Модификации метода гаусса решения систем линейных алгебраических уравнений

Метод Гаусса

Модификации метода гаусса решения систем линейных алгебраических уравнений

2. Модификации метода Гаусса

3. Метод прогонки

4. Вычисление определителей

5. Вычисление обратных матриц

6. Итерационные методы

Основной целью реферата является изучение и сравнительный анализ численных методов решения систем линейных алгебраических уравнений, вычисления определителей и обратных матриц; реализация этих методов в виде машинных программ на языке высокого уровня и практическое решение задач на ЭВМ.

В общем случае система линейных алгебраических уравнений имеет вид

Модификации метода гаусса решения систем линейных алгебраических уравнений(1)

В матричной форме система (1) представляется как

Модификации метода гаусса решения систем линейных алгебраических уравнений

Чтобы такая система уравнений имела единственное решение, входящие в нее n уравнений должны быть линейно независимыми. Необходимым и достаточным условием этого является неравенство нулю определителя данной системы, т. е. det A ¹ 0. Алгоритмы решения систем уравнений такого типа делятся на прямые и итерационные.

(«1») Данный метод также называется методом последовательного исключения неизвестных. Он относится к группе прямых методов и основан на преобразовании исходной системы к эквивалентной форме с треугольной матрицей коэффициентов.

При использовании метода Гаусса задача решается в два этапа:

Прямой ход заключается в преобразовании системы к треугольному виду.

При обратном ходе производится вычисление значений неизвестных.

Прямой ход метода Гаусса. Для получения расчетных формул прямого хода преобразуем исходную систему (1), заменив элементы bi (Модификации метода гаусса решения систем линейных алгебраических уравнений) на ai, n+1. В результате система (1) будет иметь следующий вид

Модификации метода гаусса решения систем линейных алгебраических уравнений

Прямой ход выполняется за (n-1) шагов, причем на каждом шаге из уравнений с номерами k + 1, k + 2, …, n исключается неизвестное xk.

На первом шаге сначала первое уравнение делится на a11 ¹ 0. Получим

Модификации метода гаусса решения систем линейных алгебраических уравнений(3)

где Модификации метода гаусса решения систем линейных алгебраических уравнений

Затем из каждого оставшегося уравнения вида

Модификации метода гаусса решения систем линейных алгебраических уравнений(Модификации метода гаусса решения систем линейных алгебраических уравнений)

вычитается полученное уравнение (3), умноженное на коэффициент ai1. В итоге, после выполнения первого шага прямого хода система уравнений примет следующий вид

Модификации метода гаусса решения систем линейных алгебраических уравнений(4)

Модификации метода гаусса решения систем линейных алгебраических уравнений

На втором шаге указанные выше действия повторяются над (n — 1) уравнениями системы (4), всеми кроме первого, с целью исключения переменной x2, где

Модификации метода гаусса решения систем линейных алгебраических уравнений

(«2») В итоге получим

Модификации метода гаусса решения систем линейных алгебраических уравнений

Модификации метода гаусса решения систем линейных алгебраических уравнений

Повторяя шаги прямого хода (n — 1) раз, окончательно получим систему уравнений треугольного вида

Модификации метода гаусса решения систем линейных алгебраических уравнений(5)

Модификации метода гаусса решения систем линейных алгебраических уравнений

При программной реализации прямого хода используется расширенная матрица коэффициентов A¢

Модификации метода гаусса решения систем линейных алгебраических уравнений,

для которой элементы имеют следующий смысл

1) Модификации метода гаусса решения систем линейных алгебраических уравнений— начальные значения;

2) Модификации метода гаусса решения систем линейных алгебраических уравнений— промежуточные значения;

3) Модификации метода гаусса решения систем линейных алгебраических уравнений— конечные значения.

Для определения элементов Модификации метода гаусса решения систем линейных алгебраических уравненийматрицы A¢ на некотором k-ом шаге

(Модификации метода гаусса решения систем линейных алгебраических уравнений)

используются следующие расчетные формулы

Модификации метода гаусса решения систем линейных алгебраических уравнений

Обратный ход метода Гаусса. После приведения исходной системы уравнений (1) к треугольному виду (5) вычисляются значения корней по следующим формулам

Модификации метода гаусса решения систем линейных алгебраических уравнений

(«3») Таким образом, расчетные формулы обратного хода имеют вид

Модификации метода гаусса решения систем линейных алгебраических уравнений

Вычислительная сложность метода Гаусса оценивается как O(n3), причем для реализации прямого хода требуется около Модификации метода гаусса решения систем линейных алгебраических уравненийарифметических операций, а для обратного – около n2 операций.

2. Модификации метода Гаусса

Метод Гаусса с выбором главного элемента. Основным ограничением метода Гаусса является предположение о том, что все элементы Модификации метода гаусса решения систем линейных алгебраических уравнений, на которые производится деление на каждом шаге прямого хода, не равны нулю. Эти элементы называются главными элементами и располагаются на главной диагонали матрицы A.

Если на некотором шаге прямого хода главный элемент Модификации метода гаусса решения систем линейных алгебраических уравнений= 0, то дальнейшее решение системы невозможно. Если главный элемент имеет малое значение, близкое к нулю, то возможен сильный рост погрешности из-за резкого возрастания абсолютной величины получаемых в результате деления коэффициентов. В таких ситуациях метод Гаусса становится неустойчивым.

Исключить возникновение подобных случаев позволяет метод Гаусса с выбором главного элемента.

Идея этого метода состоит в следующем. На некотором k-м шаге прямого хода из уравнений исключается не следующая по номеру переменная xk, а такая переменная, коэффициент при которой является наибольшим по абсолютной величине. Этим гарантируется отсутствие деления на нуль и сохранение устойчивости метода.

Если на k-м шаге в качестве главного элемента выбирается Модификации метода гаусса решения систем линейных алгебраических уравнений¹ Модификации метода гаусса решения систем линейных алгебраических уравнений, то в матрице A¢ должны быть переставлены местами строки c номерами k и p и столбцы с номерами k и q.

Перестановка строк не влияет на решение, так как соответствует перестановке местами уравнений в системе, но перестановка столбцов означает изменение нумерации переменных. Поэтому информация обо всех переставляемых столбцах должна сохраняться, чтобы после завершения обратного хода можно было бы восстановить исходную нумерацию переменных.

Существуют две более простые модификации метода Гаусса:

— с выбором главного элемента по столбцу;

— с выбором главного элемента по строке.

В первом случае в качестве главного элемента выбирается наибольший по абсолютной величине элемент k-й строки (среди элементов Модификации метода гаусса решения систем линейных алгебраических уравнений, i = Модификации метода гаусса решения систем линейных алгебраических уравнений). Во втором — наибольший по абсолютной величине элемент k-го столбца (среди элементов Модификации метода гаусса решения систем линейных алгебраических уравнений, i = Модификации метода гаусса решения систем линейных алгебраических уравнений). Наибольшее распространение получила первый подход, поскольку здесь не изменяется нумерация переменных.

Следует заметить, что указанные модификации касаются только прямого хода метода Гаусса. Обратный ход выполняется без изменений, но после получения решения может потребоваться восстановить исходную нумерацию переменных.

LU-разложение. В современном математическом обеспечении ЭВМ метод Гаусса реализуется с использованием LU-разложения, под которым понимают представление матрицы коэффициентов A в виде произведения A = LU двух матриц L и U, где L – нижняя треугольная матрица, U — верхняя треугольная матрица

Модификации метода гаусса решения систем линейных алгебраических уравнений

Если LU-разложение получено, то решение исходной системы уравнений (2) сводится к последовательному решению двух следующих систем уравнений с треугольными матрицами коэффициентов

(«4») линейный алгебраический уравнение численный

где Y = Модификации метода гаусса решения систем линейных алгебраических уравнений— вектор вспомогательных переменных.

Такой подход позволяет многократно решать системы линейных уравнений с разными правыми частями B. При этом наиболее трудоемкая часть (LU-разложение матрицы A) выполняется только один раз. Эта процедура соответствует прямому ходу метода Гаусса и имеет оценку трудоемкости O(n3). Дальнейшее решение систем уравнений (6) и (7) может выполняться многократно (для различных B), причем решение каждой из них соответствует обратному ходу метода Гаусса и имеет оценку вычислительной сложности O(n2).

Для получения LU-разложения можно воспользоваться следующим алгоритмом.

1. Для исходной системы (1) выполнить прямой ход метода Гаусса и получить систему уравнений треугольного вида (5).

2. Определить элементы матрицы U по правилу

uij = Cij (i = Модификации метода гаусса решения систем линейных алгебраических уравнений; j = Модификации метода гаусса решения систем линейных алгебраических уравнений)

3. Вычислить элементы матрицы L по правилам

Модификации метода гаусса решения систем линейных алгебраических уравнений

Расчетные формулы для решения системы (6) имеют следующий вид:

Модификации метода гаусса решения систем линейных алгебраических уравнений

Расчетные формулы для решения системы (7)

Модификации метода гаусса решения систем линейных алгебраических уравнений(i = n — 1, n — 2, …, 1).

3. Метод прогонки

Метод прогонки представляет собой простой и эффективный алгоритм решения систем линейных алгебраических уравнений с трехдиагональными матрицами коэффициентов следующего вида

Модификации метода гаусса решения систем линейных алгебраических уравненийМодификации метода гаусса решения систем линейных алгебраических уравнений(8)

Системы такого вида часто возникают при решении различных инженерных задач, например, при интерполяции функций сплайнами.

Преобразуем первое уравнение системы (8) к виду x1 = a1x2 + b1, где

(«5») a1 = — с1 / b1 и b1 = — d1 / b1. Подставим полученное для x1 выражение во второе уравнение системы (8)

a2(a1x2 + b1) + b2x2 + c2x3 = d2.

Представим это уравнение в виде x2 = a2x3 + b2, где a2 = — с2 / (b2 + a2a1) и b2 = (d2 — a2b1) / (b2 + a2a1). Полученное для x2 выражение подставим в третье уравнение системы (8) и т. д.

На i-м шаге (1 ïakï; k = Модификации метода гаусса решения систем линейных алгебраических уравнений, где a1 = 0; bn = 0. Тогда gi ¹ 0 и ïaiï£

1 для всех i = Модификации метода гаусса решения систем линейных алгебраических уравнений

Заметим, что при всех gi ¹ 0 вычисления по формулам прямой прогонки могут быть доведены до конца (ни один из знаменателей не обратится в нуль). Одновременно все коэффициенты ai, такие, что ïaiï£ 1, обеспечивают устойчивость по входным данным этапа обратной прогонки по формуле (9).

4. Вычисление определителей

Идея последовательного исключения переменных, реализованная в методе Гаусса, может быть использована при вычислении определителей. При этом используются следующие свойства определителей:

1) перестановка двух строк или столбцов определителя не изменяет его абсолютной величины, но меняет знак на противоположный;

2) умножение всех элементов одной строки или одного столбца на любое число равносильно умножению определителя на это число;

3) если к элементам некоторой строки (столбца) определителя прибавить соответствующие элементы другой строки (столбца), умноженные на любой общий множитель, то величина определителя не изменится.

Пусть задан определитель

Модификации метода гаусса решения систем линейных алгебраических уравнений

Выберем главный элемент a11 ¹ 0. Если a11 = 0, то выполним перестановку двух строк или столбцов этого определителя, чтобы получить a11 ¹ 0.

Вынесем главный элемент a11 из первой строки за знак определителя

Модификации метода гаусса решения систем линейных алгебраических уравнений

Используя процедуру прямого хода метода Гаусса, преобразуем полученный определитель таким образом, чтобы в первом столбце под единицей были бы все нули. При этом величина определителя не изменится.

Модификации метода гаусса решения систем линейных алгебраических уравнений

Разложим полученный определитель по элементам первого столбца, что даст понижение его порядка определителя на единицу

Модификации метода гаусса решения систем линейных алгебраических уравнений

Повторим указанную процедуру (n — 1) раз и окончательно получим

Модификации метода гаусса решения систем линейных алгебраических уравнений

Если при вычислении определителя производилась перестановка строк или столбцов (для выбора главного элемента), то

(«7») Модификации метода гаусса решения систем линейных алгебраических уравнений

где s – количество выполненных перестановок.

Таким образом, вычисление определителя detA некоторой матрицы A сводится к выполнению прямого хода метода Гаусса. Абсолютная величина этого определителя равна произведению главных элементов Модификации метода гаусса решения систем линейных алгебраических уравнений, k = Модификации метода гаусса решения систем линейных алгебраических уравнений, используемых на каждом шаге прямого хода. Знак определителя зависит от числа перестановок строк и столбцов, выполненных при выборе главных элементов.

Если такие перестановки не производились, то величина определителя также может быть вычислена как произведение диагональных элементов матрицы L, формируемой в процессе LU-разложения исходной матрицы А

Модификации метода гаусса решения систем линейных алгебраических уравнений

5. Вычисление обратных матриц

Обратную матрицу А-1 имеет любая квадратная матрица А, для которой detA ¹ 0. Пусть дана матрица А = [aij]n´n. Для вычисления элементов обратной матрицы используется соотношение

где E – единичная матрица.

Обозначим обратную матрицу A-1 = X = [xij]n´n. Тогда получим

Будем рассматривать столбцы матрицы X как векторы

Модификации метода гаусса решения систем линейных алгебраических уравненийМодификации метода гаусса решения систем линейных алгебраических уравненийМодификации метода гаусса решения систем линейных алгебраических уравнений

Аналогично выделим столбцы единичной матрицы E

Модификации метода гаусса решения систем линейных алгебраических уравненийМодификации метода гаусса решения систем линейных алгебраических уравнений…; Модификации метода гаусса решения систем линейных алгебраических уравнений

Тогда система линейных уравнений вида

A Модификации метода гаусса решения систем линейных алгебраических уравнений= Модификации метода гаусса решения систем линейных алгебраических уравнений

позволяет определить элементы k-го столбца обратной матрицы X = A-1. Всего потребуется решить n таких систем с одинаковой матрицей A, но разными правыми частями Модификации метода гаусса решения систем линейных алгебраических уравненийдля k = Модификации метода гаусса решения систем линейных алгебраических уравнений. Это можно сделать с использованием LU-разложения матрицы коэффициентов A, либо непосредственно с помощью метода Гаусса.

6. Итерационные методы

При решении систем уравнений высокого порядка Модификации метода гаусса решения систем линейных алгебраических уравненийс разреженными матрицами коэффициентов, которые характерны для большинства задач автоматизации проектирования сложных систем, наиболее эффективно применение итерационных методов. Такие методы (например, последовательных приближений и Зейделя) позволяют получать значения корней системы с заданной точностью в виде последовательности

(«8») Модификации метода гаусса решения систем линейных алгебраических уравнений

некоторых векторов, сходящихся к точному решению X*. Эффективность применения итерационных методов зависит от удачного выбора начального приближения Модификации метода гаусса решения систем линейных алгебраических уравненийи скорости сходимости процесса вычислений.

Итерационные методы используют особенности разреженных матриц коэффициентов, поскольку ненулевые элементы вычисляются по специальным выражениям по мере необходимости. Поэтому для их реализации требуется меньшее количество вычислительных операций (около n2) и соответствующих затрат машинного времени. Важным преимуществом итерационных методов также является несущественное влияние погрешностей вычислений, так как любое ошибочное приближение может рассматриваться как новый начальный вектор.

Метод последовательных приближений Якоби. Пусть дана система линейных уравнений (1), для которой диагональные элементы

Модификации метода гаусса решения систем линейных алгебраических уравнений.

Тогда переменную x1 можно выразить через первое уравнение, Модификации метода гаусса решения систем линейных алгебраических уравнений— через второе уравнение и т. д.

Модификации метода гаусса решения систем линейных алгебраических уравнений(10)

где Модификации метода гаусса решения систем линейных алгебраических уравненийи Модификации метода гаусса решения систем линейных алгебраических уравнений

Система (10) называется системой линейных уравнений, приведенной к нормальному виду. Матричная форма записи такой системы представляется как

Модификации метода гаусса решения систем линейных алгебраических уравнений(11)

Модификации метода гаусса решения систем линейных алгебраических уравнений

При решении системы (11) за нулевое приближение корней может быть принят столбец свободных членов, т. е. Модификации метода гаусса решения систем линейных алгебраических уравнений. Любое k-е приближение ( Модификации метода гаусса решения систем линейных алгебраических уравненийвычисляется по формуле

Модификации метода гаусса решения систем линейных алгебраических уравнений

Если последовательность приближений Модификации метода гаусса решения систем линейных алгебраических уравнений,Модификации метода гаусса решения систем линейных алгебраических уравнений,Модификации метода гаусса решения систем линейных алгебраических уравнений, . Модификации метода гаусса решения систем линейных алгебраических уравнений, . имеет предел Модификации метода гаусса решения систем линейных алгебраических уравнений, то этот предел является точным решением Модификации метода гаусса решения систем линейных алгебраических уравненийсистемы уравнений (2). Итерационная формула, которая может использоваться при программировании метода Якоби, представляется в обозначениях исходной системы (1) следующим образом

Модификации метода гаусса решения систем линейных алгебраических уравнений

Вычисления продолжаются до тех пор, пока значения Модификации метода гаусса решения систем линейных алгебраических уравненийне станут достаточно близкими к Модификации метода гаусса решения систем линейных алгебраических уравненийдля всех Модификации метода гаусса решения систем линейных алгебраических уравненийФормальное условие прекращения итерационного процесса записывается как

Модификации метода гаусса решения систем линейных алгебраических уравнений(12)

где e — некоторое заданное положительное число, характеризующее точность (погрешность) определения корней системы уравнений.

Итерационный метод Зейделя. Метод Зейделя представляет собой модификацию метода последовательных приближений. При определении значения переменной Модификации метода гаусса решения систем линейных алгебраических уравненийна некоторой (k+1)-й итерации используются уже вычисленные (k+1)-е приближения неизвестных Модификации метода гаусса решения систем линейных алгебраических уравнений, Модификации метода гаусса решения систем линейных алгебраических уравнений, . Модификации метода гаусса решения систем линейных алгебраических уравнений, а также значения Модификации метода гаусса решения систем линейных алгебраических уравненийполученные на предыдущей k-й итерации.

(«9») Пусть дана линейная система уравнений (10). Выбранные начальные приближения корней Модификации метода гаусса решения систем линейных алгебраических уравненийподставляются в первое уравнение

Модификации метода гаусса решения систем линейных алгебраических уравнений

Для определения Модификации метода гаусса решения систем линейных алгебраических уравненийполученное значение Модификации метода гаусса решения систем линейных алгебраических уравненийсразу же подставляется во второе уравнение системы

Модификации метода гаусса решения систем линейных алгебраических уравнений

Аналогично определяются приближения корней Модификации метода гаусса решения систем линейных алгебраических уравнений. Значение Модификации метода гаусса решения систем линейных алгебраических уравненийвычисляется с использованием первых приближений всех переменных Модификации метода гаусса решения систем линейных алгебраических уравненийкак

Модификации метода гаусса решения систем линейных алгебраических уравнений

В общем случае получение значений неизвестных Модификации метода гаусса решения систем линейных алгебраических уравненийпо методу Зейделя на некоторой k-ой итерации производится по следующей формуле

Модификации метода гаусса решения систем линейных алгебраических уравнений

При использовании обозначений исходной системы уравнений (1) итерационная формула обычно записывается как

Модификации метода гаусса решения систем линейных алгебраических уравнений

Условие завершения итерационного процесса по методу Зейделя также формулируется в виде соотношения (12). При этом, как правило, процесс сходится к единственному решению быстрее, чем при использовании метода последовательных приближений Якоби.

Условия сходимости итерационных процессов. Пусть дана приведенная к нормальному виду система (11) линейных уравнений. Итерационные процессы последовательных приближений и Зейделя для системы (11) сходятся к единственному решению независимо от выбора начального приближения, если выполняется хотя бы одно из следующих условий

Модификации метода гаусса решения систем линейных алгебраических уравнений

Приведенные соотношения означают, что сумма модулей элементов любой строки или любого столбца матрицы a должна быть меньше единицы.

Таким образом, для сходимости указанных итерационных процессов достаточно, чтобы значения элементов aij матрицы a при i ¹ j были небольшими по абсолютной величине. Можно показать, что для линейной системы вида (2) итерационные процессы последовательных приближений и Зейделя сходятся к точному решению X*, если для всех уравнений системы модули диагональных коэффициентов удовлетворяют условиям

Модификации метода гаусса решения систем линейных алгебраических уравнений

и по крайней мере для одного из уравнений выполняется соотношение

Модификации метода гаусса решения систем линейных алгебраических уравнений

Линейную систему (2) можно заменить такой эквивалентной системой нормального вида (11), которая удовлетворяет условиям сходимости итерационных процессов. Для этого используются следующие элементарные преобразования:

перестановка двух строк или столбцов; («10») умножение всех элементов какой-либо строки на одно и то же число, отличное от нуля; сложение элементов какой-либо строки с соответствующими элементами другой строки, умноженными на одно и то же число.

В качестве примера рассмотрим метод [1] приведения линейной системы к виду, удобному для итераций. Система уравнений AX = B умножается на матрицу D = A-1 — D, где D = [dij] — матрица с малыми по модулю элементами. В результате получается эквивалентная система уравнений

или в нормальном виде

где a = D A и b = D B. Если значения êdij ê достаточно малы, то очевидно, что полученная система вида (9) удовлетворяет условиям сходимости, поскольку умножение на матрицу D эквивалентно совокупности элементарных преобразований над уравнениями системы.

Проблема повышения качества вычислений, как несоответствие между желаемым и действительным, существует и будет существовать в дальнейшем. Ее решению будет содействовать развитие информационных технологий, которое заключается как в совершенствовании методов организации информационных процессов, так и их реализации с помощью конкретных инструментов – сред и языков программирования.

Бронштейн, по математике для инженеров и учащихся втузов [Текст] , . – М.: Наука, 2007. – 708 с. Васильев, методы решения экстремальных задач. [Текст] – М.: Наука, 2002. C. 415. Симанков, функционального программирования [Текст] , , . – Краснодар: КубГТУ, 2002. – 160 с. Калиткин, методы. [Электронный ресурс] . – М.: Питер, 2001. С. 504. Кнут, программирования. Основные алгоритмы [Текст] . – М.: Вильямс, 2007. Т.1.– 712 с.

Видео:Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

Модификации метода Гаусса

2. Модификации метода Гаусса

Метод Гаусса с выбором главного элемента. Основным ограничением метода Гаусса является предположение о том, что все элементы Модификации метода гаусса решения систем линейных алгебраических уравнений, на которые производится деление на каждом шаге прямого хода, не равны нулю. Эти элементы называются главными элементами и располагаются на главной диагонали матрицы A.

Если на некотором шаге прямого хода главный элемент Модификации метода гаусса решения систем линейных алгебраических уравнений= 0, то дальнейшее решение системы невозможно. Если главный элемент имеет малое значение, близкое к нулю, то возможен сильный рост погрешности из-за резкого возрастания абсолютной величины получаемых в результате деления коэффициентов. В таких ситуациях метод Гаусса становится неустойчивым.

Исключить возникновение подобных случаев позволяет метод Гаусса с выбором главного элемента.

Идея этого метода состоит в следующем. На некотором k-м шаге прямого хода из уравнений исключается не следующая по номеру переменная xk, а такая переменная, коэффициент при которой является наибольшим по абсолютной величине. Этим гарантируется отсутствие деления на нуль и сохранение устойчивости метода.

Если на k-м шаге в качестве главного элемента выбирается Модификации метода гаусса решения систем линейных алгебраических уравнений¹ Модификации метода гаусса решения систем линейных алгебраических уравнений, то в матрице A¢ должны быть переставлены местами строки c номерами k и p и столбцы с номерами k и q.

Перестановка строк не влияет на решение, так как соответствует перестановке местами уравнений в системе, но перестановка столбцов означает изменение нумерации переменных. Поэтому информация обо всех переставляемых столбцах должна сохраняться, чтобы после завершения обратного хода можно было бы восстановить исходную нумерацию переменных.

Существуют две более простые модификации метода Гаусса:

— с выбором главного элемента по столбцу;

— с выбором главного элемента по строке.

В первом случае в качестве главного элемента выбирается наибольший по абсолютной величине элемент k-й строки (среди элементов Модификации метода гаусса решения систем линейных алгебраических уравнений, i = Модификации метода гаусса решения систем линейных алгебраических уравнений). Во втором — наибольший по абсолютной величине элемент k-го столбца (среди элементов Модификации метода гаусса решения систем линейных алгебраических уравнений, i = Модификации метода гаусса решения систем линейных алгебраических уравнений). Наибольшее распространение получила первый подход, поскольку здесь не изменяется нумерация переменных.

Следует заметить, что указанные модификации касаются только прямого хода метода Гаусса. Обратный ход выполняется без изменений, но после получения решения может потребоваться восстановить исходную нумерацию переменных.

LU-разложение. В современном математическом обеспечении ЭВМ метод Гаусса реализуется с использованием LU-разложения, под которым понимают представление матрицы коэффициентов A в виде произведения A = LU двух матриц L и U, где L – нижняя треугольная матрица, U — верхняя треугольная матрица

Модификации метода гаусса решения систем линейных алгебраических уравнений

Если LU-разложение получено, то решение исходной системы уравнений (2) сводится к последовательному решению двух следующих систем уравнений с треугольными матрицами коэффициентов

линейный алгебраический уравнение численный

где Y = Модификации метода гаусса решения систем линейных алгебраических уравнений— вектор вспомогательных переменных.

Такой подход позволяет многократно решать системы линейных уравнений с разными правыми частями B. При этом наиболее трудоемкая часть (LU-разложение матрицы A) выполняется только один раз. Эта процедура соответствует прямому ходу метода Гаусса и имеет оценку трудоемкости O(n 3 ). Дальнейшее решение систем уравнений (6) и (7) может выполняться многократно (для различных B), причем решение каждой из них соответствует обратному ходу метода Гаусса и имеет оценку вычислительной сложности O(n 2 ).

Для получения LU-разложения можно воспользоваться следующим алгоритмом.

1. Для исходной системы (1) выполнить прямой ход метода Гаусса и получить систему уравнений треугольного вида (5).

2. Определить элементы матрицы U по правилу

uij = Cij (i = Модификации метода гаусса решения систем линейных алгебраических уравнений; j = Модификации метода гаусса решения систем линейных алгебраических уравнений)

3. Вычислить элементы матрицы L по правилам

Модификации метода гаусса решения систем линейных алгебраических уравнений

Расчетные формулы для решения системы (6) имеют следующий вид:

Модификации метода гаусса решения систем линейных алгебраических уравнений

Расчетные формулы для решения системы (7)

Модификации метода гаусса решения систем линейных алгебраических уравнений(i = n — 1, n — 2, …, 1).

Видео:Математика без Ху!ни. Метод Гаусса.Скачать

Математика без Ху!ни. Метод Гаусса.

Метода Гаусса: примеры решения СЛАУ

В данной статье мы:

  • дадим определение методу Гаусса,
  • разберем алгоритм действий при решении линейных уравнений, где количество уравнений совпадает c количеством неизвестных переменных, а определитель не равен нулю;
  • разберем алгоритм действий при решении СЛАУ с прямоугольной или вырожденной матрицей.

Видео:12. Решение систем линейных уравнений методом ГауссаСкачать

12. Решение систем линейных уравнений методом Гаусса

Метод Гаусса — что это такое?

Метод Гаусса — это метод, который применяется при решении систем линейных алгебраических уравнений и имеет следующие преимущества:

  • отсутствует необходимость проверять систему уравнений на совместность;
  • есть возможность решать системы уравнений, где:
  • количество определителей совпадает с количеством неизвестных переменных;
  • количество определителей не совпадает с количеством неизвестных переменных;
  • определитель равен нулю.
  • результат выдается при сравнительно небольшом количестве вычислительных операций.

Видео:Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.Скачать

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.

Основные определения и обозначения

Есть система из р линейных уравнений с n неизвестными ( p может быть равно n ):

a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 ⋯ a p 1 x 1 + a p 2 x 2 + . . . + a p n x n = b p ,

где x 1 , x 2 , . . . . , x n — неизвестные переменные, a i j , i = 1 , 2 . . . , p , j = 1 , 2 . . . , n — числа (действительные или комплексные), b 1 , b 2 , . . . , b n — свободные члены.

Если b 1 = b 2 = . . . = b n = 0 , то такую систему линейных уравнений называют однородной, если наоборот — неоднородной.

Решение СЛАУ — совокупность значения неизвестных переменных x 1 = a 1 , x 2 = a 2 , . . . , x n = a n , при которых все уравнения системы становятся тождественными друг другу.

Совместная СЛАУ — система, для которой существует хотя бы один вариант решения. В противном случае она называется несовместной.

Определенная СЛАУ — это такая система, которая имеет единственное решение. В случае, если решений больше одного, то такая система будет называться неопределенной.

Координатный вид записи:

a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 ⋯ a p 1 x 1 + a p 2 x 2 + . . . + a p n x n = b p

Матричный вид записи: A X = B , где

A = a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋯ ⋯ ⋯ ⋯ a p 1 a p 2 ⋯ a p n — основная матрица СЛАУ;

X = x 1 x 2 ⋮ x n — матрица-столбец неизвестных переменных;

B = b 1 b 2 ⋮ b n — матрица свободных членов.

Расширенная матрица — матрица, которая получается при добавлении в качестве ( n + 1 ) столбца матрицу-столбец свободных членов и имеет обозначение Т .

T = a 11 a 12 ⋮ a 1 n b 1 a 21 a 22 ⋮ a 2 n b 2 ⋮ ⋮ ⋮ ⋮ ⋮ a p 1 a p 2 ⋮ a p n b n

Вырожденная квадратная матрица А — матрица, определитель которой равняется нулю. Если определитель не равен нулю, то такая матрица, а потом называется невырожденной.

Видео:Метод Гаусса решения систем линейных уравненийСкачать

Метод Гаусса решения систем линейных уравнений

Описание алгоритма использования метода Гаусса для решения СЛАУ с равным количеством уравнений и неизвестных (обратный и прямой ход метода Гаусса)

Для начала разберемся с определениями прямого и обратного ходов метода Гаусса.

Прямой ход Гаусса — процесс последовательного исключения неизвестных.

Обратный ход Гаусса — процесс последовательного нахождения неизвестных от последнего уравнения к первому.

Алгоритм метода Гаусса:

Решаем систему из n линейных уравнений с n неизвестными переменными:

a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + a 23 x 3 + . . . + a 2 n x n = b 2 a 31 x 1 + a 32 x 2 + a 33 x 3 + . . . + a 3 n x n = b 3 ⋯ a n 1 x 1 + a n 2 x 2 + a n 3 x 3 + . . . + a n n x n = b n

Определитель матрицы не равен нулю.

  1. a 11 не равен нулю — всегда можно добиться этого перестановкой уравнений системы;
  2. исключаем переменную x 1 из всех уравнений систему, начиная со второго;
  3. прибавим ко второму уравнению системы первое, которое умножено на — a 21 a 11 , прибавим к третьему уравнению первое умноженное на — a 21 a 11 и т.д.

После проведенных действий матрица примет вид:

a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a ( 1 ) 22 x 2 + a ( 1 ) 23 x 3 + . . . + a ( 1 ) 2 n x n = b ( 1 ) 2 a ( 1 ) 32 x 2 + a ( 1 ) 33 x 3 + . . . + a ( 1 ) 3 n x n = b ( 1 ) 3 ⋯ a ( 1 ) n 2 x 2 + a ( 1 ) n 3 x 3 + . . . + a ( 1 ) n n x n = b ( 1 ) n ,

где a i j ( 1 ) = a i j + a 1 j ( — a i 1 a 11 ) , i = 2 , 3 , . . . , n , j = 2 , 3 , . . . , n , b i ( 1 ) = b i + b 1 ( — a i 1 a 11 ) , i = 2 , 3 , . . . , n .

Далее производим аналогичные действия с выделенной частью системы:

a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a ( 1 ) 22 x 2 + a ( 1 ) 23 x 3 + . . . + a ( 1 ) 2 n x n = b ( 1 ) 2 a ( 1 ) 32 x 2 + a ( 1 ) 33 x 3 + . . . + a ( 1 ) 3 n x n = b ( 1 ) 3 ⋯ a ( 1 ) n 2 x 2 + a ( 1 ) n 3 x 3 + . . . + a ( 1 ) n n x n = b ( 1 ) n

Считается, что a 22 ( 1 ) не равна нулю. Таким образом, приступаем к исключению неизвестной переменной x 2 из всех уравнений, начиная с третьего:

  • к третьему уравнению систему прибавляем второе, которое умножено на — a ( 1 ) 42 a ( 1 ) 22 ;
  • к четвертому прибавляем второе, которое умножено на — a ( 1 ) 42 a ( 1 ) 22 и т.д.

После таких манипуляций СЛАУ имеет следующий вид:

a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a ( 1 ) 22 x 2 + a ( 1 ) 23 x 3 + . . . + a ( 1 ) 2 n x n = b ( 1 ) 2 a ( 2 ) 33 x 3 + . . . + a ( 2 ) 3 n x n = b ( 2 ) 3 ⋯ a ( 2 ) n 3 x 3 + . . . + a ( 2 ) n n x n = b ( 2 ) n ,

где a i j ( 2 ) = a ( 1 ) i j + a 2 j ( — a ( 1 ) i 2 a ( 1 ) 22 ) , i = 3 , 4 , . . . , n , j = 3 , 4 , . . . , n , b i ( 2 ) = b ( 1 ) i + b ( 1 ) 2 ( — a ( 1 ) i 2 a ( 1 ) 22 ) , i = 3 , 4 , . . . , n . .

Таким образом, переменная x 2 исключена из всех уравнений, начиная с третьего.

Далее приступаем к исключению неизвестной x 3 , действуя по аналоги с предыдущим образцом:

a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a ( 1 ) 22 x 2 + a ( 1 ) 23 x 3 + . . . + a ( 1 ) 2 n x n = b ( 1 ) 2 a ( 2 ) 33 x 3 + . . . + a ( 2 ) 3 n x n = b ( 2 ) 3 ⋯ a ( n — 1 ) n n x n = b ( n — 1 ) n

После того как система приняла такой вид, можно начать обратный ход метода Гаусса:

  • вычисляем x n из последнего уравнения как x n = b n ( n — 1 ) a n n ( n — 1 ) ;
  • с помощью полученного x n находим x n — 1 из предпоследнего уравнения и т.д., находим x 1 из первого уравнения.

Найти решение системы уравнений методом Гаусса:

3 x 1 + 2 x 2 + x 3 + x 4 = — 2 x 1 — x 2 + 4 x 3 — x 4 = — 1 — 2 x 1 — 2 x 2 — 3 x 3 + x 4 = 9 x 1 + 5 x 2 — x 3 + 2 x 4 = 4

Коэффициент a 11 отличен от нуля, поэтому приступаем к прямому ходу решения, т.е. к исключению переменной x 11 из всех уравнений системы, кроме первого. Для того, чтобы это сделать, прибавляем к левой и правой частям 2-го, 3-го и 4-го уравнений левую и правую часть первого, которая умножена на — a 21 a 11 :

— 1 3 , — а 31 а 11 = — — 2 3 = 2 3 и — а 41 а 11 = — 1 3 .

3 x 1 + 2 x 2 + x 3 + x 4 = — 2 x 1 — x 2 + 4 x 3 — x 4 = — 1 — 2 x 1 — 2 x 2 — 3 x 3 + x 4 = 9 x 1 + 5 x 2 — x 3 + 2 x 4 = 4 ⇔

⇔ 3 x 1 + 2 x 2 + x 3 + x 4 = — 2 x 1 — x 2 + 4 x 3 — x 4 + ( — 1 3 ) ( 3 x 1 + 2 x 2 + x 3 + x 4 ) = — 1 + ( — 1 3 ) ( — 2 ) — 2 x 1 — 2 x 2 — 3 x 3 + x 4 + 2 3 ( 3 x 1 + 2 x 2 + x 3 + x 4 ) = 9 + 2 3 ( — 2 ) x 1 + 5 x 2 — x 3 + 2 x 4 + ( — 1 3 ) ( 3 x 1 + 2 x 2 + x 3 + x 4 ) = 4 + ( — 1 3 ) ( — 2 ) ⇔

⇔ 3 x 1 + 2 x 2 + x 3 + x 4 = — 2 — 5 3 x 2 + 11 3 x 3 — 4 3 x 4 = — 1 3 — 2 3 x 2 — 7 3 x 3 + 5 3 x 4 = 23 3 13 3 x 2 — 4 3 x 3 + 5 3 x 4 = 14 3

Мы исключили неизвестную переменную x 1 , теперь приступаем к исключению переменной x 2 :

— a 32 ( 1 ) a 22 ( 1 ) = — — 2 3 — 5 3 = — 2 5 и а 42 ( 1 ) а 22 ( 1 ) = — 13 3 — 5 3 = 13 5 :

3 x 1 + 2 x 2 + x 3 + x 4 = — 2 — 5 3 x 2 + 11 3 x 3 — 4 3 x 4 = — 1 3 — 2 3 x 2 — 7 3 x 3 + 5 3 x 4 = 23 3 13 3 x 2 — 4 3 x 3 + 5 3 x 4 = 14 3 ⇔

⇔ 3 x 1 + 2 x 2 + x 3 + x 4 = — 2 — 5 3 x 2 + 11 3 x 3 — 4 3 x 4 = — 1 3 — 2 3 x 2 — 7 3 x 3 + 5 3 x 4 + ( — 2 5 ) ( — 5 3 x 2 + 11 3 x 3 — 4 3 x 4 ) = 23 3 + ( — 2 5 ) ( — 1 3 ) 13 3 x 2 — 4 3 x 3 + 5 3 x 4 + 13 5 ( — 5 3 x 2 + 11 3 x 3 — 4 3 x 4 ) = 14 3 + 13 5 ( — 1 3 ) ⇔

⇔ 3 x 1 + 2 x 2 + x 3 + x 4 = — 2 — 5 3 x 2 + 11 3 x 3 — 4 3 x 4 = — 1 3 — 19 5 x 3 + 11 5 x 4 = 39 5 41 5 x 3 — 9 5 x 4 = 19 5

Для того чтобы завершить прямой ход метода Гаусса, необходимо исключить x 3 из последнего уравнения системы — а 43 ( 2 ) а 33 ( 2 ) = — 41 5 — 19 5 = 41 19 :

3 x 1 + 2 x 2 + x 3 + x 4 = — 2 — 5 3 x 2 + 11 3 x 3 — 4 3 x 4 = — 1 3 — 19 5 x 3 + 11 5 x 4 = 39 5 41 5 x 3 — 9 5 x 4 = 19 5 ⇔

3 x 1 + 2 x 2 + x 3 + x 4 = — 2 — 5 3 x 2 + 11 3 x 3 — 4 3 x 4 = — 1 3 — 19 5 x 3 + 11 5 x 4 = 39 5 41 5 x 3 — 9 5 x 4 + 41 19 ( — 19 5 x 3 + 11 5 x 4 ) = 19 5 + 41 19 39 5 ⇔

⇔ 3 x 1 + 2 x 2 + x 3 + x 4 = — 2 — 5 3 x 2 + 11 3 x 3 — 4 3 x 4 = — 1 3 — 19 5 x 3 + 11 5 x 4 = 39 5 56 19 x 4 = 392 19

Обратный ход метода Гаусса:

  • из последнего уравнения имеем: x 4 = 392 19 56 19 = 7 ;
  • из 3-го уравнения получаем: x 3 = — 5 19 ( 39 5 — 11 5 x 4 ) = — 5 19 ( 39 5 — 11 5 × 7 ) = 38 19 = 2 ;
  • из 2-го: x 2 = — 3 5 ( — 1 3 — 11 3 x 4 + 4 3 x 4 ) = — 3 5 ( — 1 3 — 11 3 × 2 + 4 3 × 7 ) = — 1 ;
  • из 1-го: x 1 = 1 3 ( — 2 — 2 x 2 — x 3 — x 4 ) = — 2 — 2 × ( — 1 ) — 2 — 7 3 = — 9 3 = — 3 .

Ответ: x 1 = — 3 ; x 2 = — 1 ; x 3 = 2 ; x 4 = 7

Найти решение этого же примера методом Гаусса в матричной форме записи:

3 x 1 + 2 x 2 + x 3 + x 4 = — 2 x 1 — x 2 + 4 x 3 — x 4 = — 1 — 2 x 1 — 2 x 2 — 3 x 3 + x 4 = 9 x 1 + 5 x 2 — x 3 + 2 x 4 = 4

Расширенная матрица системы представлена в виде:

x 1 x 2 x 3 x 4 3 2 1 1 1 — 1 4 — 1 — 2 — 2 — 3 1 1 5 — 1 2 — 2 — 1 9 4

Прямой ход метода Гаусса в данном случае предполагает приведение расширенной матрицы к трапецеидальному виду при помощи элементарных преобразований. Этот процесс очень поход на процесс исключения неизвестных переменных в координатном виде.

Преобразование матрицы начинается с превращения всех элементов нулевые. Для этого к элементам 2-ой, 3-ей и 4-ой строк прибавляем соответствующие элементы 1-ой строки, которые умножены на — a 21 a 11 = — 1 3 , — a 31 a 11 = — — 2 3 = 2 3 и н а — а 41 а 11 = — 1 3 .

Дальнейшие преобразования происходит по такой схеме: все элементы во 2-ом столбце, начиная с 3-ей строки, становятся нулевыми. Такой процесс соответствует процессу исключения переменной . Для того, чтобы выполнить этой действие, необходимо к элементам 3-ей и 4-ой строк прибавить соответствующие элементы 1-ой строки матрицы, которая умножена на — а 32 ( 1 ) а 22 ( 1 ) = — 2 3 — 5 3 = — 2 5 и — а 42 ( 1 ) а 22 ( 1 ) = — 13 3 — 5 3 = 13 5 :

x 1 x 2 x 3 x 4 3 2 1 1 | — 2 0 — 5 3 11 3 — 4 3 | — 1 3 0 — 2 3 — 7 3 5 3 | 23 3 0 13 3 — 4 3 5 3 | 14 3

x 1 x 2 x 3 x 4

3 2 1 1 | — 2 0 — 5 3 11 3 — 4 3 | — 1 3 0 — 2 3 + ( — 2 5 ) ( — 5 3 ) — 7 3 + ( — 2 5 ) 11 3 5 3 + ( — 2 5 ) ( — 4 3 ) | 23 3 + ( — 2 5 ) ( — 1 3 ) 0 13 3 + 13 5 ( — 5 3 ) — 4 3 + 13 5 × 11 3 5 3 + 13 5 ( — 4 3 ) | 14 3 + 13 5 ( — 1 3 )

x 1 x 2 x 3 x 4

3 2 1 1 | — 2 0 — 5 3 11 3 — 4 3 | — 1 3 0 0 — 19 5 11 5 | 39 5 0 0 41 5 — 9 5 | 19 5

Теперь исключаем переменную x 3 из последнего уравнения — прибавляем к элементам последней строки матрицы соответствующие элементы последней строки, которая умножена на а 43 ( 2 ) а 33 ( 2 ) = — 41 5 — 19 5 = 41 19 .

x 1 x 2 x 3 x 4 3 2 1 1 | — 2 0 — 5 3 11 3 — 4 3 | — 1 3 0 0 — 19 5 11 5 | 39 5 0 0 41 5 — 9 5 | 19 5

x 1 x 2 x 3 x 4

3 2 1 1 | — 2 0 — 5 3 11 3 — 4 3 | — 1 3 0 0 — 19 5 11 5 | 39 5 0 0 41 5 + 41 19 ( — 19 5 ) — 9 5 + 41 19 × 11 5 | 19 5 + 41 19 × 39 5

x 1 x 2 x 3 x 4

3 2 1 1 | — 2 0 — 5 3 11 3 — 4 3 | — 1 3 0 0 — 19 5 11 5 | 39 5 0 0 0 56 19 | 392 19

Теперь применим обратных ход метода. В матричной форме записи такое преобразование матрицы, чтобы матрица, которая отмечена цветом на изображении:

x 1 x 2 x 3 x 4 3 2 1 1 | — 2 0 — 5 3 11 3 — 4 3 | — 1 3 0 0 — 19 5 11 5 | 39 5 0 0 0 56 19 | 392 19

стала диагональной, т.е. приняла следующий вид:

x 1 x 2 x 3 x 4 3 0 0 0 | а 1 0 — 5 3 0 0 | а 2 0 0 — 19 5 0 | а 3 0 0 0 56 19 | 392 19 , где а 1 , а 2 , а 3 — некоторые числа.

Такие преобразования выступают аналогом прямому ходу, только преобразования выполняются не от 1-ой строки уравнения, а от последней. Прибавляем к элементам 3-ей, 2-ой и 1-ой строк соответствующие элементы последней строки, которая умножена на

— 11 5 56 19 = — 209 280 , н а — — 4 3 56 19 = 19 42 и н а — 1 56 19 = 19 56 .

x 1 x 2 x 3 x 4 3 2 1 1 | — 2 0 — 5 3 11 3 — 4 3 | — 1 3 0 0 — 19 5 11 5 | 39 5 0 0 0 56 19 | 392 19

x 1 x 2 x 3 x 4

3 2 1 1 + ( — 19 56 ) 56 19 | — 2 + ( — 19 56 ) 392 19 0 — 5 3 11 3 — 4 3 + 19 42 × 56 19 | — 1 3 + 19 42 × 392 19 0 0 — 19 5 11 5 + ( — 209 280 ) 56 19 | 39 5 + ( — 209 280 ) 392 19 0 0 0 56 19 | 392 19

x 1 x 2 x 3 x 4

3 2 1 0 | — 9 0 — 5 3 11 3 0 | 9 0 0 — 19 5 0 | — 38 5 0 0 0 56 19 | 392 19

Далее прибавляем к элементам 2-ой и 1-ой строк соответствующие элементы 3-ей строки, которые умножены на

— 11 3 — 19 5 = 55 57 и н а — 1 — 19 5 = 5 19 .

x 1 x 2 x 3 x 4 3 2 1 0 | — 9 0 — 5 3 11 3 0 | 9 0 0 — 19 5 0 | — 38 5 0 0 0 56 19 | 392 19

x 1 x 2 x 3 x 4

3 2 1 + 5 19 ( — 19 5 ) 0 | — 9 + 5 19 ( — 38 5 ) 0 — 5 3 11 3 + 55 57 ( — 19 5 ) 0 | 9 + 55 57 ( — 38 5 ) 0 0 — 19 5 0 | — 38 5 0 0 0 56 19 | 392 19

x 1 x 2 x 3 x 4

3 2 1 0 | — 11 0 — 5 3 0 0 | 5 3 0 0 — 19 5 0 | — 38 5 0 0 0 56 19 | 392 19

На последнем этапе прибавляем элементы 2-ой строки к соответствующим элементам 1-ой строки, которые умножены на — 2 — 5 3 = 6 5 .

x 1 x 2 x 3 x 4 3 2 1 0 | — 11 0 — 5 3 0 0 | 5 3 0 0 — 19 5 0 | — 38 5 0 0 0 56 19 | 392 19

x 1 x 2 x 3 x 4

3 2 + 6 5 ( — 5 3 ) 0 0 | — 11 + 6 5 × 5 3 ) 0 — 5 3 0 0 | 5 3 0 0 — 19 5 0 | — 38 5 0 0 0 56 19 | 392 19

x 1 x 2 x 3 x 4

3 0 0 0 | — 9 0 — 5 3 0 0 | 5 3 0 0 — 19 5 0 | — 38 5 0 0 0 56 19 | 392 19

Полученная матрица соответствует системе уравнений

3 x 1 = — 9 — 5 3 x 2 = 5 3 — 19 5 x 3 = — 38 5 56 19 x 4 = 392 19 , откуда находим неизвестные переменные.

Ответ: x 1 = — 3 , x 2 = — 1 , x 3 = 2 , x 4 = 7 . ​​​

Видео:Решение системы линейных уравнений методом ГауссаСкачать

Решение системы линейных уравнений методом Гаусса

Описание алгоритма использования метода Гаусса для решения СЛАУ с несовпадающим количеством уравнений и неизвестных, или с вырожденной системой матрицы

Если основная матрица квадратная или прямоугольная, то системы уравнений могут иметь единственное решение, могут не иметь решений, а могут иметь бесконечное множество решений.

Из данного раздела мы узнаем, как с помощью метода Гаусса определить совместность или несовместность СЛАУ, а также, в случае совместности, определить количество решений для системы.

В принципе, метод исключения неизвестных при таких СЛАУ остается таким же, однако есть несколько моментов, на которых необходимо заострить внимание.

На некоторых этапах исключения неизвестных, некоторые уравнения обращаются в тождества 0=0. В таком случае, уравнения можно смело убрать из системы и продолжить прямой ход метода Гаусса.

Если мы исключаем из 2-го и 3-го уравнения x 1 , то ситуация оказывается следующей:

x 1 + 2 x 2 — x 3 + 3 x 4 = 7 2 x 1 + 4 x 2 — 2 x 3 + 6 x 4 = 14 x — x + 3 x + x = — 1 ⇔

x 1 + 2 x 2 — x 3 + 3 x 4 = 7 2 x 1 + 4 x 2 — 2 x 3 + 6 x 4 + ( — 2 ) ( x 1 + 2 x 2 — x 3 + 3 x 4 ) = 14 + ( — 2 ) × 7 x — x + 3 x + x + ( — 1 ) ( x 1 + 2 x 2 — x 3 + 3 x 4 ) = — 1 + ( — 1 ) × 7 ⇔

⇔ x 1 + 2 x 2 — x 3 + 3 x 4 = 7 0 = 0 — 3 x 2 + 4 x 3 — 2 x 4 = — 8

Из этого следует, что 2-ое уравнение можно смело удалять из системы и продолжать решение.

Если мы проводим прямой ход метода Гаусса, то одно или несколько уравнений может принять вид — некоторое число, которое отлично от нуля.

Это свидетельствует о том, что уравнение, обратившееся в равенство 0 = λ , не может обратиться в равенство ни при каких любых значениях переменных. Проще говоря, такая система несовместна (не имеет решения).

  • В случае если при проведении прямого хода метода Гаусса одно или несколько уравнений принимают вид 0 = λ , где λ — некоторое число, которое отлично от нуля, то система несовместна.
  • Если же в конце прямого хода метода Гаусса получается система, число уравнений которой совпадает с количеством неизвестных, то такая система совместна и определена: имеет единственное решение, которое вычисляется обратным ходом метода Гаусса.
  • Если при завершении прямого хода метода Гаусса число уравнений в системе оказывается меньше количества неизвестных, то такая система совместна и имеет бесконечно количество решений, которые вычисляются при обратном ходе метода Гаусса.

🎥 Видео

12. Метод Гаусса решения систем линейных уравнений. Часть 1.Скачать

12. Метод Гаусса решения систем линейных уравнений. Часть 1.

Система линейных уравнений. Общее решение. Метод ГауссаСкачать

Система линейных уравнений.  Общее решение. Метод Гаусса

МЕТОД ГАУССА 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

МЕТОД ГАУССА 😉 #егэ #математика #профильныйегэ #shorts #огэ

Линейная алгебра, 9 урок, Метод ГауссаСкачать

Линейная алгебра, 9 урок, Метод Гаусса

Метод Гаусса для решения систем линейных алгебраических уравненийСкачать

Метод Гаусса для решения систем линейных алгебраических уравнений

Линейная алгебра, Матрицы: Метод Гаусса. Высшая математикаСкачать

Линейная алгебра, Матрицы: Метод Гаусса. Высшая математика

Решение системы уравнений методом Гаусса 4x4Скачать

Решение системы уравнений методом Гаусса 4x4

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

Как решить систему уравнений методом Гаусса? Просто с лидеромСкачать

Как решить систему уравнений методом Гаусса? Просто с лидером

Метод Гаусса (01)Скачать

Метод Гаусса (01)

ФСР системы линейных уравнений. Алгоритм ГауссаСкачать

ФСР системы линейных уравнений. Алгоритм Гаусса

Метод Гаусса и метод Жордана-Гаусса ➜ 2 метода за 7 минутСкачать

Метод Гаусса и метод Жордана-Гаусса ➜ 2 метода за 7 минут

метод Гаусса СИСТЕМА ЛИНЕЙНЫХ УРАВНЕНИЙ решение СЛАУСкачать

метод Гаусса СИСТЕМА ЛИНЕЙНЫХ УРАВНЕНИЙ решение СЛАУ

Решение системы уравнений методом Гаусса. Бесконечное множество решенийСкачать

Решение системы уравнений методом Гаусса. Бесконечное множество решений
Поделиться или сохранить к себе: