Квадратное уравнение как влияют коэффициенты

Квадратное уравнение как влияют коэффициенты

Этот способ решения помогает не только сэкономить время, но и развить внимание.

Дано квадратное уравнение ax 2 + bx + c = 0 . Если a + b + c = 0 (сумма коэффициентов), то

Квадратное уравнение как влияют коэффициенты

Дано квадратное уравнение ax 2 + bx + c = 0 . Если a — b + c = 0 (сумма коэффициентов), когда b взято с противоположным знаком или a + c = b, то

341x 2 + 290x — 51 = 0

Здесь, a = 341, b = 290, c = -51.

Проверим удовлетворяют ли коэффициенты условию

341 — 51 = 290. Получим а + с = b. Следовательно, мы

можем воспользоваться свойством 2.

Если в квадратном уравнении ax 2 + bx + c = 0 . Коэффициент b представлен в виде 2k, т.е. является четным числом, то формулу корней уравнения можно переписать в более простом виде

Видео:Определение знаков коэффициентов квадратного уравнения (параболы) по рисунку/ЗНО 2010 #25Скачать

Определение знаков коэффициентов квадратного уравнения (параболы) по рисунку/ЗНО 2010 #25

Как определить a, b и c по графику параболы

Предположим, вам попался график функции (y=ax^2+bx+c) и нужно по этому графику определить коэффициенты (a), (b) и (c). В этой статье я расскажу 3 простых способа сделать это.

Видео:СВОЙСТВА КОЭФФИЦИЕНТОВ 😉 #shorts #егэ #огэ #математика #профильныйегэСкачать

СВОЙСТВА КОЭФФИЦИЕНТОВ 😉 #shorts #егэ #огэ #математика #профильныйегэ

1 способ – ищем коэффициенты на графике

Данный способ хорош, когда координаты вершины и точка пересечения параболы с осью (y) – целые числа. Если это не так, советую использовать способ 2.

Коэффициент (a) можно найти с помощью следующих фактов:

— Если (a>0), то ветви параболы направленных вверх, если (a 1), то график вытянут вверх в (a) раз по сравнению с «базовым» графиком (у которого (a=1)). Вершина при этом остается на месте. Это наглядно видно по выделенным точкам.

Квадратное уравнение как влияют коэффициенты

Ищем 3 точки с целыми координатами, принадлежащие параболе.
Пример:

Квадратное уравнение как влияют коэффициенты

Выписываем координаты этих точек и подставляем в формулу квадратичной функции: (y=ax^2+bx+c). Получится система с тремя уравнениями.

Решаем систему.
Пример:

Вычтем из второго уравнения первое:

Подставим (9a) вместо (b):

Первое и второе уравнения совпали (это нормально для точек, симметричных относительно прямой проходящей через вершину – как точки (A) и (B) в нашем случае), но нас это не остановит – мы вычтем из второго уравнение третье:

Подставим в первое уравнение (a):

Получается квадратичная функция: (y=-x^2-9x-15).

Квадратное уравнение как влияют коэффициенты

Сразу заметим, что по графику можно сразу определить, что (c=4). Это сильно облегчит нашу систему – нам хватит 2 точек. Выберем их на параболе: (C(-1;8)), (D(1;2)) (на самом деле, если присмотреться, то можно заметить, что эти точки выделены жирно на изначальной картинке – это вам подсказка от авторов задачи).

Квадратное уравнение как влияют коэффициенты

Таким образом имеем систему:

Сложим 2 уравнения:

Подставим во второе уравнение:

Теперь найдем точки пересечения двух функций:

Теперь можно найти ординату второй точки пересечения:

Видео:СУММА КОЭФФИЦИЕНТОВ: Как решать Квадратные Уравнения по МАТЕМАТИКЕ 8 классСкачать

СУММА КОЭФФИЦИЕНТОВ: Как решать Квадратные Уравнения по МАТЕМАТИКЕ 8 класс

3 способ – используем преобразование графиков функций

Этот способ быстрее первого и более универсальный, в частности он может пригодится и в задачах на другие функции.

Главный недостаток этого способа — вершина должна иметь целые координаты.

Сам способ базируется на следующих идеях:

График (y=-x^2) симметричен относительно оси (x) графику (y=x^2).

Квадратное уравнение как влияют коэффициенты

– Если (a>1) график (y=ax^2) получается растяжением графика (y=x^2) вдоль оси (y) в (a) раз.
– Если (a∈(0;1)) график (y=ax^2) получается сжатием графика (y=x^2) вдоль оси (y) в (a) раз.

Квадратное уравнение как влияют коэффициенты

– График (y=a(x+d)^2) получается сдвигом графика (y=ax^2) влево на (d) единиц.
— График (y=a(x-d)^2) получается сдвигом графика (y=ax^2) вправо на (d) единиц.

Квадратное уравнение как влияют коэффициенты

График (y=a(x+d)^2+e) получается переносом графика (y=a(x+d)^2) на (e) единиц вверх.
График (y=a(x+d)^2-e) получается переносом графика (y=a(x+d)^2) на (e) единиц вниз.

Квадратное уравнение как влияют коэффициенты

У вас наверно остался вопрос — как этим пользоваться? Предположим, мы видим такую параболу:

Квадратное уравнение как влияют коэффициенты

Сначала смотрим на её форму и направленность её ветвей. Видим, что форма стандартная, базовая и ветви направлены вверх, поэтому (a=1). То есть она получена перемещениями графика базовой параболы (y=x^2).

Квадратное уравнение как влияют коэффициенты

А как надо было перемещать зеленый график чтоб получить оранжевый? Надо сдвинуться вправо на пять единиц и вниз на (4).

Квадратное уравнение как влияют коэффициенты

То есть наша функция выглядит так: (y=(x-5)^2-4).
После раскрытия скобок и приведения подобных получаем искомую формулу:

Квадратное уравнение как влияют коэффициенты

Чтобы найти (f(6)), надо сначала узнать формулу функции (f(x)). Найдем её:

Парабола растянута на (2) и ветви направлены вниз, поэтому (a=-2). Иными словами, первоначальной, перемещаемой функцией является функция (y=-2x^2).

Квадратное уравнение как влияют коэффициенты

Парабола смещена на 2 клеточки вправо, поэтому (y=-2(x-2)^2).

Парабола поднята на 4 клеточки вверх, поэтому (y=-2(x-2)^2+4).

Видео:Метод чётного коэффициента. #егэ2022 #егэ #математика #уравнение #beeschoolСкачать

Метод чётного коэффициента. #егэ2022 #егэ #математика #уравнение #beeschool

ВЛИЯНИЕ КОЭФФИЦИЕНТОВ а, b и с НА РАСПОЛОЖЕНИЕ ГРАФИКА КВАДРАТИЧНОЙ ФУНКЦИИ

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

У р о к 15.
Влияние коэффициентов а, b и с на расположение
графика квадратичной функции

Цели: продолжить формирование умения строить график квадратичной функции и перечислять ее свойства; выявить влияние коэффициентов а, b и с на расположение графика квадратичной функции.

I. Организационный момент.

II. Устная работа.

Определите, график какой функции изображен на рисунке:

Квадратное уравнение как влияют коэффициенты

б) Квадратное уравнение как влияют коэффициенты

у = Квадратное уравнение как влияют коэффициентых 2 – 2х;

у = – Квадратное уравнение как влияют коэффициентых 2 + 4х + 1;

у = – Квадратное уравнение как влияют коэффициентых 2 + 2х – 1.

III. Формирование умений и навыков.

Прямая у = 6х + b касается параболы у = х 2 + 8, то есть имеет с ней только одну общую точку в том случае, когда уравнение 6х + b = х 2 + 8 будет иметь единственное решение.

Это уравнение является квадратным, найдем его дискриминант:

3. Выявить влияние коэффициентов а, b и с на расположение графика функции у = ах 2 + + с.

Учащиеся обладают достаточными знаниями, чтобы выполнить это задание самостоятельно. Следует предложить им все полученные выводы занести в тетрадь, при этом выделив «основную» роль каждого из коэффициентов.

1) Коэффициент а влияет на направление ветвей параболы: при а > 0 – ветви направлены вверх, при а Квадратное уравнение как влияют коэффициенты, так как а 0.

4. Определите, график какой функции изображен на рисунке, опираясь на значение коэффициентов а, b и с.

Квадратное уравнение как влияют коэффициенты

у = Квадратное уравнение как влияют коэффициентых 2 + 2х + 2;

По изображенному графику делаем следующие выводы о коэффициентах а, b и с:

а > 0, так как ветви параболы направлены вверх;

b ≠ 0, так как вершина параболы не лежит на оси ОУ;

с = –2, так как парабола пересекает ось ординат в точке (0; –2).

Всем этим условиям удовлетворяет только функция у = 2х 2 – 3х – 2.

Квадратное уравнение как влияют коэффициенты

По изображенному графику делаем следующие выводы о коэффициентах а, b и с:

5. По графику функции у = ах 2 + + с определите знаки коэффициентов а, b и с:

а) Квадратное уравнение как влияют коэффициентыб) Квадратное уравнение как влияют коэффициенты

а) Ветви параболы направлены вверх, поэтому а > 0.

Парабола пересекает ось ординат в нижней полуплоскости, поэтому с Квадратное уравнение как влияют коэффициенты. По графику видно, что т 0. Поэтому b > 0.

б) Аналогично определяем знаки коэффициентов а, b и с:

а) По теореме Виета, известно, что если х1 и х2 – корни уравнения х 2 +
+ рх + q = 0 (то есть нули данной функции), то х1 · х2 = q и х1 + х2 = –р. Получаем, что q = 3 · 4 = 12 и р = –(3 + 4) = –7.

б) Точка пересечения параболы с осью ОУ даст значение параметра q, то есть q = 6. Если график функции пересекает ось ОХ в точке (2; 0), то число 2 является корнем уравнения х 2 + рх + q = 0. Подставляя значение х = 2 в это уравнение, получим, что р = –5.

в) Своего наименьшего значения данная квадратичная функция достигает в вершине параболы, поэтому Квадратное уравнение как влияют коэффициенты, откуда р = –12. По условию значение функции у = х 2 – 12х + q в точке x = 6 равно 24. Подставляя x = 6 и у = 24 в данную функцию, находим, что q = 60.

IV. Проверочная работа.

В а р и а н т 1

1. Постройте график функции у = 2х 2 + 4х – 6 и найдите, используя график:

б) промежутки, в которых у > 0 и y 2 + 4х, найдите:

б) промежутки возрастания и убывания функции;

в) область значения функции.

3. По графику функции у = ах 2 + + с определите знаки коэффициентов а, b и с:

Квадратное уравнение как влияют коэффициенты

В а р и а н т 2

1. Постройте график функции у = –х 2 + 2х + 3 и найдите, используя график:

б) промежутки, в которых у > 0 и y 2 + 8х, найдите:

б) промежутки возрастания и убывания функции;

в) область значения функции.

3. По графику функции у = ах 2 + + с определите знаки коэффициентов а, b и с:

Квадратное уравнение как влияют коэффициенты

В о п р о с ы у ч а щ и м с я:

– Опишите алгоритм построения квадратичной функции.

– Перечислите свойства функции у = ах 2 + + с при а > 0 и при а

🎥 Видео

Свойства коэффициентов квадратного уравненияСкачать

Свойства коэффициентов квадратного уравнения

Парабола / квадратичная функция / влияние коэффициентовСкачать

Парабола / квадратичная функция / влияние коэффициентов

Квадратное уравнение с четным вторым коэффициентом (D1)Скачать

Квадратное уравнение с четным вторым коэффициентом (D1)

коэффициенты в квадратном уравненииСкачать

коэффициенты в квадратном уравнении

Быстрый способ решения квадратного уравненияСкачать

Быстрый способ решения квадратного уравнения

Неполные квадратные уравнения. Алгебра, 8 классСкачать

Неполные квадратные уравнения. Алгебра, 8 класс

Теорема Виета за 4 минуты с примерами. Как решать квадратные уравнения быстрее учителя.Скачать

Теорема Виета за 4 минуты с примерами. Как решать квадратные уравнения быстрее учителя.

Квадратное уравнение.Определение коэффициентов.8 клСкачать

Квадратное уравнение.Определение коэффициентов.8  кл

Решение квадратных уравнений. Метод разложения на множители. 8 класс.Скачать

Решение квадратных уравнений. Метод разложения на множители. 8 класс.

Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.

Решение задач с помощью квадратных уравнений. Алгебра, 8 классСкачать

Решение задач с помощью квадратных уравнений. Алгебра, 8 класс

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

Метод переброски в квадратных уравнениях. ЕГЭ и ОГЭ 2022 по математикеСкачать

Метод переброски в квадратных уравнениях. ЕГЭ и ОГЭ 2022 по математике

Задание 10 Квадратичная функция Знаки коэффициентов а и сСкачать

Задание 10 Квадратичная функция Знаки коэффициентов а и с

Влияние коэффициента а на параболуСкачать

Влияние коэффициента а на параболу

Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать

Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | Математика
Поделиться или сохранить к себе: