О чем эта статья:
5 класс, 6 класс, 7 класс
- Понятие дроби
- Основные свойства дробей
- Понятие уравнения
- Понятие дробного уравнения
- Как решать уравнения с дробями
- 1. Метод пропорции
- 2. Метод избавления от дробей
- Что еще важно учитывать при решении
- Универсальный алгоритм решения
- Примеры решения дробных уравнений
- Уравнения со смешанными дробями
- Урок математики, 5-й класс, тема «Смешанные числа»
- 🔥 Видео
Видео:Смешанные числа. 5 класс.Скачать

Понятие дроби
Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.
Дробь — это рациональное число, представленное в виде a/b, где a — числитель дроби, b — знаменатель. Есть два формата записи:
- обыкновенный вид — ½ или a/b,
- десятичный вид — 0,5.
Дробь — это одна из форм деления, записываемая с помощью дробной черты. Над чертой принято писать делимое (число, которое делим) — числитель. А под чертой всегда находится делитель (на сколько делим), его называют знаменателем. Черта между числителем и знаменателем означает деление.
Дроби бывают двух видов:
- Числовые — состоят из чисел. Например, 2/7 или (1,8 − 0,3)/5.
- Алгебраические — состоят из переменных. Например, (x + y)/(x − y). Значение дроби зависит от данных значений букв.
Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.
Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3/5.
Видео:Математика 5 класс (Урок№71 - Понятие смешанной дроби.)Скачать

Основные свойства дробей
Дробь не имеет значения, если делитель равен нулю.
Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.
Дроби a/b и c/d называют равными, если a × d = b × c.
Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.
Действия с дробями можно выполнять те же, что и с обычными числами: складывать, вычитать, умножать и делить. Также, дроби можно сравнивать между собой и возводить в степень.
Видео:Смешанные числа. Практическая часть. 5 класс.Скачать

Понятие уравнения
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Наша задача — найти неизвестные числа так, чтобы при их подстановке в пример получилось верное числовое равенство. Давайте на примере:
- Возьмем выражение 4 + 5 = 9. Это верное равенство, потому что 4+5 действительно 9. Если бы вместо 9 стояло любое другое число — мы бы сказали, что числовое равенство неверное.
- Уравнением можно назвать выражение 4 + x = 9, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.
Корень уравнения — то самое число, которое уравнивает выражения справа и слева, когда мы подставляем его на место неизвестной. В таком случае афоризм «зри в корень» — очень кстати при усердном решении уравнений.
Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.
Решить уравнение значит найти все его корни или убедиться, что корней нет.
Алгебраические уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные. Расскажем и про них.
| Линейное уравнение выглядит так | ах + b = 0, где a и b — действительные числа. Что поможет в решении:
|
|---|---|
| Квадратное уравнение выглядит так: | ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0. |
Видео:МАТЕМАТИКА 5 КЛАСС: РЕШЕНИЕ УРАВНЕНИЙ СО СМЕШАННЫМИ ЧИСЛАМИСкачать

Понятие дробного уравнения
Дробное уравнение — это уравнение с дробями. Да, вот так просто. Но это еще не все. Чаще всего неизвестная стоит в знаменателе. Например, вот так:

Такие уравнения еще называют дробно-рациональными. В них всегда есть хотя бы одна дробь с переменной в знаменателе.
Если вы видите в знаменателях числа, то это уравнения либо линейные, либо квадратные. Решать все равно нужно, поэтому идем дальше. Примеры:

На алгебре в 8 классе можно встретить такое понятие, как область допустимых значений — это множество значений переменной, при которых это уравнение имеет смысл. Его используют, чтобы проверить корни и убедиться, что решение правильное.
Мы уже знаем все важные термины, их определения и наконец подошли к самому главному — сейчас узнаем как решить дробное уравнение.
Видео:Смешаные числа. 5 классСкачать

Как решать уравнения с дробями
1. Метод пропорции
Чтобы решить уравнение методом пропорции, нужно привести дроби к общему знаменателю. А само правило звучит так: произведение крайних членов пропорции равно произведению средних. Проверим, как это работает.
Итак, у нас есть линейное уравнение с дробями:
В левой части стоит одна дробь — оставим без преобразований. В правой части видим сумму, которую нужно упростить так, чтобы осталась одна дробь.
После того, как в левой и правой части осталась одна дробь, можно применить метод пропорции и перемножить крест-накрест числители и знаменатели.
2. Метод избавления от дробей
Возьмем то же самое уравнение, но попробуем решить его по-другому.
В уравнении есть две дроби, от которых мы очень хотим избавиться. Вот, как это сделать:
- подобрать число, которое можно разделить на каждый из знаменателей без остатка;
- умножить на это число каждый член уравнения.
Ищем самое маленькое число, которое делится на 5 и 9 и без остатка — 45 как раз подходит. Умножаем каждый член уравнения на 45 и избавляемся от знаменателей. Вуаля!
Вот так просто мы получили тот же ответ, что и в прошлый раз.
Что еще важно учитывать при решении
- если значение переменной обращает знаменатель в 0, значит это неверное значение;
- делить и умножать уравнение на 0 нельзя.
Универсальный алгоритм решения
Определить область допустимых значений.
Найти общий знаменатель.
Умножить каждый член уравнения на общий знаменатель и сократить полученные дроби. Знаменатели при этом пропадут.
Раскрыть скобки, если нужно и привести подобные слагаемые.
Решить полученное уравнение.
Сравнить полученные корни с областью допустимых значений.
Записать ответ, который прошел проверку.
Курсы по математике от Skysmart помогут закрепить материал и разобраться в сложных темах.
Видео:Математика 5 класс (Урок№73 - Вычитание смешанных дробей.)Скачать

Примеры решения дробных уравнений
Чтобы стать успешным в любом деле, нужно чаще практиковаться. Мы уже знаем, как решаются дробные уравнения — давайте перейдем к решению задачек.
Пример 1. Решить дробное уравнение: 1/x + 2 = 5.
- Вспомним правило х ≠ 0. Это значит, что область допустимых значений: х — любое число, кроме нуля.
- Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
- Избавимся от знаменателя. Умножим каждый член уравнения на х.
Решим обычное уравнение.
Пример 2. Найти корень уравнения
- Область допустимых значений: х ≠ −2.
- Умножим обе части уравнения на выражение, которое сократит оба знаменателя: 2(х+2)
- Избавимся от знаменателя. Умножим каждый член уравнения на х.
Переведем новый множитель в числитель..
Сократим левую часть на (х+2), а правую на 2.
Пример 3. Решить дробное уравнение:
- Найти общий знаменатель:
Умножим обе части уравнения на общий знаменатель. Сократим. Получилось:
Выполним возможные преобразования. Получилось квадратное уравнение:
Решим полученное квадратное уравнение:
Получили два возможных корня:
Если x = −3, то знаменатель равен нулю:
Если x = 3 — знаменатель тоже равен нулю.
Видео:Математика 5 класс. Смешанные числаСкачать

Уравнения со смешанными дробями
Уравнения со смешанными дробями можно решать двумя способами. Рассмотрим каждый из них на примере.
Решить уравнение со смешанными дробями:
1 способ: Это — линейное уравнение . Неизвестные — в одну сторону, известные — в другую, изменив при этом их знаки:
Обе части уравнения делим на число, стоящее перед иксом:
Смешанные числа переведем в неправильные дроби:
Теперь обе части уравнения умножаем на наименьший общий знаменатель всех входящих в него дробей:
Таким образом, уравнение со смешанными дробями заменили на уравнение с целыми числами:
Это — линейные уравнения. Неизвестные — в одну сторону, известные — в другую, изменив при этом их знаки:
Обе части уравнения делим на число, стоящее перед иксом:
Ответ записываем в виде обыкновенной дроби:
Решать уравнения со смешанными числами можно обоими способами. На мой взгляд, второй способ удобнее. Еще два уравнения со смешанными дробями, решенные с помощью умножения на наименьший общий знаменатель.
Переводим смешанные числа в неправильные дроби:
Обе части уравнения умножаем на наименьший общий знаменатель всех дробей:
От уравнения со смешанными числами переходим к уравнению с целыми числами:
неизвестные слагаемые переносим в одну сторону, известные — в другую, изменяя при переносе знаки:
Обе части уравнения делим на число, стоящее перед иксом:
Видео:Сложение и вычитание смешанных чиселСкачать

Урок математики, 5-й класс, тема «Смешанные числа»
Разделы: Математика
Класс: 5
Цель урока:
- Образовательная:
- развитие компетенций:
- использование теоретических знаний на практике;
- умение сравнивать; решать уравнения;
- Развивающая:
- развитие логического мышления, умение переходить от
- простого к более сложному, умение устанавливать соответствие поставленной цели результатам своей деятельности;
- Воспитательная:
- привитие навыка аккуратного оформления работы;
- воспитание ответственности за качество обучения.
Оборудование: мультимедийный проектор, интерактивная доска, диск.
Структура урока:
- Организационный момент.
- Устный счет (работа с мультимедиа)
- Решение упражнений.
- Физкультминутка для глаз.
- Устный счет (работа с интерактивной доской).
- Самостоятельная работа.
- Задание на дом.
- Подведение итогов урока. Обратная рефлексия.
1. Организационный момент (2 мин.)
Цели: способствовать созданию для учащихся рабочей обстановки.
Сформулировать совместно с учащимися цель урока и с какими компетенциями предстоит работа в течение урока. Над данной темой мы уже работали несколько уроков, подумайте и постарайтесь оценить по 5-бальной системе свою компетентность по теме «Смешанные числа», оценку поставьте на полях, ниже записи числа, а в конце урока проверим, насколько точно мы определили свои знания.






б) Представить смешанное число в виде неправильной дроби: (Приложение 1, слайд 4)
5 





в) Представить данное число в виде дроби со знаменателем: (Приложение 1, слайд 5)
5 = 


3. Решение упражнений (13 мин.)
В первый день старик поймал 

1-й день – 

2-й день – ? кг.
1) 


2) 


Ответ: 
2) Решение уравнений (9 мин.)
а) 

(х = 


4. Физкультминутка для глаз (2 мин.)
Положите руки перед собой на стол.
Крепко зажмурьте глаза на 3-5 секунд. Затем широко их откройте, тоже на 3-5 секунд. Повторите это упражнение 3 раза.
Часто поморгайте глазами, представляя, как порхает бабочка своими красивыми крылышками в течение, пока я досчитаю до тридцати.
Закройте глаза и постарайтесь «рисовать» ими восьмерку пока я досчитаю до десяти.
Продолжаем работу.
5. Устные упражнения: (работа на интерактивной доске) (5 мин )
Задание:
Распределите числа, записанные на доске на три группы:
- правильные дроби
- неправильные дроби
- смешанные числа.
У доски один ученик «перетаскивает» числа, в это время остальные
самостоятельно решают задачу.
Задача 2. (Решается самостоятельно с последующей самостоятельной проверкой по готовому решению) (Приложение 1, слайд 7)
Спица на куполе дворца может выдержать вес 


1) 
2) 
Ответ: спица не выдержит.
Проверяется выполнение задания на интерактивной доске и обсуждаются вопросы:
– Какая дробь называется правильной?
– Какая дробь называется неправильной?
– Дать понятие смешанного числа.
По мультимедиа проверить самостоятельное решение задачи 2.
6. Самостоятельная работа по двум вариантам (10 мин.) (Приложение 1, слайд 8)
I. Сравнить дроби:
а) 1 и
; а)
и 1;
б) 4и 8
; б) 12
и 21
;
в) 15и 15
; в) 17
и 17
;
а) 1 –
+
; а) 1 –
+
;
б) 1–
+ 2; б)
+ 3 –
;
III. Решить уравнение:
х –
= 1
х +
= 1
.
Работы сдаются на проверку учителю и окончательное соответствие оценки своих знаний каждым ребенком, поставленной в начале данного урока, и результата самостоятельной работы проведем на следующем занятии.
7. Задание на дом (1 мин.)
8. Рефлексия урока (1 мин.)
Соотнесите собственную цель урока с полученными результатами. Выставьте себе оценку за урок и проверьте, соответствует ли она той, которую вы определили в начале урока.
🔥 Видео
СМЕШАННЫЕ ЧИСЛА. §29 математика 5 классСкачать

5 класс, 28 урок, Смешанные числаСкачать

5 класс, 29 урок, Сложение и вычитание смешанных чиселСкачать

Уравнения с дробями. Как решать уравнения с дробями в 5 классе.Скачать

Уравнение с дробями видео урок ( Математика 5 класс )Скачать

математика 5 класс Смешанные числаСкачать

Сложные уравнения со скобками. Как решать уравнения в несколько действий в 5 классе.Скачать

Вычитание смешанных чисел. 5 класс.Скачать

Сложение дробей и смешанных чисел. Практическая часть. 5 класс.Скачать

СМЕШАННЫЕ ДРОБИ ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэСкачать

Сложение дробей и смешанных чисел. 5 класс.Скачать

Уравнение. 5 класс.Скачать

































; а)
и 1;
и 8
и 15
; в) 17
и 17
;
+
; а) 1 –
+
;
–
+ 2; б)
+ 3 –
;
= 1
х +
= 1
.