Метод разложения на множители тригонометрических уравнений примеры

Видео:Решаем тригонометрические уравнения через разложение на множители или деление на косинус вСкачать

Решаем тригонометрические уравнения через разложение на множители или деление на косинус в

Метод разложения на множители тригонометрических уравнений примеры

Метод разложения на множители тригонометрических уравнений примеры

Метод разложения на множители тригонометрических уравнений примеры

Метод разложения на множители тригонометрических уравнений примеры

Видео:Решение тригонометрических уравнений. 10 класс.Скачать

Решение тригонометрических уравнений. 10 класс.

Методы решения тригонометрических уравнений.

Видео:Тригонометрические уравнения. Метод разложения на множители.Скачать

Тригонометрические уравнения. Метод разложения на множители.

1. Алгебраический метод.

( метод замены переменной и подстановки ).

Метод разложения на множители тригонометрических уравнений примеры

Видео:Алгебра 10 класс Тригонометрические уравнения Метод разложения на множители ЛекцияСкачать

Алгебра 10 класс Тригонометрические уравнения Метод разложения на множители Лекция

2. Разложение на множители.

П р и м е р 1. Решить уравнение: sin x + cos x = 1 .

Р е ш е н и е . Перенесём все члены уравнения влево:

sin x + cos x – 1 = 0 ,

преобразуем и разложим на множители выражение в

левой части уравнения:

Метод разложения на множители тригонометрических уравнений примеры

П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.

Р е ш е н и е . cos 2 x + sin x · cos x – sin 2 x – cos 2 x = 0 ,

sin x · cos x – sin 2 x = 0 ,

sin x · ( cos x – sin x ) = 0 ,

Метод разложения на множители тригонометрических уравнений примеры

П р и м е р 3. Решить уравнение: cos 2 x – cos 8 x + cos 6 x = 1.

Р е ш е н и е . cos 2 x + cos 6 x = 1 + cos 8 x ,

2 cos 4x cos 2x = 2 cos ² 4x ,

cos 4x · ( cos 2x – cos 4x ) = 0 ,

cos 4x · 2 sin 3x · sin x = 0 ,

1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 ,

Метод разложения на множители тригонометрических уравнений примеры

Видео:Тригонометрические уравнения. Метод разложения на множители.Скачать

Тригонометрические уравнения. Метод разложения на множители.

3. Приведение к однородному уравнению.

а) перенести все его члены в левую часть;

б) вынести все общие множители за скобки;

в) приравнять все множители и скобки нулю;

г ) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на

cos ( или sin ) в старшей степени;

д) решить полученное алгебраическое уравнение относительно tan .

П р и м е р . Решить уравнение: 3 sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.

Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,

sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,

tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 ,

корни этого уравнения: y 1 = — 1, y 2 = — 3, отсюда

1) tan x = –1, 2) tan x = –3,

Метод разложения на множители тригонометрических уравнений примеры

Видео:Решение Тригонометрических Уравнений Методом Разложения На Множители. 10 классСкачать

Решение Тригонометрических Уравнений Методом Разложения На Множители. 10 класс

4. Переход к половинному углу.

П р и м е р . Решить уравнение: 3 sin x – 5 cos x = 7.

Р е ш е н и е . 6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) =

= 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) ,

2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 ,

tan ² ( x / 2 ) – 3 tan ( x / 2 ) + 6 = 0 ,

Видео:Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать

Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor online

5. Введение вспомогательного угла.

где a , b , c – коэффициенты; x – неизвестное.

Метод разложения на множители тригонометрических уравнений примеры

Теперь коэффициенты уравнения обладают свойствами синуса и косинуса , а именно : модуль ( абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1 . Тогда можно обозначить их соответственно как cos Метод разложения на множители тригонометрических уравнений примерыи sin Метод разложения на множители тригонометрических уравнений примеры( здесь Метод разложения на множители тригонометрических уравнений примеры— так называемый вспомогательный угол ), и наше уравнение прини мает вид:

Метод разложения на множители тригонометрических уравнений примеры

Метод разложения на множители тригонометрических уравнений примеры

Видео:Решение квадратных уравнений. Метод разложения на множители. 8 класс.Скачать

Решение квадратных уравнений. Метод разложения на множители. 8 класс.

6. Преобразование произведения в сумму.

П р и м е р . Решить уравнение: 2 sin x · sin 3 x = cos 4 x .

Р е ш е н и е . Преобразуем левую часть в сумму:

Видео:10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать

10 класс, 23 урок, Методы решения тригонометрических уравнений

Основные методы решения тригонометрических уравнений

п.1. Разложение на множители

Алгоритм простого разложения на множители

Шаг 1. Представить уравнение в виде произведения (f_1(x)cdot f_2(x)cdot . cdot f_n(x)=0) где (f_i(x)) — некоторые функции (тригонометрические и не только) от (x).
Шаг 2. Решить совокупность уравнений: ( left[ begin f_1(x)=0\ f_2(x)=0\ . \ f_n(x)=0\ end right. )
Шаг 3. Найти объединение полученных решений. Записать ответ.

Например:
Решим уравнение (2cosx cos2x=cosx) begin 2cosx cos2x-cosx=0\ cosx(2cos2x-1)=0\ left[ begin cosx=0\ 2cos2x-1=0 end right. Rightarrow left[ begin x=fracpi2+pi k\ cos2x=frac12 end right. Rightarrow left[ begin x=fracpi2+pi k\ 2x=pmfracpi3+2pi k end right. Rightarrow left[ begin x=fracpi2+pi k\ x=pmfracpi6+pi k end right. end

Метод разложения на множители тригонометрических уравнений примерыМы видим, что полученные семейства образуют множество из 6 базовых точек на числовой окружности через каждые (60^=fracpi3)
Поэтому: begin left[ begin x=fracpi2+pi k\ x=pmfracpi6+pi k end right. Leftrightarrow x=fracpi6+frac end

Возможно, у вас не сразу получится объединять решения, которые частично пересекаются или дополняют друг друга.
Тогда записывайте ответ в виде полученных семейств.
В рассмотренном примере, это пара (fracpi2+pi k, pmfracpi6+pi k), равнозначная c (fracpi6+frac).
Вот только научиться работать с числовой окружностью нужно обязательно, т.к. чем сложнее пример или задача, тем больше вероятность, что этот навык пригодится.

Алгоритм разложения на множители со знаменателем

Шаг 1. Представить уравнение в виде произведения $$ frac=0 $$ где (f_i(x), g_i(x)) — некоторые функции (тригонометрические и не только) от (x).
Шаг 2. Решить смешанную систему уравнений: ( begin left[ begin f_1(x)=0\ f_2(x)=0\ . \ f_n(x)=0\ end right.\ g_1(x)ne 0\ g_2(x)ne 0\ . \ g_m(x)ne 0\ end )
Шаг 3. Найти объединение полученных решений для числителя. Исключить все решения, полученные для знаменателя. Записать ответ.

Например:
Решим уравнение (ctgx-tgx=frac)
Левая часть уравнения: $$ ctgx-tgx=frac-frac=frac=frac $$ Подставляем, переносим правую часть влево: $$ frac-frac=0 $$ Выносим общий множитель, умножаем на (1/2) слева и справа, получаем: $$ frac=0 $$ В этом уравнении учтено ОДЗ для (ctgx) и (tgx). Поэтому отдельно его не записываем.
Полученное уравнение равносильно системе: begin begin left[ begin cosx-sinx=0\ cosx+sinx=1 end right.\ sin2xne 0 end end Решаем первое уравнение как однородное 1-й степени (см. этот параграф ниже): begin cosx-sinx=0 |: cosx\ 1-tgx=0Rightarrow tgx=1Rightarrow x=fracpi4+pi k end Решаем второе уравнение введением вспомогательного угла (см. этот параграф ниже): begin cosx-sinx=1 | times frac<sqrt>\ frac<sqrt>cosx+frac<sqrt>sinx=frac<sqrt>\ cosleft(fracpi4right)cosx+sinleft(fracpi4right)sinx=frac<sqrt>\ cosleft(fracpi4-xright)=cosleft(x-fracpi4right)=cosleft(x-fracpi4right)=frac<sqrt> Rightarrow x-fracpi4=pmfracpi4+2pi kRightarrow left[ begin x=2pi k\ x=fracpi2+2pi k end right. end Решаем исключающее уравнение для знаменателя: $$ sin2xne 0Rightarrow 2xne pi kRightarrow xnefrac $$

Метод разложения на множители тригонометрических уравнений примерыЗаписываем полученную систему, отмечаем базовые решения на числовой окружности, исключаем нули знаменателя. Получаем: begin begin left[ begin x=fracpi4+pi k\ x=2pi k\ x=fracpi2+2pi kLeftrightarrow x=fracpi4+pi k end right.\ xnefrac end end

За счет требования (xnefrac) исключаются семейства (x=fracpi2+2pi k) и (x=2pi k).
Остается только (x=fracpi4+pi k).
Ответ: (fracpi4+pi k)

п.2. Приведение к квадратному уравнению

Шаг 1. С помощью базовых тригонометрических отношений и других преобразований представить уравнение в виде $$ af^2(x)+bf(x)+c=0 $$ где (f(x)) — тригонометрическая функция.
Шаг 2. Сделать замену переменных: (t=f(x)). Решить полученное квадратное уравнение: begin at^2+bt+c=0\ D=b^2-4ac, t_=frac<-bpmsqrt> end Шаг 3. Если (f(x)) — синус или косинус, проверить условие (-1leq t_leq 1). Отбросить лишние корни.
Шаг 4. Вернуться к исходной переменной и решить совокупность простейших тригонометрических уравнений ( left[ begin f(x)=t_1\ f(x)=t_2 end right. ) или одно оставшееся уравнение.
Шаг 5. Найти объединение полученных решений. Записать ответ.

Например:
Решим уравнение (3sin^2x+10cosx-6=0)
Заменим (sin^2x=1-cos^2x). Получаем: begin 3(1-cos^2x)+10cosx-6=0\ -3cos^2x+10cosx-3=0\ 3cos^2x-10cosx+3=0\ text t=cosx, -1leq tleq 1\ 3t^2-10t+3=0\ D=(-10)^2-4cdot 3cdot 3=64\ t=frac= left[ begin frac13\ 3gt 1 — text end right. end Решаем (cosx=frac13Rightarrow x=pm arccosfrac13+2pi k)
Ответ: (pm arccosfrac13+2pi k)

п.3. Приведению к однородному уравнению

Алгоритм решения однородного тригонометрического уравнения 1-й степени

Например:
Решим уравнение (sinx+cosx=0)
Делим на (cosx). Получаем: (tgx+1=0Rightarrow tgx=-1Rightarrow x=-fracpi4+pi k)
Ответ: (-fracpi4+pi k)

Алгоритм решения однородного тригонометрического уравнения 2-й степени

Шаг 1. Разделить левую и правую части уравнения на (cos^2x) begin frac=frac\ Atg^2x+Btgx+C=0 end Шаг 2. Сделать замену переменных: (t=tgx). Решить полученное квадратное уравнение: begin at^2+bt+c=0\ D=b^2-4ac, t_=frac<-bpmsqrt> end Шаг 3. Решить совокупность простейших тригонометрических уравнений ( left[ begin tgx=t_1\ tgx=t_2 end right. )
Шаг 4. Найти объединение полученных решений. Записать ответ.

Например:
Решим уравнение (6sin^2x-sinxcosx-cos^2x=3)
Приведем уравнение к однородному (чтобы избавиться от тройки справа, умножим её на тригонометрическую единицу): begin 6sin^2x-sinxcosx-cos^2x=3(sin^2x+cos^2x)\ 3sin^2x-sinxcosx-4cos^2x=0 |: cos^2x\ 3tg^2x-tgx-4=0\ text t=tgx\ 3t^2-t-4=0\ D=(-1)^2-4cdot 3cdot(-4)=49\ t=frac= left[ begin -1\ frac43 end right. end Решаем совокупность: ( left[ begin tgx=-1\ tgx=frac43 end right. Rightarrow left[ begin x=-fracpi4+pi k\ x=arctgfrac43+pi k end right. )
Ответ: (-fracpi4+pi k, arctgfrac43+pi k)

Обобщим понятие однородного тригонометрического уравнения на любую натуральную степень:

Алгоритм решения однородного тригонометрического уравнения n-й степени

Шаг 1. Разделить левую и правую части уравнения на (cos^n x)
Шаг 2. Сделать замену переменных: (t=tgx). Решить полученное алгебраическое уравнение: begin a_0t^n+a_1t^+. +a_n=0 end Найти корни (t_1, t_2. t_k, kleq n)
Шаг 3. Решить совокупность простейших тригонометрических уравнений ( left[ begin tgx=t_1\ tgx=t_2\ . \ tgx=t_k end right. )
Шаг 4. Найти объединение полученных решений. Записать ответ.

Например:
Решим уравнение (2sin^3x=cosx)
Умножим правую часть на тригонометрическую единицу и получим однородное уравнение 3-й степени: begin 2sin^3x=cosx(sin^2x+cos^2x)\ 2sin^3x-sin^2xcosx-cos^3x=0 |: cos^3x\ 2tg^x-tg^2x-1=0\ end Замена (t=tgx) дает кубическое уравнение: (2t^3-t^2-1=0)
Раскладываем на множители: begin 2t^3-t^2-1=t^3-t^2+t^3-1=t^2(t-1)+(t-1)(t^2+t+1)=\ =(t-1)(2t^2+t+1) end Вторая скобка на множители не раскладывается, т.к. (D=1-4cdot 2=-7 lt 0).
Получаем: (2t^3-t^2-1=0Leftrightarrow t-1=0)
Возвращаемся к исходной переменной:
(tgx=1Rightarrow x=fracpi4+pi k)
Ответ: (fracpi4+pi k)

п.4. Введение вспомогательного угла

Например:
Решим уравнение (sqrtsin3x-cos3x=1)
Делим уравнение на ( p=sqrt=2: ) begin sqrtsin3x-cos3x=1 |: 2\ frac<sqrt>sin3x-frac12cos3x=frac12\ sinleft(fracpi3right)sin3x-cosleft(fracpi3right)cos3x=frac12\ cosleft(fracpi3right)cos3x-sinleft(fracpi3right)sin3x=-frac12\ cosleft(3x+fracpi3right)=-frac12Rightarrow 3x+fracpi3=pmfrac+2pi kRightarrow 3x= left[ begin -pi+2pi k\ fracpi3+2pi k end right. Rightarrow x= left[ begin -fracpi3+frac\ fracpi9+frac end right. end
Ответ: (-fracpi3+frac, fracpi9+frac)

п.5. Преобразование суммы тригонометрических функций в произведение

При решении уравнений вида begin Asinax+Bsinbx+. +Ccoscx+Dcosdx+. =0 end используются формулы, выведенные в §17 данного справочника.
Затем проводится разложение на множители, и находится решение (см. начало этого параграфа).

Например:
Решим уравнение (cos3x+sin2x-sin4x=0)
Заметим, что: $$ sin2x-sin4x=2sinfraccosfrac=2sin(-x)cos3x=-2sinxcos3x $$ Подставляем: begin cos3x-2sinxcos3x=0\ cos3x(1-2sinx)=0\ left[ begin cos3x=0\ 1-2sinx=0 end right. Rightarrow left[ begin 3x=fracpi2+pi k\ sinx=frac12 end right. Rightarrow left[ begin x=fracpi6+frac\ x=(-1)^kfracpi6+pi k= left[ begin x=fracpi6+2pi k\ frac+2pi k end right. end right. end Чтобы было понятней, распишем полученные множества в градусах: begin left[ begin x=fracpi6+frac=30^+60^k\ x=fracpi6+2pi k=30^+360^kLeftrightarrow x=30^+60^k=fracpi6+frac\ x=frac+2pi k=150^+360^k end right. end

Метод разложения на множители тригонометрических уравнений примерыПолучаем, что семейства решений (fracpi6+2pi k) и (frac+2pi k) уже содержатся во множестве (fracpi6+frac).

п.6. Преобразование произведения тригонометрических функций в сумму

При решении уравнений вида begin sinaxcdot cosbx=sincxcdot cosdx, sinaxcdot sinbx=sincxcdot cosdx text end используются формулы, выведенные в §18 данного справочника.

Например:
Решим уравнение (sin5xcos3x=sin6xcos2x)
Заметим, что: begin sin5xcos3x=frac=frac\ sin6xcos2x=frac=frac end Подставляем: begin frac=frac |times 2\ sin8x-sin2x=sin8x-sin4x\ sin4x-sin2x=0\ 2sin2xcos2x-sin2x=0\ sin2x(2cos2x-1)=0\ left[ begin sin2x=0\ 2cos2x-1=0 end right. Rightarrow left[ begin 2x=pi k\ cos2x=frac12 end right. Rightarrow left[ begin x=frac\ 2x=pmfracpi3+2pi k end right. Rightarrow left[ begin x=frac\ x=pmfracpi6+pi k end right. end

Метод разложения на множители тригонометрических уравнений примерыСемейства решений не пересекаются.

Примечание: учитывая ответ предыдущего примера, это же множество решений можно записать в виде: ( left[ begin x=frac\ x=pmfracpi6+pi k end right. Leftrightarrow left[ begin x=fracpi6+frac\ x=pi k end right. )

п.7. Понижение степени

При решении уравнений вида begin sin^2ax+sin^2bx+. +cos^2cx+cos^2dx+. =A end используются формулы понижения степени: begin sin^2x=frac, cos^2x=frac end (см. формулы половинного аргумента, §15 данного справочника).

Например:
Решим уравнение (sin^2x+sin^22x=1)
Расписываем квадраты синусов через формулу понижения степени: begin frac+frac=1\ cos2x+cos4x=0\ 2cosfraccosfrac=0\ cos3xcosx=0\ left[ begin cos3x=0\ cosx=0 end right. Rightarrow left[ begin 3x=fracpi2+pi k\ x=fracpi2+pi k end right. Rightarrow left[ begin x=fracpi6+frac\ x=fracpi2+pi k end right. end

Метод разложения на множители тригонометрических уравнений примеры(x=fracpi2+pi k) является подмножеством (x=fracpi6+frac)
Поэтому begin left[ begin x=fracpi6+frac\ x=fracpi2+pi k end right. Leftrightarrow x=fracpi6+frac end

п.8. Замена переменных

При решении уравнений вида (f(sinxpm cosx, sinxcosx)=0) используется замена begin t=cosxpm sinx end

Например:
Решим уравнение (sinx+cosx=1+sinxcosx)
Замена: (t=sinx+cosx)
Тогда (t^2=sin^2x+2sinxcosx+cos^2x=1+2sinxcosxRightarrow sinxcosx=frac)
Подставляем: begin t=1+fracRightarrow 2(t-1)=t^2-1Rightarrow t^2-2t+1=0Rightarrow (t-1)^2=0Rightarrow t=1\ sinx+cosx=1 | times frac<sqrt>\ frac<sqrt>sinx+frac<sqrt>cosx=frac<sqrt>\ sinfracpi4 sinx+cosfracpi4 cosx=frac<sqrt>\ cosleft(x-fracpi4right)=frac<sqrt>Rightarrow x-fracpi4=pmfracpi4 + 2pi kRightarrow Rightarrow left[ begin x=2pi k\ x=fracpi2+2pi k end right. end Ответ: (2pi k, fracpi2+2pi k)

п.9. Использование ограничений области значений функций

Уравнения вида begin underbrace_<m text> end может иметь решение только, если каждое из слагаемых равно 1.
Поэтому решаем систему: ( begin sinax=1\ sinbx=1\ . \ cosdx=1\ . end )
Находим пересечение (!) полученных семейств решений и записываем ответ.

Аналогично, уравнение вида begin underbrace_<m text> end может иметь решение только, если каждое из слагаемых равно -1.

Например:
Решим уравнение (sinx+cos4x=2)
Для этого нужно решить систему: begin begin sinx=1\ cos4x=1 end Rightarrow begin x=fracpi2+2pi k\ 4x=2pi k end Rightarrow begin x=fracpi2+2pi k\ x=frac end end

Метод разложения на множители тригонометрических уравнений примерыПересечением двух семейств решений будет только (fracpi2+2pi k).
Поэтому begin begin x=fracpi2+2pi k\ x=frac end Leftrightarrow x=fracpi2+2pi k end

п.10. Примеры

Пример 1. Используя различные методы, решите уравнения:
a) (4sinleft(fracpi2right)+5sin^2x=4)
Приводим уравнение к квадратному:
(5sin^x+4cosx-4=0)
(5(1-cos^2x)+4cosx-4=0)
(-5cos^2x+4cosx+1=0)
(5cos^2x-4cosx-1=0)
Замена: (t=cosx, -1leq tleq 1) begin 5t^2-4t-1=0Rightarrow (5t+1)(t-1)=0Rightarrow left[ begin t_1=-frac15\ t_2=1 end right. end Оба корня подходят. Возвращаемся к исходной переменной: begin left[ begin cosx=-frac15\ cosx=1 end right. Rightarrow left[ begin x=pm arccosleft(-frac15right)+2pi k\ x=2pi k end right. end Ответ: (pm arccosleft(-frac15right)+2pi k, 2pi k)

б) (6sinxcosx=5cos2x)
(6sinxcosx=3cdot 2sinxcosx=3sin2x)
Приводим уравнение к однородному 1-й степени:
(3sin2x=5cos2x | : cos2x)
(3tg2x=5Rightarrow tg2x=frac53Rightarrow 2x=arctgfrac53+pi kRightarrow x=frac12 arctgfrac53+frac)
Ответ: (frac12 arctgfrac53+frac)

в) (9cos^2x-5sin2x=-sin^2x)
(5sin2x=5cdot 2sinxcosx=10sinxcosx)
Приводим уравнение к однородному 2-й степени:
(sin^2x-10sinxcosx+9cos^2x=0 |: cos^2x)
(tg^2x-10tgx+9=0)
Замена: (t=tgx) begin t^2-10+9=0Rightarrow (t-1)(t-9)=0Rightarrow left[ begin t_1=1\ t_2=9 end right. end Оба корня подходят. Возвращаемся к исходной переменной: begin left[ begin tgx=1\ tgx=9 end right. Rightarrow left[ begin x=fracpi4+pi k\ x=arctg9+pi k end right. end Ответ: (fracpi4+pi k, arctg9+pi k)

г) (cos3x-1=cos6x)
Косинус двойного угла: (cos6x=2cos^2 3x-1)
Подставляем и раскладываем на множители:
(cos3x-1=2cos^2 3x-1)
(cos3x-2cos^2 3x=0)
(cos3x(1-2cos3x)=0) begin left[ begin cos3x=0\ 1-2cos3x=0 end right. Rightarrow left[ begin 3x=fracpi2+pi k\ cos3x=frac12 end right. Rightarrow left[ begin x=fracpi6+frac\ 3x=pmfracpi3+2pi k end right. Rightarrow left[ begin x=fracpi6+frac\ x=pmfracpi9+frac end right. end Чтобы проверить пересечения, распишем семейства решений через градусы: begin left[ begin x=fracpi6+frac=30^+60^k=<. -90^,-30^,30^,90^,150^. >\ x=pmfracpi9+frac= left[ begin -20^+120^k=<. -140^,-20^,100^. >\ 20^+120^k=<. -100^,20^,140^. > end right. end right. end Семейства не пересекаются.
Ответ: (fracpi6+frac, pmfracpi9+frac)

д) (sqrtsin2x-cos2x=-sqrt)
Разделим на (p=sqrt) и введем дополнительный угол:
(frac<sqrt>sin2x-frac12 cos2x=-frac<sqrt>)
(frac12cos2x-frac<sqrt>sin2x=frac<sqrt>)
(cosleft(2x-fracpi3right)=frac<sqrt>)
(2x-fracpi3=pmfracpi6+2pi k)
(2x=fracpi3pmfracpi6+2pi k= left[ begin -frac+2pi k\ fracpi2+2pi k end right. )
( left[ begin x=-frac+pi k\ x=fracpi4+pi k end right. ) Семейства решений не пересекаются.
Ответ: (-frac+pi k, fracpi4+pi k)

е) (cos^2x+cos^2 2x=cos^2 3x+cos^2 4x)
Формула понижения степени: (cos^2x=frac)
Подставляем: begin frac+frac=frac+frac\ cos2x+cos4x=cos6x+cos8x\ 2cosfraccosfrac=2cosfraccosfrac |: 2\ cos3xcosx=cos7xcosx=0\ cos3xcosx-cos7xcosx=0\ cosx(cos3x-cos7x)=0\ cosxleft(-2sinfracsinfracright)=0\ -2cosxsin5xsin(-2x)=0\ 2cosxsin5xsin2x=0\ cosxsin5xsin2x=0\ left[ begin cosx=0\ sin5x=0\ sin2x=0 end right. Rightarrow left[ begin x=fracpi2+pi k\ 5x=pi k\ 2x=pi k end right. Rightarrow left[ begin x=fracpi2+pi k\ x=frac\ x=frac end right. end Семейство решений (x=fracpi2+pi k) (базовые точки 90°, 270° на числовой окружности) является подмножеством для (x=frac) (базовые точки 0°, 90°, 180°, 270°). Поэтому: begin left[ begin x=fracpi2+pi k\ x=frac\ x=frac end right. Rightarrow left[ begin x=frac\ x=frac end right. end Ответ: (frac, frac)

Пример 2*. Решите уравнения:
a) begin frac-frac+frac=0 end ОДЗ: (tgxne pm 3)
1) Если (cosxne 0), то последнее слагаемое (frac=frac<frac><frac>=frac)
Получаем: begin frac-frac+frac=0\ frac=0\ frac=0\ end Замена: (t=tgx) begin fracRightarrow begin t^2+7t-30=0\ tnepm3 end Rightarrow begin (t+10)(t-3)=0\ tnepm3 end Rightarrow begin left[ begin t=-10\ t=3 end right.\ tnepm3 end Rightarrow\ t=-10 end Получаем: begin tgx=-10\ x=arctg(-10)+pi k=-arctg10+pi k end
2) Проверим, является ли (cosx=0) решением.
При (cosx=0, x=fracpi2+pi k, tgxrightarrowinfty). Первое слагаемое (fracrightarrowfracrightarrow 0)
Второе слагаемое (fracrightarrowfracrightarrow 0)
Третье слагаемое (fracrightarrowfrac=1ne 0)
Сумма слагаемых в пределе (tgxrightarrowinfty) равна (0+0+1=1ne 0)
(cosx=0) решением не является.
Ответ: (-arctg10+pi k)

б) (frac+1=7frac)
ОДЗ: (cosxne 0, xnefracpi2+pi k) begin |cosx|= begin cosx, -fracpi2+2pi kleq xlt fracpi2+2pi k\ -cosx, fracpi2+2pi kleq xlt frac+2pi k end end 1) Решаем для положительного косинуса (1-я и 4-я четверти) begin frac+1=7frac\ 3(1+tg^2x)+1-7tgx=0\ 3tg^2-7tgx+4=0\ (3tgx-4)(tgx-1)=0\ left[ begin tgx=frac43\ tgx=1 end right. Rightarrow left[ begin x=arctgfrac43+pi k\ x=fracpi4+pi k end right. end

Метод разложения на множители тригонометрических уравнений примерыПолученное решение даёт 4 базовых точки на числовой окружности: (fracpi4, arctgfrac43, frac) и (pi+arctgfrac43), которые находятся в 1-й и 3-й четвертях.
Выбираем только точки в 1-й четверти:
(fracpi4) и (arctgfrac43).
Это означает, что в записи решения период будет не (pi k), а (2pi k). begin left[ begin x=arctgfrac43+2pi k\ x=fracpi4+2pi k end right. end

2) Решаем для отрицательного косинуса (2-я и 3-я четверти) begin frac+1=-7frac\ 3(1+tg^2x)+1+7tgx=0\ 3tg^2x+7tgx+4=0\ (3tgx+4)(tgx+1)=0\ left[ begin tgx=-frac43\ tgx=-1 end right. Rightarrow left[ begin x=-arctgfrac43+pi k\ x=-fracpi4+pi k end right. end

Метод разложения на множители тригонометрических уравнений примерыПолученное решение даёт 4 базовых точки на числовой окружности: (-fracpi4, -arctgfrac43, frac) и (pi-arctgfrac43), которые находятся в 2-й и 4-й четвертях.
Выбираем только точки вo 2-й четверти:
(frac) и (pi-arctgfrac43).
Это означает, что в записи решения будут выбранные точки с периодом (2pi k). begin left[ begin x=pi-arctgfrac43+2pi k\ x=frac+2pi k end right. end

3) Объединяем полученные решения: begin left[ begin x=arctgfrac43+2pi k\ x=fracpi4+2pi k\ x=pi-arctgfrac43+2pi k\ x=frac+2pi k end right. end

Метод разложения на множители тригонометрических уравнений примерыПо аналогии с записью арксинуса можно объединить симметричные относительно оси синусов точки: begin left[ begin x=arctgfrac43+2pi k\ x=pi-arctgfrac43+2pi k end right. Leftrightarrow x=(-1)^k arctgfrac43+pi k\ left[ begin x=fracpi4+2pi k\ x=frac+2pi k end right. Leftrightarrow x=(-1)^k fracpi4+pi k\ end

Окончательно получаем: ( left[ begin x=(-1)^k arctgfrac43+pi k\ x=(-1)^k fracpi4+pi k end right. ).
Ответ: ((-1)^k arctgfrac43+pi k, (-1)^k fracpi4+pi k)

г) (3sinx-4cosx=5)
Способ 1. Вводим дополнительный угол:
(p=sqrt=5)
(frac35sinx-frac45 cosx=1)
(sinalpha=frac35, cosalpha=frac45)
(sinalpha sinx-cosalpha cosx=1)
(cosalpha cosx-sinalpha sinx=-1)
(cos(x+alpha)=-1)
(x+alpha=pi+2pi k)
(x=-alpha+pi+2pi k=-arcsinfrac35+pi+2pi k)

Способ 2. Делаем универсальную подстановку: begin sinalpha=frac<2tgfrac>, cosalpha=frac\ 3cdot frac<2tgfrac><1+tg^2frac>-4cdotfrac<1-tg^2frac><1+tg^2frac>=5\ frac<6tgfrac-4left(1-tg^2fracright)-5left(1+tg^2fracright)><1+tg^2frac>=0 end (1=tg^2fracgeq 1), знаменатель никогда не превращается в 0, отбрасываем его и работаем с числителем: begin -tg^2frac+6tgfrac-9=0Rightarrow tg^2frac-6tgfrac+9=0Rightarrowleft(tgfrac-3right)^2=0Rightarrow tgfrac=3\ frac=arctg3+pi kRightarrow x= 2arctg3+2pi k end

Докажем, что полученные ответы: $$ x=-arcsinfrac35+pi+2pi k text x=2arctg3+2pi k $$ равнозначны, т.е. (-arcsinfrac35+pi=2arctg3), и равны углы: $$ arcsinfrac35=pi-2arctg3 (*) $$ Пусть в правой части равенства (*) (2arctg3=varphi). Тогда (arctg3=fracvarphi2) и (tgfracvarphi2=3).
А в левой части равенства (*) (arcsinfrac35=alpha) и (sinalpha=frac35)
Угол (0lt arcsinfrac35lt fracpi2) расположен в 1-й четверти.
Угол (varphi=2arctg3) расположен во 2-й четверти ((cosvarphilt 0, sinvarphigt 0)). $$ cosvarphi=frac=frac=-frac45, sinvarphi=frac=frac=frac35 $$ Получаем, что для угла (alpha: sinalpha=frac35, cosalpha=frac45)
Для угла (varphi: sinvarphi=frac35, cosvarphi=-frac45)
Откуда следует, что (alpha=pi-varphi). Что и требовалось доказать.
Ответ: (-arcsinfrac35+pi+2pi k) или (2arctg3+2pi k) (т.к. (-arcsinfrac35+pi=2arctg3))

Видео:Метод разложения на множители в решении тригонометрических уравненийСкачать

Метод разложения на множители в решении тригонометрических уравнений

Алгебра и начала математического анализа. 10 класс

Конспект урока

Алгебра и начала математического анализа, 10 класс

Урок №47. Методы решения тригонометрических уравнений.

Перечень вопросов, рассматриваемых в теме:

  • Формирование системы знаний и умений решать тригонометрические уравнения различными методами;
  • Применение метода разложения на множители при решении тригонометрических уравнений;
  • Применение метода оценки при решении тригонометрических уравнений;
  • Прием домножения левой и правой частей уравнения на тригонометрическую функцию при решении тригонометрических уравнений.

Глоссарий по теме

Теорема — основа метода разложения на множители

Уравнение Метод разложения на множители тригонометрических уравнений примерыравносильно на своей области определения совокупности Метод разложения на множители тригонометрических уравнений примеры.

Теорема — основа метода замены переменной

Уравнение Метод разложения на множители тригонометрических уравнений примерыравносильно на ОДЗ совокупности уравнений

Метод разложения на множители тригонометрических уравнений примеры.

Колягин Ю.М., Ткачёва М.В., Фёдорова Н.Е., Шабунин М.И. под ред. Жижченко А.Б. Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. учреждений: базовый и профил. Уровни – 2-е изд. – М.: Просвещение, 2011. – 368 с.: ил. – ISBN 978-5-09-025401-4, сс.327-332

Шахмейстер А.Х. Тригонометрия. М.: Издательство МЦНМО : СПб.: «Петроглиф» : «Виктория плюс», 2013. – 752 с.: илл. ISBN 978-5-4439-0050-6, сс.219-221, 245-262

Открытые электронные ресурсы:

Решу ЕГЭ образовательный портал для подготовки к экзаменам https://ege.sdamgia.ru/

Теоретический материал для самостоятельного изучения

На этом уроке мы продолжаем заниматься решением тригонометрических уравнений. И здесь мы рассмотрим такие методы как разложение на множители, метод оценки, а также продолжим решать тригонометрические уравнения методом замены переменной. Кроме того, мы узнаем, как использовать домножение правой и левой частей уравнений для получения более простого уравнения, как использовать тригонометрические формулы для решения уравнений.

Сейчас выполните несколько заданий.

Представьте в виде произведения:

Метод разложения на множители тригонометрических уравнений примеры

Используем формулы приведения, затем формулу преобразования суммы косинусов в произведение:

Метод разложения на множители тригонометрических уравнений примеры

Метод разложения на множители тригонометрических уравнений примеры

Метод разложения на множители тригонометрических уравнений примеры.

(На последнем шаге мы фактически использовали формулу двойного аргумента:

Метод разложения на множители тригонометрических уравнений примеры.

Ответ: Метод разложения на множители тригонометрических уравнений примеры.

Метод разложения на множители тригонометрических уравнений примеры

Воспользуемся формулой понижения степени и формулой преобразования произведения косинусов в сумму косинусов. Появившийся при этом общий множитель Метод разложения на множители тригонометрических уравнений примерывынесем за скобки:

Метод разложения на множители тригонометрических уравнений примерыВоспользуемся тем, что косинус – функция четная и известным значением косинуса. В результате получим:

Метод разложения на множители тригонометрических уравнений примеры

Метод разложения на множители тригонометрических уравнений примеры

При выполнении этого задания будем использовать прием домножения о деления левой части на одно и то же тригонометрическое выражение.

Но сначала заметим, что Метод разложения на множители тригонометрических уравнений примеры.

Теперь запишем левую часть: Метод разложения на множители тригонометрических уравнений примеры.

теперь домножим и разделим это выражение на Метод разложения на множители тригонометрических уравнений примеры: Метод разложения на множители тригонометрических уравнений примеры.

Теперь воспользуемся формулой синуса двойного аргумента и получим:

Метод разложения на множители тригонометрических уравнений примеры. Теперь еще раз воспользуемся формулой двойного аргумента, предварительно домножив числитель и знаменатель на 2:

Метод разложения на множители тригонометрических уравнений примеры

Учитывая, что Метод разложения на множители тригонометрических уравнений примеры, получаем: Метод разложения на множители тригонометрических уравнений примеры.

То есть исходное равенство верно.

Объяснение новой темы

1. Рассмотрим метод разложения на множители

Теоретической основой метода разложения на множители является теорема:

Уравнение Метод разложения на множители тригонометрических уравнений примерыравносильно на своей области определения совокупности Метод разложения на множители тригонометрических уравнений примеры.

Для того чтобы применить эту теоремы, нужно исходное уравнение привести к виду Метод разложения на множители тригонометрических уравнений примеры, используя разные приемы.

Решить уравнение: Метод разложения на множители тригонометрических уравнений примеры

Перенесем правую часть уравнения в левую и преобразуем:

Метод разложения на множители тригонометрических уравнений примеры

Метод разложения на множители тригонометрических уравнений примеры

Метод разложения на множители тригонометрических уравнений примеры

Метод разложения на множители тригонометрических уравнений примеры, Метод разложения на множители тригонометрических уравнений примеры.

Ответ: Метод разложения на множители тригонометрических уравнений примеры.

В этом случае мы использовали метод группировки для разложения на множители тригонометрического выражения.

Часто для преобразования выражения в произведение нужно использовать тригонометрические формулы. Рассмотрим такой пример:

Решить уравнение: Метод разложения на множители тригонометрических уравнений примеры

Преобразуем разность синусов в произведение:

Метод разложения на множители тригонометрических уравнений примеры

Теперь вынесем за скобку общий множитель:

Метод разложения на множители тригонометрических уравнений примеры

И решим каждое из двух уравнений: Метод разложения на множители тригонометрических уравнений примеры.

Метод разложения на множители тригонометрических уравнений примеры

Метод разложения на множители тригонометрических уравнений примеры. Заметим, что вторая серия решений включается в первую. Поэтому мы можем оставить в ответе только первую серию.

Ответ: Метод разложения на множители тригонометрических уравнений примеры.

2. Замена переменной

Еще один метод решения тригонометрических уравнений — это метод разложения на множители. Мы уже знакомились с ним, когда решали уравнения, сводимые к квадратному или другому алгебраическому уравнению, когда решали однородные уравнения, а также знакомились с универсальной тригонометрической подстановкой. На этом уроке мы познакомимся еще с одной заменой, которая позволяет решать тригонометрические уравнения.

Рассмотрим уравнение вида:

Метод разложения на множители тригонометрических уравнений примерыили Метод разложения на множители тригонометрических уравнений примеры.

Для его решения введем новую переменную Метод разложения на множители тригонометрических уравнений примеры.

Тогда Метод разложения на множители тригонометрических уравнений примеры.

Выразим отсюда Метод разложения на множители тригонометрических уравнений примеры(или Метод разложения на множители тригонометрических уравнений примеры).

Решите уравнение Метод разложения на множители тригонометрических уравнений примеры

Сделаем замену Метод разложения на множители тригонометрических уравнений примеры. Тогда Метод разложения на множители тригонометрических уравнений примеры.

Вспомогательное уравнение имеет вид:

Метод разложения на множители тригонометрических уравнений примеры.

Метод разложения на множители тригонометрических уравнений примеры.

Вернемся к исходной переменной:

Метод разложения на множители тригонометрических уравнений примеры.

Решим каждое из этих уравнений с помощью формулы введения вспомогательного угла:

Метод разложения на множители тригонометрических уравнений примеры, Метод разложения на множители тригонометрических уравнений примеры.

Так как Метод разложения на множители тригонометрических уравнений примеры, то оба уравнения имеют решения:

Метод разложения на множители тригонометрических уравнений примеры, Метод разложения на множители тригонометрических уравнений примеры.

Ответ: Метод разложения на множители тригонометрических уравнений примеры.

3. Теперь рассмотрим метод оценки

Часто этот метод применяют в том случае, когда уравнение включает в себя функции разного типа, например, тригонометрические и показательные, и обычные преобразования на приводят к результату. Но мы рассмотрим метод оценки при решении тригонометрических уравнений. Он основан на свойстве ограниченности тригонометрических выражений.

Решить уравнение: Метод разложения на множители тригонометрических уравнений примеры.

Мы знаем, что Метод разложения на множители тригонометрических уравнений примеры. С другой стороны, для того чтобы произведение двух различных чисел было равно 1, то они должны быть взаимно обратными, то есть если одно из них меньше 1,то другое больше 1. Но так как косинус больше 1 быть не может, то равенство может выполняться только в двух случаях:

Метод разложения на множители тригонометрических уравнений примерыили Метод разложения на множители тригонометрических уравнений примеры.

Метод разложения на множители тригонометрических уравнений примерыили Метод разложения на множители тригонометрических уравнений примеры.

Метод разложения на множители тригонометрических уравнений примерыили Метод разложения на множители тригонометрических уравнений примеры.

Вторая система ни при каких значениях k и n не имеет решений.

Первая система имеет решения при n=3m, k=2m, поэтому ее решения, а значит, и решение уравнения: Метод разложения на множители тригонометрических уравнений примеры

Ответ: Метод разложения на множители тригонометрических уравнений примеры

Рассмотрим еще один пример, в котором метод оценки применяется для решения уравнения, правая и левая части которого являются функциями разного типа.

Метод разложения на множители тригонометрических уравнений примеры

Рассмотрим левую часть уравнения и преобразуем его:

Метод разложения на множители тригонометрических уравнений примеры.

Поэтому Метод разложения на множители тригонометрических уравнений примеры

Теперь рассмотрим правую часть: Метод разложения на множители тригонометрических уравнений примеры.

Поэтому данное уравнение решений не имеет.

Ответ: решений нет

Рассмотрим несколько задач.

Метод разложения на множители тригонометрических уравнений примеры

Домножим уравнение на 2 и воспользуемся формулой понижения степени:

Метод разложения на множители тригонометрических уравнений примеры

Метод разложения на множители тригонометрических уравнений примеры

Метод разложения на множители тригонометрических уравнений примеры

Теперь воспользуемся формулой преобразования суммы косинусов с произведение:

Метод разложения на множители тригонометрических уравнений примеры.

Теперь перенесем правую часть в левую и вынесем за скобку общий множитель:

Метод разложения на множители тригонометрических уравнений примеры

Метод разложения на множители тригонометрических уравнений примеры

Теперь используем формулу преобразования разности косинусов в произведение:

Метод разложения на множители тригонометрических уравнений примеры

Метод разложения на множители тригонометрических уравнений примерыТеперь решим три простейших тригонометрических уравнения:

Метод разложения на множители тригонометрических уравнений примеры, Метод разложения на множители тригонометрических уравнений примеры.

В этом случае достаточно оставить первые две серии решений, так как числа вида Метод разложения на множители тригонометрических уравнений примерыпри нечетных значениях m попадают в первую серию решений, а при четных — во вторую.

Таким образом, получаем ответ:

Ответ: Метод разложения на множители тригонометрических уравнений примеры

Метод разложения на множители тригонометрических уравнений примеры

Используя метод вспомогательного угла, оценим выражение, стоящее в левой части уравнения.

То есть будем рассматривать левую часть уравнения как выражение вида:

Метод разложения на множители тригонометрических уравнений примеры, где Метод разложения на множители тригонометрических уравнений примеры.

Метод разложения на множители тригонометрических уравнений примеры

Мы знаем, что Метод разложения на множители тригонометрических уравнений примеры, поэтому Метод разложения на множители тригонометрических уравнений примеры

Поэтому уравнение решений не имеет.

Ответ: решений нет.

Рассмотрим решение более сложного уравнения методом оценки.

Метод разложения на множители тригонометрических уравнений примеры

Запишем уравнение в виде

Метод разложения на множители тригонометрических уравнений примеры

Преобразуем левую часть:

Метод разложения на множители тригонометрических уравнений примеры

Так как Метод разложения на множители тригонометрических уравнений примеры, то

Метод разложения на множители тригонометрических уравнений примерыи Метод разложения на множители тригонометрических уравнений примеры.

Так как Метод разложения на множители тригонометрических уравнений примерыи Метод разложения на множители тригонометрических уравнений примеры, то

Метод разложения на множители тригонометрических уравнений примеры

Равенство возможно только при одновременном выполнении условий:

Метод разложения на множители тригонометрических уравнений примеры.

Метод разложения на множители тригонометрических уравнений примерыМетод разложения на множители тригонометрических уравнений примеры,

Метод разложения на множители тригонометрических уравнений примеры.

Метод разложения на множители тригонометрических уравнений примеры.

Метод разложения на множители тригонометрических уравнений примеры, Метод разложения на множители тригонометрических уравнений примеры.

Решая эту систему, получим, чтоМетод разложения на множители тригонометрических уравнений примеры, Метод разложения на множители тригонометрических уравнений примеры.

Ответ: Метод разложения на множители тригонометрических уравнений примеры, Метод разложения на множители тригонометрических уравнений примеры.

Рассмотрим еще один прием, который применяется при решении тригонометрических уравнений.

Домножение левой и правой части на тригонометрическую функцию

Рассмотрим решение уравнения: Метод разложения на множители тригонометрических уравнений примеры

Домножим обе части уравнения на Метод разложения на множители тригонометрических уравнений примеры:

Метод разложения на множители тригонометрических уравнений примеры.

Заметим, что домножая обе части уравнения на выражение с переменной, мы можем получить новые корни. Проверим те значения переменной, при которой Метод разложения на множители тригонометрических уравнений примеры:

Метод разложения на множители тригонометрических уравнений примерыне являются решением исходного уравнения, поэтому мы должны будем удалить эти числа из полученного решения.

Теперь с помощью формулы синуса двойного аргумента преобразуем полученное уравнение:

Метод разложения на множители тригонометрических уравнений примеры

Метод разложения на множители тригонометрических уравнений примеры

Метод разложения на множители тригонометрических уравнений примеры

Теперь перенесем правую часть в левую и преобразуем по формуле преобразования разности синусов в произведение:

Метод разложения на множители тригонометрических уравнений примеры

Метод разложения на множители тригонометрических уравнений примеры

Метод разложения на множители тригонометрических уравнений примеры, Метод разложения на множители тригонометрических уравнений примеры.

Учитывая, что Метод разложения на множители тригонометрических уравнений примеры, получим: Метод разложения на множители тригонометрических уравнений примеры.

Ответ: Метод разложения на множители тригонометрических уравнений примеры.

Примеры и разборы решений заданий тренировочного модуля

Метод разложения на множители тригонометрических уравнений примеры

Ответ: Метод разложения на множители тригонометрических уравнений примеры

Решите уравнение. Найдите коэффициенты a, b, c

Метод разложения на множители тригонометрических уравнений примеры

Ответ: Метод разложения на множители тригонометрических уравнений примеры

Представим левую и правую части уравнения в виде произведения. Затем перенесём всё в левую часть и разложим на множители

Ответ: Метод разложения на множители тригонометрических уравнений примеры

🌟 Видео

Урок № 18. Тригонометрические уравнения. Метод разложения на множители.Скачать

Урок № 18. Тригонометрические уравнения. Метод разложения на множители.

11 апреля. Алгебра. Решение тригонометрических уравнений методом разложения на множителиСкачать

11 апреля. Алгебра. Решение тригонометрических уравнений методом разложения на множители

ЕГЭ ТРИГОНОМЕТРИЯ. Решение тригонометрических уравнений методом разложения на множителиСкачать

ЕГЭ ТРИГОНОМЕТРИЯ. Решение тригонометрических уравнений методом разложения на множители

Алгебра 10 класс (Урок№47 - Методы решения тригонометрических уравнений.)Скачать

Алгебра 10 класс (Урок№47 - Методы решения тригонометрических уравнений.)

Подготовка к ЕГЭ #85. Решение тригонометрических уравнений методом разложения на множителиСкачать

Подготовка к ЕГЭ #85. Решение тригонометрических уравнений методом разложения на множители

Методы решения тригонометрических уравнений Разложение на множителиСкачать

Методы решения тригонометрических уравнений Разложение на множители

Математика. Пример решения тригонометрического уравнения при помощи разложения на множителиСкачать

Математика. Пример решения тригонометрического уравнения при помощи разложения на множители

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Решение тригонометрических уравнений. Однородные уравнения. 10 класс.Скачать

Решение тригонометрических уравнений. Однородные уравнения. 10 класс.

Решение тригонометрических уравнений методом разложения на множители Подготовка к ГВЭ11+ЕГЭ 2021 #85Скачать

Решение тригонометрических уравнений методом разложения на множители Подготовка к ГВЭ11+ЕГЭ 2021 #85
Поделиться или сохранить к себе: