Видео:Линейные однородные дифференциальные уравнения n-го порядка с постоянными коэффициентамСкачать
Вид общего решения
Рассмотрим линейное однородное дифференциальное уравнение с постоянными коэффициентами:
(1) .
Его решение можно получить следуя общему методу понижения порядка.
Однако проще сразу получить фундаментальную систему n линейно независимых решений и на ее основе составить общее решение. При этом вся процедура решения сводится к следующим шагам.
Ищем решение уравнения (1) в виде . Получаем характеристическое уравнение:
(2) .
Оно имеет n корней. Решаем уравнение (2) и находим его корни . Тогда характеристическое уравнение (2) можно представить в следующем виде:
(3) .
Каждому корню соответствует одно из линейно независимых решений фундаментальной системы решений уравнения (1). Тогда общее решение исходного уравнения (1) имеет вид:
(4) .
Действительные корни
Рассмотрим действительные корни. Пусть корень однократный. То есть множитель входит в характеристическое уравнение (3) только один раз. Тогда этому корню соответствует решение
.
Пусть – кратный корень кратности p . То есть
. В этом случае множитель входит в характеристическое уравнение (3) p раз:
.
Этим кратным (равным) корням соответствуют p линейно независимых решений исходного уравнения (1):
; ; ; . ; .
Комплексные корни
Рассмотрим комплексные корни характеристического уравнения (3). Выразим комплексный корень через действительную и мнимую части:
.
Поскольку коэффициенты исходного уравнения (1) действительные, то кроме корня имеется комплексно сопряженный корень
.
Пусть комплексный корень однократный. Тогда паре корней соответствуют два линейно-независимых решения уравнения (1):
; .
Пусть – кратный комплексный корень кратности p . Тогда комплексно сопряженное значение также является корнем характеристического уравнения кратности p и множитель входит в разложение на множители (3) p раз:
.
Этим 2 p корням соответствуют 2 p линейно независимых решений:
; ; ; . ;
; ; ; . .
После того как фундаментальная система линейно независимых решений найдена, по формуле (4) получаем общее решение уравнения (1).
Видео:15. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентамиСкачать
Примеры решений задач
Пример 1
Найти общее решение однородного дифференциального уравнения седьмого порядка с постоянными коэффициентами:
.
Ищем решение в виде . Составляем характеристическое уравнение:
.
Преобразуем его:
;
;
.
Рассмотрим корни этого уравнения. Мы получили четыре комплексных корня кратности 2:
; .
Им соответствуют четыре линейно-независимых решения исходного уравнения:
; ; ; .
Также мы имеем три действительных корня кратности 3:
.
Им соответствуют три линейно-независимых решения:
; ; .
Общее решение исходного уравнения имеет вид:
.
Пример 2
Это однородное дифференциальное уравнение второго порядка с постоянными коэффициентами. Ищем решение в виде . Составляем характеристическое уравнение:
.
Решаем квадратное уравнение.
.
Мы получили два комплексных корня:
.
Им соответствуют два линейно-независимых решения:
.
Общее решение уравнения:
.
Пример 3
Найти общее решение однородного дифференциального уравнения четвертого порядка с постоянными коэффициентами:
.
Ищем решение в виде . Составляем характеристическое уравнение:
.
Выносим за скобки:
(П3.1) .
Решаем квадратное уравнение :
.
Получили два комплексных корня, которые обозначим как . Тогда . Перепишем характеристическое уравнение (П3.1) в эквивалентном виде:
.
Отсюда видно, что оно имеет два кратных корня кратности 2, и два комплексно сопряженных корня . Кратным корням соответствуют два линейно независимых решения:
;
.
Комплексно сопряженным корням , соответствуют решения
.
Общее решение:
.
Автор: Олег Одинцов . Опубликовано: 29-07-2013 Изменено: 27-10-2020
Видео:Линейное однородное дифференциальное уравнение 2-го порядка с постоянными коэффициентами.Скачать
Линейные дифференциальные уравнения с постоянными коэффициентами. Специальная часть Ax + B
Решение было получено и оформлено с помощью сервиса:
Дифференциальные уравнения
Пример 2. y’’ -2y’ + y = x-1
Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами.
Решение уравнения будем искать в виде y = e rx . Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами:
r 2 -2 r + 1 = 0
D = (-2) 2 — 4 • 1 • 1 = 0
Корни характеристического уравнения:
Корень характеристического уравнения r1 = 1 кратности 2.
Следовательно, фундаментальную систему решений составляют функции:
y1 = e x
y2 = xe x
Общее решение однородного уравнения имеет вид:
Рассмотрим правую часть:
f(x) = x-1
Поиск частного решения.
Линейное дифференциальное уравнение с постоянными коэффициентами и правой частью вида:
R(x) = e αx (P(x)cos(βx) + Q(x)sin(βx)), где P(x), Q(x) — некоторые полиномы
имеет частное решение
y(x) = x k e αx (R(x)cos(βx) + S(x)sin(βx))
где k — кратность корня α+βi характеристического полинома соответствующего однородного уравнения, R(x), S(x) — полиномы, подлежащие определению, степень которых равна максимальной степени полиномов P(x), Q(x).
Здесь P(x) = x-1, Q(x) = 0, α = 0, β = 0.
Следовательно, число α + βi = 0 + 0i не является корнем характеристического уравнения .
Уравнение имеет частное решение вида:
y * = Ax + B
Вычисляем производные:
y’ = A
y» = 0
которые подставляем в исходное дифференциальное уравнение:
y» -2y’ + y = -2A + (Ax + B) = x-1
или
A•x-2A+B = x-1
Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:
A = 1
-2A + B = -1
Откуда: A = 1;B = 1;
Частное решение имеет вид:
y * = x + 1
Таким образом, общее решение дифференциального уравнения имеет вид:
Пример 3. y’’ +6y’ + 9y = 9x 2 +12x-43
Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами.
Решение уравнения будем искать в виде y = e rx . Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами:
r 2 +6 r + 9 = 0
D = 6 2 — 4 • 1 • 9 = 0
Корни характеристического уравнения:
Корень характеристического уравнения r1 = -3 кратности 2.
Следовательно, фундаментальную систему решений составляют функции:
y1 = e -3x
y2 = xe -3x
Общее решение однородного уравнения имеет вид:
Рассмотрим правую часть:
f(x) = 9•x 2 +12•x-43
Поиск частного решения.
Линейное дифференциальное уравнение с постоянными коэффициентами и правой частью вида:
R(x) = e αx (P(x)cos(βx) + Q(x)sin(βx)), где P(x), Q(x) — некоторые полиномы
имеет частное решение
y(x) = x k e αx (R(x)cos(βx) + S(x)sin(βx))
где k — кратность корня α+βi характеристического полинома соответствующего однородного уравнения, R(x), S(x) — полиномы, подлежащие определению, степень которых равна максимальной степени полиномов P(x), Q(x).
Здесь P(x) = 9•x 2 +12•x-43, Q(x) = 0, α = 0, β = 0.
Следовательно, число α + βi = 0 + 0i не является корнем характеристического уравнения .
Уравнение имеет частное решение вида:
y * = Ax 2 + Bx + C
Вычисляем производные:
y’ = 2•A•x+B
y» = 2•A
которые подставляем в исходное дифференциальное уравнение:
y» + 6y’ + 9y = 2•A + 6(2•A•x+B) + 9(Ax 2 + Bx + C) = 9•x 2 +12•x-43
или
9•A•x 2 +12•A•x+2•A+9•B•x+6•B+9•C = 9•x 2 +12•x-43
Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:
9A = 9
12A + 9B = 12
2A + 6B + 9C = -43
Решая ее методом Гаусса, находим:
A = 1;B = 0;C = -5;
Частное решение имеет вид:
y * = x 2 -5
Таким образом, общее решение дифференциального уравнения имеет вид:
y = C1 e -3 x + C2 xe -3 x + x 2 -5
Видео:7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.Скачать
Калькулятор Обыкновенных Дифференциальных Уравнений (ОДУ) и Систем (СОДУ)
Порядок производной указывается штрихами — y»’ или числом после одного штриха — y’5
Ввод распознает различные синонимы функций, как asin , arsin , arcsin
Знак умножения и скобки расставляются дополнительно — запись 2sinx сходна 2*sin(x)
Список математических функций и констант :
• ln(x) — натуральный логарифм
• sh(x) — гиперболический синус
• ch(x) — гиперболический косинус
• th(x) — гиперболический тангенс
• cth(x) — гиперболический котангенс
• sch(x) — гиперболический секанс
• csch(x) — гиперболический косеканс
• arsh(x) — обратный гиперболический синус
• arch(x) — обратный гиперболический косинус
• arth(x) — обратный гиперболический тангенс
• arcth(x) — обратный гиперболический котангенс
• arsch(x) — обратный гиперболический секанс
• arcsch(x) — обратный гиперболический косеканс
🎥 Видео
16. Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентамиСкачать
Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать
4. Однородные дифференциальные уравнения (часть 1)Скачать
ЛОДУ 2 порядка c постоянными коэффициентамиСкачать
Однородное дифференциальное уравнениеСкачать
Линейное неоднородное дифференциальное уравнение с постоянными коэффициентами 4y''-y=x^3-24x #1Скачать
Дифференциальные уравнения, 4 урок, Линейные дифференциальные уравнения первого порядкаСкачать
Математика без Ху!ни. Линейное неоднородное уравнение 1 порядка. Метод вариации постоянной.Скачать
Дифференциальные уравнения, 3 урок, Однородные уравненияСкачать
18+ Математика без Ху!ни. Дифференциальные уравнения. Однородное уравнение.Скачать
Линейное дифференциальное уравнение Коши-ЭйлераСкачать
Линейные однородные дифференциальные уравнения 1-го порядка. Высшая математика.Скачать
Однородные дифференциальные уравнения первого порядка #calculus #differentialequation #maths #Скачать
Однородное линейное дифференциальное уравнение. Алгоритм решенияСкачать