число m является корнем уравнения x 2 + bx + c = 0 .

    Аналогично докажем, что число n является корнем уравнения x 2 + bx + c = 0 . Подставим вместо x букву n , а вместо c подставим mn , поскольку c = mn .

    Алгебра 8 класс решить уравнение по теореме виета

    Видим, что при x = n тоже получается верное равенство. Значит число n является корнем уравнения.

    Следовательно, числа m и n являются корнями уравнения x 2 + bx + c = 0 .

    Видео:ПРОДВИНУТАЯ ТЕОРЕМА ВИЕТА #математика #егэ #огэ #уравнение #виета #теорема #подготовкакегэ #shortsСкачать

    ПРОДВИНУТАЯ ТЕОРЕМА ВИЕТА #математика #егэ #огэ #уравнение #виета #теорема #подготовкакегэ #shorts

    Примеры решения уравнений по теореме, обратной теореме Виета

    Пример 1. Решить квадратное уравнение x 2 − 4x + 4 = 0 по теореме, обратной теореме Виета.

    Запишем сумму корней x1 и x2 и приравняем её к второму коэффициенту, взятому с противоположным знаком. Также запишем произведение корней x1 и x2 и приравняем его к свободному члену :

    Алгебра 8 класс решить уравнение по теореме виета

    В данном примере очевидно, что корнями являются числа 2 и 2 . Потому что их сумма равна 4 и произведение равно 4

    Алгебра 8 класс решить уравнение по теореме виета

    Значение x1 совпадает с x2 . Это тот случай, когда квадратное уравнение имеет только один корень. Если мы попробуем решить данное уравнение с помощью формул корней квадратного уравнения, то обнаружим что дискриминант равен нулю, и корень вычисляется по формуле Алгебра 8 класс решить уравнение по теореме виета

    Алгебра 8 класс решить уравнение по теореме виета

    Данный пример показывает, что теорема обратная теореме Виета, работает и для уравнений, имеющих только один корень. Признаком того, что квадратное уравнение имеет только один корень является то, что значения x1 и x2 совпадают.

    Пример 2. Решить уравнение x 2 + 3x + 2 = 0 по теореме, обратной теореме Виета.

    Запишем сумму и произведение корней данного уравнения:

    Алгебра 8 класс решить уравнение по теореме виета

    Теперь подберём значения x1 и x2 . Здесь начинается самое интересное. Произведение корней равно 2 . Число 2 можно получить перемножив 1 и 2 . Но сумма корней x1 + x2 равна отрицательному числу −3 . Значит значения 1 и 2 не подходят.

    Сумма бывает отрицательной если оба слагаемых отрицательны либо отрицательным является одно слагаемое, модуль которого больше.

    Если подберём корни с разными знаками, то не будет выполняться равенство x1 × x2 = 2 .

    Если подберем положительные корни, то будет выполняться равенство x1 × x2 = 2 , но не будет выполняться равенство x1 + x2 = −3 .

    Очевидно, что корнями являются два отрицательных числа. Произведение отрицательных чисел есть положительное число. А сумма отрицательных чисел есть отрицательное число.

    Тогда равенствам будут удовлетворять числа −1 и −2 .

    Алгебра 8 класс решить уравнение по теореме виета

    Итак, корнями являются числа −1 и −2

    Алгебра 8 класс решить уравнение по теореме виета

    Пример 3. Решить уравнение x 2 + 16x + 15 = 0 по теореме, обратной теореме Виета.

    Запишем сумму и произведение корней данного уравнения:

    Алгебра 8 класс решить уравнение по теореме виета

    Как и в прошлом примере сумма корней равна отрицательному числу, а произведение корней — положительному числу.

    Произведение бывает положительным если оба сомножителя положительны либо оба сомножителя отрицательны. Первый вариант отпадает сразу, поскольку сумма корней равна отрицательному числу. Тогда получается, что оба корня будут отрицательными. Попробуем подобрать их.

    Число 15 можно получить, если перемножить числа −1 и −15 или (−3) и (−5) . В данном случае подходит первый вариант, поскольку сумма чисел −1 и −15 равна −16 , а их произведение равно 15 . Значит корнями уравнения x 2 + 16x + 15 = 0 являются числа −1 и −15

    Алгебра 8 класс решить уравнение по теореме виета

    Пример 4. Решить уравнение x 2 − 10x − 39 = 0 по теореме, обратной теореме Виета.

    Запишем сумму и произведение корней данного уравнения:

    Алгебра 8 класс решить уравнение по теореме виета

    Произведение корней равно отрицательному числу. Значит один из корней является отрицательным. Число −39 можно получить если перемножить числа −3 и 13 либо −13 и 3 . Из этих комбинаций больше годится комбинация −3 и 13 , поскольку при перемножении этих чисел получается −39 , а при сложении 10

    Алгебра 8 класс решить уравнение по теореме виета

    Значит корнями уравнения x 2 − 10x − 39 = 0 являются числа −3 и 13

    Алгебра 8 класс решить уравнение по теореме виета

    Пример 5. Первый корень уравнения x 2 + bx + 45 = 0 равен 15 . Найти второй корень этого уравнения, а также значение коэффициента b .

    По теореме Виета произведение корней приведённого квадратного уравнения равно свободному члену. В данном случае это произведение равно 45

    При этом один из корней уже известен — это корень 15 .

    Тогда второй корень будет равен 3 , потому что число 45 получается, если 15 умножить на 3

    Этот второй корень также можно было бы получить, выразив из равенства 15 × x2 = 45 переменную x2

    Алгебра 8 класс решить уравнение по теореме виета

    Теперь определим значение коэффициента b . Для этого напишем сумму корней уравнения:

    По теореме Виета сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком. Если сумма корней равна 18, а 18 это положительное число, то в самóм уравнении этот коэффициент будет отрицательным:

    Обычно решение к такой задаче записывают так. Сначала записывают основную теорему Виета в виде суммы и произведения корней:

    Алгебра 8 класс решить уравнение по теореме виета

    Затем в это выражение подставляют имеющиеся известные значения. В нашем случае известно, что первый корень равен 15 , а свободный член уравнения x 2 + bx + 45 = 0 равен 45

    Алгебра 8 класс решить уравнение по теореме виета

    Из этой системы следует найти x2 и b . Выразим эти параметры:

    Алгебра 8 класс решить уравнение по теореме виета

    Из этой системы мы видим, что x2 равно 3. Подставим его в первое равенство:

    Алгебра 8 класс решить уравнение по теореме виета

    Теперь из первого равенства мы видим, что −b равно 18

    Алгебра 8 класс решить уравнение по теореме виета

    Но нас интересует b , а не −b . Следует помнить, что −b это −1b . Чтобы найти b нужно 18 разделить на −1 . Тогда b станет равно −18

    Алгебра 8 класс решить уравнение по теореме виета

    Этот же результат можно получить если в выражении Алгебра 8 класс решить уравнение по теореме виетаумножить первое равенство на −1

    Алгебра 8 класс решить уравнение по теореме виета

    Теперь возвращаемся к исходному уравнению x 2 + bx + 45 = 0 и подставляем найденное значение b

    Алгебра 8 класс решить уравнение по теореме виета

    Выполним умножение −18 на x . Получим −18x

    Алгебра 8 класс решить уравнение по теореме виета

    Алгебра 8 класс решить уравнение по теореме виета

    Пример 6. Используя теорему Виета, написать приведённое квадратное уравнение, корнями которых являются числа 2 и 8 .

    В этом задании корни уже известны. То есть x1 = 2 , x2 = 8 . По ним надо составить квадратное уравнение вида x 2 + bx + c = 0 .

    Запишем сумму и произведение корней:

    Алгебра 8 класс решить уравнение по теореме виета

    По теореме Виета сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком. Если сумма корней 2 и 8 равна 10 , то в самóм уравнении число 10 должно быть с противоположным знаком. Значит b = −10 .

    Произведение корней по теореме Виета равно свободному члену. У нас это произведение равно 16 .

    Значит b = −10 , c = 16 . Отсюда:

    Пример 7. Используя теорему Виета, написать приведённое квадратное уравнение, корнями которых являются числа Алгебра 8 класс решить уравнение по теореме виетаи Алгебра 8 класс решить уравнение по теореме виета.

    Запишем сумму и произведение корней:

    Алгебра 8 класс решить уравнение по теореме виета

    Сумма корней равна 2. Тогда в уравнении второй коэффициент будет равен −2. А произведение корней равно −1. Значит свободный член будет равен −1. Тогда:

    Видео:798 Алгебра 8 класс, разность корней уравнения, теорема Виета примеры, Квадратное уравнение решитеСкачать

    798 Алгебра 8 класс, разность корней уравнения, теорема Виета примеры, Квадратное уравнение решите

    Когда квадратное уравнение неприведённое

    Теорема Виета выполняется только тогда, когда квадратное уравнение является приведённым.

    Если квадратное уравнение не является приведённым, но всё равно возникла необходимость применить теорему Виета, то обе части неприведённого квадратного уравнения следует разделить на коэффициент, который располагается перед x 2 .

    Если к примеру в квадратном уравнении a x 2 + bx + c = 0 коэффициент a не равен единице, то данное уравнение является неприведённым. Чтобы сделать его приведённым, надо разделить обе его части на коэффициент, который располагается перед x 2 , то есть на a

    Алгебра 8 класс решить уравнение по теореме виета

    Получилось уравнение Алгебра 8 класс решить уравнение по теореме виета, которое является приведённым. В нём второй коэффициент равен Алгебра 8 класс решить уравнение по теореме виета, а свободный член равен Алгебра 8 класс решить уравнение по теореме виета. Тогда сумма и произведение корней будут выглядеть так:

    Алгебра 8 класс решить уравнение по теореме виета

    Например, решим квадратное уравнение 4x 2 + 5x + 1 = 0 . Это уравнение не является приведённым. Приведённым оно станет, если разделить обе его части на коэффициент, который располагается перед x 2 , то есть на 4

    Алгебра 8 класс решить уравнение по теореме виета

    Получили приведённое квадратное уравнение. В нём второй коэффициент равен Алгебра 8 класс решить уравнение по теореме виета, а свободный член Алгебра 8 класс решить уравнение по теореме виета. Тогда по теореме Виета имеем:

    Алгебра 8 класс решить уравнение по теореме виета

    Отсюда методом подбора находим корни −1 и

    Алгебра 8 класс решить уравнение по теореме виета

    Возможно этот метод вы редко будете использовать при решении квадратных уравнений. Но знать о нём не помешает.

    Пример 2. Решить квадратное уравнение 3x 2 − 7x + 2 = 0

    Данное уравнение не является приведённым, а значит его пока нельзя решить по теореме, обратной теореме Виета.

    Сделаем данное уравнение приведенным. Разделим обе части на коэффициент, который располагается перед x 2

    Алгебра 8 класс решить уравнение по теореме виета

    Получили уравнение Алгебра 8 класс решить уравнение по теореме виета. Запишем сумму и произведение корней этого уравнения:

    Алгебра 8 класс решить уравнение по теореме виета

    Отсюда методом подбора находим корни 2 и Алгебра 8 класс решить уравнение по теореме виета

    Алгебра 8 класс решить уравнение по теореме виета

    Пример 3. Решить квадратное уравнение 2x 2 − 3x − 2 = 0

    Это неприведённое квадратное уравнение. Чтобы сделать его приведённым, нужно разделить обе его части на 2 . Сделать это можно в уме. Если 2x 2 разделить на 2 , то полýчится x 2

    Алгебра 8 класс решить уравнение по теореме виета

    Далее если −3x разделить на 2 , то полýчится Алгебра 8 класс решить уравнение по теореме виета. Чтобы видеть где коэффициент, а где переменная, такое выражение записывают в виде Алгебра 8 класс решить уравнение по теореме виета

    Алгебра 8 класс решить уравнение по теореме виета

    Далее если −2 разделить на 2 , то полýчится −1

    Алгебра 8 класс решить уравнение по теореме виета

    Прирáвниваем получившееся выражение к нулю:

    Алгебра 8 класс решить уравнение по теореме виета

    Теперь применяем теорему Виета. Сумма корней будет равна второму коэффициенту, взятому с противоположным знáком, а произведение корней свободному члену:

    Алгебра 8 класс решить уравнение по теореме виета

    Отсюда методом подбора находим корни 2 и Алгебра 8 класс решить уравнение по теореме виета

    📸 Видео

    Теорема Виета. Видеоурок 18. Алгебра 8 класс.Скачать

    Теорема Виета. Видеоурок 18. Алгебра 8 класс.

    Теорема Виета. Практическая часть. 1ч. 8 класс.Скачать

    Теорема Виета. Практическая часть. 1ч. 8 класс.

    ТЕОРЕМА ВИЕТА 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

    ТЕОРЕМА ВИЕТА 😉 #егэ #математика #профильныйегэ #shorts #огэ

    Обратная теорема Виета - ЛЕГКО!Скачать

    Обратная теорема Виета - ЛЕГКО!

    Теорема Виета. Проверка корней уравнения по теореме Виета. Алгебра 8 классСкачать

    Теорема Виета. Проверка корней уравнения по теореме Виета. Алгебра 8 класс
    Поделиться или сохранить к себе: