Метод якоби для системы нелинейных уравнений

Численные методы решения систем нелинейных уравнений
Содержание
  1. Введение
  2. Возможности решателя scipy.optimize.root для численного решения систем алгебраических нелинейных уравнений
  3. Методы решения систем нелинейных уравнений
  4. Выбор модельной функции
  5. Программа для тестирования на модельной функции c результатами решения системы алгебраических нелинейных уравнений с помощью библиотечной функции optimize.root для разных методов отыскания корней
  6. Программа для тестирования на модельной функции c результатами решения системы алгебраических нелинейных уравнений с помощью программы написанной на Python 3 с учётом соотношений (1)-(8) для отыскания корней по модифицированному методу Ньютона
  7. Итерационные методы решения системы линейных алгебраических уравнений
  8. Общие сведения об итерационных методах или методе простой итерации
  9. Метод Якоби
  10. Метод Зейделя
  11. Метод простой итерации
  12. Системы нелинейных уравнений
  13. 💥 Видео

Введение

Многие прикладные задачи приводят к необходимости нахождения общего решения системы нелинейных уравнений. Общего аналитического решения системы нелинейных уравнений не найдено. Существуют лишь численные методы.

Следует отметить интересный факт о том, что любая система уравнений над действительными числами может быть представлена одним равносильным уравнением, если взять все уравнения в форме Метод якоби для системы нелинейных уравнений, возвести их в квадрат и сложить.

Для численного решения применяются итерационные методы последовательных приближений (простой итерации) и метод Ньютона в различных модификациях. Итерационные процессы естественным образом обобщаются на случай системы нелинейных уравнений вида:

Метод якоби для системы нелинейных уравнений(1)

Обозначим через Метод якоби для системы нелинейных уравненийвектор неизвестных и определим вектор-функцию Метод якоби для системы нелинейных уравненийТогда система (1) записывается в виде уравнения:

Метод якоби для системы нелинейных уравнений(2)

Теперь вернёмся к всеми любимому Python и отметим его первенство среди языков программирования, которые хотят изучать [1].

Метод якоби для системы нелинейных уравнений

Этот факт является дополнительным стимулом рассмотрения числительных методов именно на Python. Однако, среди любителей Python бытует мнение, что специальные библиотечные функции, такие как scipy.optimize.root, spsolve_trianular, newton_krylov, являются самым лучшим выбором для решения задач численными методами.

С этим трудно не согласится хотя бы потому, что в том числе и разнообразие модулей подняло Python на вершину популярности. Однако, существуют случаи, когда даже при поверхностном рассмотрении использование прямых известных методов без применения специальных функций библиотеки SciPy тоже дают неплохие результаты. Иными словами, новое- это хорошо забытое старое.

Так, в публикации [2], на основании проведенных вычислительных экспериментов, доказано, что библиотечная функция newton_krylov, предназначенная для решения больших систем нелинейных уравнений, имеет в два раза меньшее быстродействие, чем алгоритм TSLS+WD
(two-step least squares), реализованный средствами библиотеки NumPy.

Целью настоящей публикации является сравнение по числу итераций, быстродействию, а главное, по результату решения модельной задачи в виде системы из ста нелинейных алгебраических уравнений при помощи библиотечной функции scipy.optimize.root и методом Ньютона, реализованного средствами библиотеки NumPy.

Возможности решателя scipy.optimize.root для численного решения систем алгебраических нелинейных уравнений

Библиотечная функция scipy.optimize.root выбрана в качестве базы сравнения, потому что имеет обширную библиотеку методов, пригодных для сравнительного анализа.

scipy.optimize.root(fun, x0, args=(), method=’hybr’, jac=None, tol=None,callback=None, ptions=None)
fun — Векторная функция для поиска корня.
x0 –Начальные условия поиска корней

method:
hybr -используется модификация Пауэлл гибридный метод;
lm – решает системы нелинейных уравнений методом наименьших квадратов.
Как следует из документации [3] методы broyden1, broyden2, anderson, linearmixing, diagbroyden, excitingmixing, krylov являются точными методами Ньютона. Остальные параметры являются «не обязательными» и с ними можно ознакомится в документации.

Методы решения систем нелинейных уравнений

Приведенный далее материал действительно можно прочитать в литературе, например в [4], но я уважаю своего читателя и для его удобства приведу вывод метода по возможности в сокращенном виде. Те, кто не любит формулы, этот раздел пропускают.

В методе Ньютона новое приближение для решения системы уравнений (2) определяется из решения системы линейных уравнений:

Метод якоби для системы нелинейных уравнений(3)

Определим матрицу Якоби:

Метод якоби для системы нелинейных уравнений(4)

Запишем(3) в виде:

Метод якоби для системы нелинейных уравнений(5)

Многие одношаговые методы для приближенного решения (2) по аналогии с двухслойными итерационными методами для решения систем линейных алгебраических уравнений можно записать в виде:

Метод якоби для системы нелинейных уравнений(6)

где Метод якоби для системы нелинейных уравнений— итерационные параметры, a Метод якоби для системы нелинейных уравнений— квадратная матрица n х n, имеющая обратную.

При использовании записи (6) метод Ньютона (5) соответствует выбору:

Метод якоби для системы нелинейных уравнений

Система линейных уравнений (5) для нахождения нового приближения Метод якоби для системы нелинейных уравненийможет решаться итерационно. В этом случае мы имеем двухступенчатый итерационный процесс с внешними и внутренними итерациями. Например, внешний итерационный процесс может осуществляться по методу Ньютона, а внутренние итерации — на основе итерационного метода Зейделя

При решении систем нелинейных уравнений можно использовать прямые аналоги стандартных итерационных методов, которые применяются для решения систем линейных уравнений. Нелинейный метод Зейделя применительно к решению (2) дает:

Метод якоби для системы нелинейных уравнений(7)

В этом случае каждую компоненту нового приближения из решения нелинейного уравнения, можно получить на основе метода простой итерации и метода Ньютона в различных модификациях. Тем самым снова приходим к двухступенчатому итерационному методу, в котором внешние итерации проводятся в соответствии с методом Зейделя, а внутренние — с методом Ньютона.

Основные вычислительные сложности применения метода Ньютона для приближенного решения систем нелинейных уравнений связаны с необходимостью решения линейной системы уравнений с матрицей Якоби на каждой итерации, причем от итерации к итерации эта матрица меняется. В модифицированном методе Ньютона матрица Якоби обращается только один раз:

Метод якоби для системы нелинейных уравнений(8)

Выбор модельной функции

Такой выбор не является простой задачей, поскольку при увеличении числа уравнений в системе в соответствии с ростом числа переменных результат решения не должен меняться, поскольку в противном случае невозможно отследить правильность решения системы уравнений при сравнении двух методов. Привожу следующее решение для модельной функции:

Функция f создаёт систему из n нелинейных уравнений, решение которой не зависит от числа уравнений и для каждой из n переменных равно единице.

Программа для тестирования на модельной функции c результатами решения системы алгебраических нелинейных уравнений с помощью библиотечной функции optimize.root для разных методов отыскания корней

Только один из методов, приведенных в документации [3] прошёл тестирование по результату решения модельной функции, это метод ‘krylov’.

Решение для n=100:

Solution:
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1.]
Krylov method iteration = 4219
Optimize root time 7.239 seconds:

Вывод: С увеличением числа уравнений вдвое заметно появление ошибок в решении. При дальнейшем увеличении n решение становится не приемлемым, что возможно из-за автоматической адаптации к шагу, эта же причина резкого падения быстродействия. Но это только моё предположение.

Программа для тестирования на модельной функции c результатами решения системы алгебраических нелинейных уравнений с помощью программы написанной на Python 3 с учётом соотношений (1)-(8) для отыскания корней по модифицированному методу Ньютона

Решение для n=100:

Solution:
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1.]
Newton iteration = 13
Newton method time 0.496 seconds

Решение для n=200:

Solution:
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1.]
Newton iteration = 14
Newton method time 1.869 seconds

Чтобы убедиться в том, что программа действительно решает систему, перепишем модельную функцию для ухода от корня со значением 1 в виде:

Получим:
Solution:
[ 0.96472166 0.87777036 0.48175823 -0.26190496 -0.63693762 0.49232062
-1.31649896 0.6865098 0.89609091 0.98509235]
Newton iteration = 16
Newton method time 0.046 seconds

Вывод: Программа работает и при изменении модельной функции.

Теперь вернёмся к начальной модельной функции и проверим более широкий диапазон для n, например в 2 и 500.
n=2
Solution:
[1. 1.]
Newton iteration = 6
Newton method time 0.048 seconds
n=500

Видео:Метод простой итерации Пример РешенияСкачать

Метод простой итерации Пример Решения

Итерационные методы решения системы линейных алгебраических уравнений

В данной статье мы расскажем общие сведения об итерационных методах решения СЛАУ, познакомим с методом Зейделя и Якоби, а также приведем примеры решения систем линейных уравнений при помощи данных методов.

Видео:2.2 Итерационные методы решения СЛАУ (Якоби, Зейделя, релаксации)Скачать

2.2 Итерационные методы решения СЛАУ (Якоби, Зейделя, релаксации)

Общие сведения об итерационных методах или методе простой итерации

Метод итерации — это численный и приближенный метод решения СЛАУ.

Суть: нахождение по приближённому значению величины следующего приближения, которое является более точным. Метод позволяет получить значения корней системы с заданной точностью в виде предела последовательности некоторых векторов (итерационный процесс). Характер сходимости и сам факт сходимости метода зависит от выбора начального приближения корня x 0 .

Рассмотрим систему A x = b .

Чтобы применить итерационный метод, необходимо привести систему к эквивалентному виду x = B x + d . Затем выбираем начальное приближение к решению СЛАУ x ( 0 ) = ( x 1 0 , x 2 0 , . . . x m 0 ) и находим последовательность приближений к корню.

Для сходимости итерационного процесса является достаточным заданное условие В 1 . Окончание итерации зависит от того, какой итерационный метод применили.

Видео:Метод Зейделя Пример РешенияСкачать

Метод Зейделя Пример Решения

Метод Якоби

Метод Якоби — один из наиболее простых методов приведения системы матрицы к виду, удобному для итерации: из 1-го уравнения матрицы выражаем неизвестное x 1 , из 2-го выражаем неизвестное x 2 и т.д.

Результатом служит матрица В , в которой на главной диагонали находятся нулевые элементы, а все остальные вычисляются по формуле:

b i j = — a i j / a i i , i , j = 1 , 2 . . . , n

Элементы (компоненты) вектора d вычисляются по следующей формуле:

d i = b i / a i i , i = 1 , 2 , . . . , n

Расчетная формула метода простой итерации:

x ( n + 1 ) = B x ( x ) + d

Матричная запись (координатная):

x i ( n + 1 ) = b i 1 x n 1 + b i 2 x ( n ) 2 + . . . + b

Критерий окончания в методе Якоби:

x ( n + 1 ) — x ( n ) ε 1 , где ε 1 = 1 — B B ε

В случае если B 1 / 2 , то можно применить более простой критерий окончания итераций:

x ( n + 1 ) — x ( n ) ε

Решить СЛАУ методом Якоби:

10 x 1 + x 2 — x 3 = 11 x 1 + 10 x 2 — x 3 = 10 — x 1 + x 2 + 10 x 3 = 10

Необходимо решить систему с показателем точности ε = 10 — 3 .

Приводим СЛАУ к удобному виду для итерации:

x 1 = — 0 , 1 x 2 + 0 , 1 x 3 + 1 , 1 x 2 = — 0 , 1 x 1 + 0 , 1 x 3 + 1 x 3 = 0 , 1 x 1 — 0 , 1 x 2 + 1

Выбираем начальное приближение, например: x ( 0 ) = 1 , 1 1 1 — вектор правой части.

В таком случае, первая итерация имеет следующий внешний вид:

x 1 ( 1 ) = — 0 , 1 × 1 + 0 , 1 × 1 + 1 , 1 = 1 , 1 x 2 ( 1 ) = — 0 , 1 × 1 , 1 + 0 , 1 + 1 = 0 , 99 x 3 ( 1 ) = 0 , 1 × 1 , 1 — 0 , 1 × 1 + 1 = 1 , 01

Аналогичным способом вычисляются приближения к решению:

x ( 2 ) = 1 , 102 0 , 991 1 , 011 , x ( 3 ) = 1 , 102 0 , 9909 1 , 0111 , x ( 4 ) = 1 , 10202 0 , 99091 1 , 01111

Находим норму матрицы В , для этого используем норму B ∞ .

Поскольку сумма модулей элементов в каждой строке равна 0,2, то B ∞ = 0 , 2 1 / 2 , поэтому можно вычислить критерий окончания итерации:

x ( n + 1 ) — x ( n ) ε

Далее вычисляем нормы разности векторов:

x ( 3 ) — x ( 2 ) ∞ = 0 , 002 , x ( 4 ) — x ( 3 ) ∞ = 0 , 00002 .

Поскольку x ( 4 ) — x ( 3 ) ∞ ε , то можно считать, что мы достигли заданной точности на 4-ой итерации.

x 1 = 1 , 102 ; x 2 = 0 , 991 ; x 3 = 1 ,01 1 .

Видео:Метод Ньютона (метод касательных) Пример РешенияСкачать

Метод Ньютона (метод касательных) Пример Решения

Метод Зейделя

Метод Зейделя — метод является модификацией метода Якоби.

Суть: при вычислении очередного ( n + 1 ) — г о приближения к неизвестному x i при i > 1 используют уже найденные ( n + 1 ) — е приближения к неизвестным x 1 , x 2 , . . . , x i — 1 , а не n — о е приближение, как в методе Якоби.

x i ( n + 1 ) = b i 1 x 1 ( n + 1 ) + b i 2 x 2 ( n + 1 ) + . . . + b i , i — 1 x i — 2 ( n + 1 ) + b i , i + 1 x i + 1 ( n ) +

+ . . . + b i m x m ( n ) + d i

За условия сходимости и критерий окончания итераций можно принять такие же значения, как и в методе Якоби.

Решить СЛАУ методом Зейделя. Пусть матрица системы уравнений А — симметричная и положительно определенная. Следовательно, если выбрать начальное приближение, метод Зейделя сойдется. Дополнительных условий на малость нормы некоторой матрицы не накладывается.

Решим 3 системы уравнений:

2 x 1 + x 2 = 3 x 1 — 2 x 2 = 1 , x 1 + 2 x 2 = 3 2 x 1 — x 2 = 1 , 2 x 1 — 0 , 5 x 2 = 3 2 x 1 + 0 , 5 x 2 = 1

Приведем системы к удобному для итерации виду:

x 1 ( n + 1 ) = — 0 , 5 x 2 ( n ) + 1 , 5 x 2 ( n + 1 ) = 0 , 5 x 1 ( n + 1 ) + 0 , 5 , x 1 ( n + 1 ) = — 2 x 2 ( n ) + 3 x 2 ( n + 1 ) = 2 x 1 ( n + 1 ) — 1 , 2 x 1 — 0 , 5 x 2 = 3 2 x 1 + 0 , 5 x 2 = 1 .

Отличительная особенность, условие сходимости выполнено только для первой системы:

Вычисляем 3 первых приближения к каждому решению:

1-ая система: x ( 0 ) = 1 , 5 — 0 , 5 , x ( 1 ) = 1 , 75 0 , 375 , x ( 2 ) = 1 , 3125 0 , 1563 , x ( 3 ) = 1 , 4219 0 , 2109

Решение: x 1 = 1 , 4 , x 2 = 0 , 2 . Итерационный процесс сходится.

2-ая система: x ( 0 ) = 3 — 1 , x ( 1 ) = 5 9 , x ( 2 ) = — 15 — 31 , x ( 3 ) = 65 129

Итерационный процесс разошелся.

Решение: x 1 = 1 , x 2 = 2

3-я система: x ( 0 ) = 1 , 5 2 , x ( 1 ) = 2 — 6 , x ( 2 ) = 0 2 , x ( 3 ) = 0 2

Итерационный процесс зациклился.

Решение: x 1 = 1 , x 1 = 2

Видео:Способы решения систем нелинейных уравнений. 9 класс.Скачать

Способы решения систем нелинейных уравнений. 9 класс.

Метод простой итерации

Если А — симметричная и положительно определенная, то СЛАУ приводят к эквивалентному виду:

x = x — τ ( A x — b ) , τ — итерационный параметр.

Расчетная формула имеет следующий внешний вид:

x ( n + 1 ) = x ( n ) — τ ( A x n — b ) .

Здесь B = E — τ A и параметр τ > 0 выбирают таким образом, чтобы по возможности сделать максимальной величину B 2 .

Пусть λ m i n и λ m a x — максимальные и минимальные собственные значения матрицы А .

τ = 2 / ( λ m i n + λ m a x ) — оптимальный выбор параметра. В этом случае B 2 принимает минимальное значение, которое равняется ( λ m i n + λ m a x ) / ( λ m i n — λ m a x ) .

Видео:4.2 Решение систем нелинейных уравнений. МетодыСкачать

4.2 Решение систем нелинейных уравнений. Методы

Системы нелинейных уравнений

При решении задач моделирования поведения химических систем достаточно часто приходится решать системы уравнений, нелинейных по отношению к переменным. Системы n линейных уравнений с n неизвестными x 1 , x 2 , . xn в общем случае принято записывать следующим образом:

Метод якоби для системы нелинейных уравнений

где F 1 , F 2 ,…, Fn – любые функции независимых переменных, в том числе и нелинейные относительно неизвестных.

Как и в случае систем линейных уравнений, решением системы является такой вектор (или векторы) ( X * ) , который при подстановке обращает одновременно все уравнения системы в тождества.

Метод якоби для системы нелинейных уравнений

Система уравнений может не иметь решений, иметь единственное решение, конечное или бесконечное количество решений. Вопрос о количестве решений должен решаться для каждой конкретной задачи отдельно.

Рассмотрим несколько простейших итерационных методов решения систем нелинейных уравнений, а именно, метод простой итерации, метод Зейделя и метод Ньютона.

Метод простой итерации

Для реализации этого метода решаемую систему уравнений необходимо путем алгебраических преобразований привести к следующему виду, выразив из каждого уравнения по одной переменной следующим образом:

Метод якоби для системы нелинейных уравнений

Выбирая затем вектор начального приближения

, Метод якоби для системы нелинейных уравнений

подставляют его в преобразованную систему уравнений. Из первого уравнения получают новое приближение к первой переменной, из второго – второй и т. д. Полученное уточненное значение переменных снова подставляют в эти уравнения и т.д.Таким образом, на ( i+1 ) -м шаге итерационной процедуры имеем

Метод якоби для системы нелинейных уравнений

Модификация Зейделя алгоритма простой итерации заключается в использовании уточненных значений переменных уже на текущем итерационном шаге. Так, для уточнения значений первой переменной используются только значения предыдущего шага, для второй переменной – значение x1 текущего шага, а остальных – от предыдущего и т.д.:

Метод якоби для системы нелинейных уравнений

Математической основой метода является линеаризация функций F 1 , F 2 , Fn (левых частей уравнений, образующих систему) путем разложения в ряд Тейлора в окрестности точки начального приближения к решению и пренебрежением всеми членами ряда кроме линейных относительно приращений переменных.

Рассмотрим метод на примере системы двух уравнений с двумя неизвестными:

Метод якоби для системы нелинейных уравнений

Линеаризуем функции F 1 , F 2 путем разложения в ряд Тейлора вблизи некоторой точки (начального приближения) и пренебрежения всеми членами ряда кроме линейных относительно приращений переменных.

Вспомним, что для функции одной переменной разложение в ряд Тейлора в окрестности некоторой точки x0 имеет следующий вид:

Метод якоби для системы нелинейных уравнений

после пренебрежения всеми членами, кроме линейного:

Метод якоби для системы нелинейных уравнений

Для функции нескольких переменных разложение проводится аналогично.

Выберем для поиска решения системы уравнений некоторое начальное приближение

Метод якоби для системы нелинейных уравнений

Запишем для функции F1 2-х переменных линейную часть разложения в ряд Тейлора в окрестности выбранной точки

Метод якоби для системы нелинейных уравнений

для второго уравнения, аналогично

Метод якоби для системы нелинейных уравнений

Если значения переменных x 1 и x 2 являются решением, то оба уравнения системы должны обратиться в ноль, поэтому полученные разложения приравниваем нулю.

Для краткости записи введем следующие обозначения:

Метод якоби для системы нелинейных уравнений

— приращение i -ой переменной

Метод якоби для системы нелинейных уравнений

— значение первой частной производной функции Fj по переменной xi при значении переменных

Метод якоби для системы нелинейных уравнений

Метод якоби для системы нелинейных уравнений

– значение j -ой функции при соответствующих значениях переменных, то есть невязка j ‑го уравнения.

Получим систему линейных уравнений 2 x 2 относительно приращения переменных

Метод якоби для системы нелинейных уравнений

Или, в матричной форме,

Метод якоби для системы нелинейных уравнений

Метод якоби для системы нелинейных уравнений

где матрица значений частных производных называется матрицей Якоби (или якобианом). Решение этой системы дает вектор поправок к начальному приближению.

Сложение его с вектором начального приближения дает новые значения переменных.

Метод якоби для системы нелинейных уравнений

Итерационная процедура далее продолжается аналогично.

Таким образом, процедура решения выглядит следующим образом:

1. Выбирается начальное приближение, система приводится к нормальному виду, в аналитическом виде находятся частные производные левых частей уравнений системы по всем переменным.

2. Рассчитывается матрица Якоби значений частных производных в точке начального приближения

3. Решается система линейных уравнений относительно приращений переменных.

4. к вектору начального приближения прибавляется вектор приращений

5. проверяется условие сходимости и, если оно не достигнуто, то процедура повторяется с п. 2.

Метод легко обобщается на систему уравнений любой размерности.

Для функции F 1 n переменных линейная часть разложения в ряд Тейлора в окрестности точки Метод якоби для системы нелинейных уравненийзаписывается так
Метод якоби для системы нелинейных уравнений

После разложения всех уравнений системы и используя введенные ранее обозначения, после преобразования получим систему линейных уравнений порядка n относительно приращения переменных Δ xi

Метод якоби для системы нелинейных уравнений

Или, в матричной форме,

Метод якоби для системы нелинейных уравнений

В сокращенном виде можно записать так — ( F’ )(Δ x ) = — ( F ) , где матрица значений частных производных – ( F’ ) – называется матрицей Якоби или якобианом системы уравнений.

Решение этой системы дает вектор поправок к начальному приближению. Сложение его с вектором начального приближения дает новые, уточненные значения переменных.

Метод якоби для системы нелинейных уравнений

Частные производные, необходимые для расчета матрицы Якоби, можно рассчитать аналитически или же, если это невозможно или затруднительно, получать по формулам приближенного дифференцирования, например, как отношение приращения функции к приращению аргумента

Метод якоби для системы нелинейных уравнений,

где эпсилон – достаточно малое число.

Методы контроля сходимости итерационных методов
решения систем

Сходимость итерационного процесса решения системы нелинейных уравнений можно контролировать несколькими способами, например:

1. Норма (эвклидова или -максимум) вектора невязок Метод якоби для системы нелинейных уравнений

2. Эвклидова норма вектора относительных отклонений переменных

Метод якоби для системы нелинейных уравнений

3. Норма-максимум вектора относительных отклонений Метод якоби для системы нелинейных уравнений

Применим метод Ньютона для решения системы уравнений

Метод якоби для системы нелинейных уравнений

Матрица частных производных (в аналитическом виде)

Метод якоби для системы нелинейных уравнений

Система линейных уравнений

Метод якоби для системы нелинейных уравнений

Может быть решена аналитически или методом Крамера или методом обращения матрицы. Возьмем начальное приближение x = 0,15, y = 0,17

Первая итерация:

Метод якоби для системы нелинейных уравнений

вектор значений функции

Метод якоби для системы нелинейных уравнений

Рассчитанный вектор поправок

Метод якоби для системы нелинейных уравнений

Новое приближение x = 0,15 + 0,028704 = 0,178704, y = 0,17 + 0,090926 = 0,260926

Вторая итерация:

Рассчитанный вектор поправок

Метод якоби для системы нелинейных уравнений

Новое приближение x = 0,196656, y = 0,293359

Третья итерация:

Рассчитанный вектор поправок

Метод якоби для системы нелинейных уравнений

Новое приближение x = 0,199867, y = 0,299739

Уже на 6-й итерации эвклидова норма вектора невязок составляет 2.8∙10 -13 , максимальное относительное изменение переменных составляет 1.6∙10 -12 и решение сходится к x = 0.2, y = 0.3 с абсолютной погрешностью менее 5∙10 -7 .

Метод простой итерации при этих же начальных условиях сходится с такой точностью на 33-м шаге, модификация Зейделя – на 31-м шаге.

На рисунке ниже представлен пример организации вычислений при решении рассмотренной системы в программе MS Excel

Метод якоби для системы нелинейных уравнений

Пояснения: В ячейки В3 и В4 помещены начальные приближения к решению системы (значения х 0 и у 0 , соответственно). В диапазоне ячеек D3:E4 помещены формулы для вычисления матрицы Якоби, при условии что х находится в ячейке В3, а у — в ячейке В4 (формулы приведены на рисунке ниже). В ячейках G3:G4 рассчитывается значение вектора невязок с отрицательным знаком.

Метод якоби для системы нелинейных уравнений

В ячейке Н3 вычисляется эвклидова норма вектора невязок. В ячейках I3:I4 — решается система линейных уравнений и вычисляется вектор поправок к решению. Для этого обращается матрица коэффициентов системы (матрица Якоби) и умножается на вектор-столбец свободных членов (отрицательный вектор невязок). Формула в этот диапазон ячеек вводится как формула массива. Рядом — в ячейке J3 — рассчитывается норма вектора поправок для контроля сходимости (см. формулы на рисунке ниже).

Метод якоби для системы нелинейных уравнений

Полученные в ячейках I3:I4 значения поправок на втором итерационном цикле прибавляются к начальному приближению (в ячейках В6:В7) и далее вычисления повторяются аналогично первому циклу.

Набранные в строках 6 и 7 рабочего листа формулы могут копироваться до тех пор, пока не будет достигнута необходимая точность.

Задачи, сводящиеся к решению системы нелинейных уравнений

Примером задачи, в которой используется решение систем нелинейных уравнений, может служить аппроксимация таблично заданной функции математическими моделями, нелинейными по отношению к параметрам. Подробно она описывалась ранее.

Если аппроксимирующую функцию и определяющие ее параметры ai обозначить следующим образом

Метод якоби для системы нелинейных уравнений

то условие прохождения графика функции через все таблично заданные точки можно записать в виде следующей системы:

Метод якоби для системы нелинейных уравнений

Другой пример — поиск экстремума (минимума или максимума) функции нескольких переменных

Метод якоби для системы нелинейных уравнений

Условием экстремума является одновременное равенство нулю всех частных производных функции. Таким образом, необходимо решить систему уравнений следующего вида, которая, в общем случае, будет нелинейной

💥 Видео

Метод простых итераций пример решения нелинейных уравненийСкачать

Метод простых итераций пример решения нелинейных уравнений

Методы решения систем нелинейных уравнений. Метод Ньютона. Численные методы. Лекция 14Скачать

Методы решения систем нелинейных уравнений. Метод Ньютона. Численные методы. Лекция 14

После этого видео, ТЫ РЕШИШЬ ЛЮБУЮ Систему Нелинейных УравненийСкачать

После этого видео, ТЫ РЕШИШЬ ЛЮБУЮ Систему Нелинейных Уравнений

1 3 Решение нелинейных уравнений методом простых итерацийСкачать

1 3 Решение нелинейных уравнений методом простых итераций

10 Численные методы решения нелинейных уравненийСкачать

10 Численные методы решения нелинейных уравнений

МЗЭ 2021 Лекция 11 Метод Ньютона для решения систем нелинейных уравненийСкачать

МЗЭ 2021 Лекция 11 Метод Ньютона для решения систем нелинейных уравнений

Решение систем линейных уравнений, урок 5/5. Итерационные методыСкачать

Решение систем линейных уравнений, урок 5/5. Итерационные методы

8 Метод простой итерации Ручной счет Решение системы линейных уравнений СЛАУСкачать

8 Метод простой итерации Ручной счет Решение системы линейных уравнений СЛАУ

Методы численного анализа - Метод Ньютона, секущих для решения систем нелинейных уравненийСкачать

Методы численного анализа - Метод Ньютона, секущих для решения систем нелинейных уравнений

Метод Ньютона | Лучший момент из фильма Двадцать одно 21Скачать

Метод Ньютона | Лучший момент из фильма Двадцать одно  21

Метод: Якоби, Зейделя, Ньютона(2 лекция)Скачать

Метод: Якоби, Зейделя, Ньютона(2 лекция)

Решение нелинейного уравнения методом простых итераций (программа)Скачать

Решение нелинейного уравнения методом простых итераций (программа)

Математика без Ху!ни. Метод Гаусса.Скачать

Математика без Ху!ни. Метод Гаусса.

Метод половинного деления решение нелинейного уравненияСкачать

Метод половинного деления решение нелинейного уравнения
Поделиться или сохранить к себе: