Здесь мы рассматриваем решение кубических уравнений вида
(1) .
Далее считаем, что – это действительные числа.
Если исходное уравнение имеет вид:
(2) ,
то разделив его на , получаем уравнение вида (1) с коэффициентами
.
Уравнение (1) имеет три корня: , и . Один из корней всегда действительный. Действительный корень мы обозначаем как . Корни и могут быть либо действительными, либо комплексно сопряженными. Действительные корни могут быть кратными. Например, если , то и – это двукратные корни (или корни кратности 2), а – простой корень.
- Если известен один корень
- Если один из корней – целый
- Поиск рациональных корней
- Формулы Кардано и Виета для решения кубического уравнения
- Примеры решений по формулам Кардано и Виета
- Решение кубических уравнений
- Решение двучленного кубического уравнения вида A x 3 + B = 0
- Решение возвратного кубического уравнения вида A x 3 + B x 2 + B x + A = 0
- Решение кубических уравнений с рациональными корнями
- Решение кубических уравнений по формуле Кардано
- «Формулы Виета как один из способов решения кубических уравнений » (стр. 6 )
- 🔥 Видео
Видео:✓ Как решать кубические уравнения. Формула Кардано | Ботай со мной #025 | Борис ТрушинСкачать
Если известен один корень
Пусть нам известен один корень кубического уравнения (1). Обозначим известный корень как . Тогда разделив уравнение (1) на , получим квадратное уравнение. Решая квадратное уравнение, найдем еще два корня и .
Для доказательства воспользуемся тем, что кубический многочлен можно представить в виде:
.
Тогда, разделив (1) на , получаем квадратное уравнение.
Примеры деления многочленов представлены на странице
“Деление и умножение многочлена на многочлен уголком и столбиком”.
Решение квадратных уравнений рассмотрено на странице
“Корни квадратного уравнения”.
Если один из корней – целый
Если исходное уравнение имеет вид:
(2) ,
и его коэффициенты , , , – целые числа, то можно попытаться найти целый корень. Если это уравнение имеет целый корень, то он является делителем коэффициента . Метод поиска целых корней заключается в том, что мы находим все делители числа и проверяем, выполняется ли для них уравнение (2). Если уравнение (2) выполняется, то мы нашли его корень. Обозначим его как . Далее делим уравнение (2) на . Получаем квадратное уравнение. Решая его, находим еще два корня.
Поиск рациональных корней
Если в уравнении (2) , , , – целые числа, причем , и целых корней нет, то можно попытаться найти рациональные корни, то есть корни вида , где и – целые.
Для этого умножим уравнение (2) на и сделаем подстановку :
;
(3) .
Далее ищем целые корни уравнения (3) среди делителей свободного члена .
Если мы нашли целый корень уравнения (3), то, возвращаясь к переменной , получаем рациональный корень уравнения (2):
.
Видео:Теорема Виета для многочлена 3 порядка. 10 класс.Скачать
Формулы Кардано и Виета для решения кубического уравнения
Если нам не известен ни один корень, и целых корней нет, то найти корни кубического уравнения можно по формулам Кардано.
Рассмотрим кубическое уравнение:
(1) .
Сделаем подстановку:
.
После этого уравнение приводится к неполному или приведенному виду:
(4) ,
где
(5) ; .
Формула Кардано для неполного (приведенного) кубического уравнения имеет вид:
;
;
;
;
.
По формуле Кардано, мы находим три корня величины . Затем, используя формулу , находим значения величины .
После разделения кубических корней величины , формула Кардано принимает следующий вид:
(6) , ,
где
(7) ; ; ;
(8) .
При , для и нужно выбирать действительные корни, которые автоматически связаны соотношением . При этом мы получим одно действительное решение и два комплексно сопряженных и .
При имеем:
; ; .
В этом случае мы имеем два кратных действительных корня. Если , то мы имеем три кратных корня.
При мы имеем три действительных корня. При этом и – комплексные. Поэтому решение приводится к тригонометрической форме, которая имеет название формулы Виета:
(9) ;
(10) ,
где
(11) ; .
Примеры решений по формулам Кардано и Виета
Решить кубические уравнения:
;
.
Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.
Г. Корн, Справочник по математике для научных работников и инженеров, 2012.
Автор: Олег Одинцов . Опубликовано: 30-04-2016 Изменено: 02-10-2016
Видео:КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примереСкачать
Решение кубических уравнений
Кубическое уравнение, содержащее коэффициенты с действительным корнем, остальные два считаются комплексно-сопряженной парой. Будут рассмотрены уравнения с двучленами и возвратные, а также с поиском рациональных корней. Вся информация будет подкреплена примерами.
Видео:Теорема БезуСкачать
Решение двучленного кубического уравнения вида A x 3 + B = 0
Кубическое уравнение, содержащее двучлен, имеет вид A x 3 + B = 0 . Его необходимо приводить к x 3 + B A = 0 с помощью деления на А , отличного от нуля. После чего можно применять формулу сокращенного умножения суммы кубов. Получаем, что
x 3 + B A = 0 x + B A 3 x 2 — B A 3 x + B A 2 3 = 0
Результат первой скобки примет вид x = — B A 3 , а квадратный трехчлен — x 2 — B A 3 x + B A 2 3 , причем только с комплексными корнями.
Найти корни кубического уравнения 2 x 3 — 3 = 0 .
Решение
Необходимо найти х из уравнения. Запишем:
2 x 3 — 3 = 0 x 3 — 3 2 = 0
Необходимо применить формулу сокращенного умножения. Тогда получим, что
x 3 — 3 2 = 0 x — 3 3 2 6 x 2 + 3 3 2 6 x + 9 2 3 = 0
Раскроем первую скобку и получим x = 3 3 2 6 . Вторая скобка не имеет действительных корней, потому как дискриминант меньше нуля.
Ответ: x = 3 3 2 6 .
Видео:ОГЭ №21 Как решать кубическое уравнение x^3+4x^2-9x-36=0 Группировка Деление многочлена столбикомСкачать
Решение возвратного кубического уравнения вида A x 3 + B x 2 + B x + A = 0
Вид квадратного уравнения — A x 3 + B x 2 + B x + A = 0 , где значения А и В являются коэффициентами. Необходимо произвести группировку. Получим, что
A x 3 + B x 2 + B x + A = A x 3 + 1 + B x 2 + x = = A x + 1 x 2 — x + 1 + B x x + 1 = x + 1 A x 2 + x B — A + A
Корень уравнения равен х = — 1 , тогда для получения корней квадратного трехчлена A x 2 + x B — A + A необходимо задействовать через нахождение дискриминанта.
Решить уравнение вида 5 x 3 — 8 x 2 — 8 x + 5 = 0 .
Решение
Уравнение является возвратным. Необходимо произвести группировку. Получим, что
5 x 3 — 8 x 2 — 8 x + 5 = 5 x 3 + 1 — 8 x 2 + x = = 5 x + 1 x 2 — x + 1 — 8 x x + 1 = x + 1 5 x 2 — 5 x + 5 — 8 x = = x + 1 5 x 2 — 13 x + 5 = 0
Если х = — 1 является корнем уравнения, тогда необходимо найти корни заданного трехчлена 5 x 2 — 13 x + 5 :
5 x 2 — 13 x + 5 = 0 D = ( — 13 ) 2 — 4 · 5 · 5 = 69 x 1 = 13 + 69 2 · 5 = 13 10 + 69 10 x 2 = 13 — 69 2 · 5 = 13 10 — 69 10
Ответ:
x 1 = 13 10 + 69 10 x 2 = 13 10 — 69 10 x 3 = — 1
Видео:Теорема Виета для уравнений высших степеней. Рациональные уравнения Часть 4 из 4Скачать
Решение кубических уравнений с рациональными корнями
Если х = 0 , то он является корнем уравнения вида A x 3 + B x 2 + C x + D = 0 . При свободном члене D = 0 уравнение принимает вид A x 3 + B x 2 + C x = 0 . При вынесении х за скобки получим, что уравнение изменится. При решении через дискриминант или Виета оно примет вид x A x 2 + B x + C = 0 .
Найти корни заданного уравнения 3 x 3 + 4 x 2 + 2 x = 0 .
Решение
3 x 3 + 4 x 2 + 2 x = 0 x 3 x 2 + 4 x + 2 = 0
Х = 0 – это корень уравнения. Следует найти корни квадратного трехчлена вида 3 x 2 + 4 x + 2 . Для этого необходимо приравнять к нулю и продолжить решение при помощи дискриминанта. Получим, что
D = 4 2 — 4 · 3 · 2 = — 8 . Так как его значение отрицательное, то корней трехчлена нет.
Ответ: х = 0 .
Когда коэффициенты уравнения A x 3 + B x 2 + C x + D = 0 целые, то в ответе можно получить иррациональные корни. Если A ≠ 1 , тогда при умножении на A 2 обеих частей уравнения проводится замена переменных, то есть у = А х :
A x 3 + B x 2 + C x + D = 0 A 3 · x 3 + B · A 2 · x 2 + C · A · A · x + D · A 2 = 0 y = A · x ⇒ y 3 + B · y 2 + C · A · y + D · A 2
Приходим к виду кубического уравнения. Корни могут быть целыми или рациональными. Чтобы получить тождественное равенство, необходимо произвести подстановку делителей в полученное уравнение. Тогда полученный y 1 будет являться корнем. Значит и корнем исходного уравнения вида x 1 = y 1 A . Необходимо произвести деление многочлена A x 3 + B x 2 + C x + D на x — x 1 . Тогда сможем найти корни квадратного трехчлена.
Найти корни заданного уравнения 2 x 3 — 11 x 2 + 12 x + 9 = 0 .
Решение
Необходимо произвести преобразование с помощью умножения на 2 2 обеих частей, причем с заменой переменной типа у = 2 х . Получаем, что
2 x 3 — 11 x 2 + 12 x + 9 = 0 2 3 x 3 — 11 · 2 2 x 2 + 24 · 2 x + 36 = 0 y = 2 x ⇒ y 3 — 11 y 2 + 24 y + 36 = 0
Свободный член равняется 36 , тогда необходимо зафиксировать все его делители:
± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 9 , ± 12 , ± 36
Необходимо произвести подстановку y 3 — 11 y 2 + 24 y + 36 = 0 , чтобы получить тождество вида
1 3 — 11 · 1 2 + 24 · 1 + 36 = 50 ≠ 0 ( — 1 ) 3 — 11 · ( — 1 ) 2 + 24 · ( — 1 ) + 36 = 0
Отсюда видим, что у = — 1 – это корень. Значит, x = y 2 = — 1 2 .
Далее следует деление 2 x 3 — 11 x 2 + 12 x + 9 на x + 1 2 при помощи схемы Горнера:
x i | Коэффициенты многочлена | |||
---|---|---|---|---|
2 | — 11 | 12 | 9 | |
— 0 . 5 | 2 | — 11 + 2 · ( — 0 . 5 ) = — 12 | 12 — 12 · ( — 0 . 5 ) = 18 | 9 + 18 · ( — 0 . 5 ) = 0 |
2 x 3 — 11 x 2 + 12 x + 9 = x + 1 2 2 x 2 — 12 x + 18 = = 2 x + 1 2 x 2 — 6 x + 9
После чего необходимо найти корни квадратного уравнения вида x 2 — 6 x + 9 . Имеем, что уравнение следует привести к виду x 2 — 6 x + 9 = x — 3 2 , где х = 3 будет его корнем.
Ответ: x 1 = — 1 2 , x 2 , 3 = 3 .
Алгоритм можно применять для возвратных уравнений. Видно, что — 1 – это его корень, значит, левая часть может быть поделена на х + 1 . Только тогда можно будет найти корни квадратного трехчлена. При отсутствии рациональных корней применяются другие способы решения для разложения многочлена на множители.
Видео:ТЕОРЕМА ВИЕТА ЗА 2 МИНУТЫСкачать
Решение кубических уравнений по формуле Кардано
Нахождение кубических корней возможно при помощи формулы Кардано. При A 0 x 3 + A 1 x 2 + A 2 x + A 3 = 0 необходимо найти B 1 = A 1 A 0 , B 2 = A 2 A 0 , B 3 = A 3 A 0 .
После чего p = — B 1 2 3 + B 2 и q = 2 B 1 3 27 — B 1 B 2 3 + B 3 .
Полученные p и q в формулу Кардано. Получим, что
y = — q 2 + q 2 4 + p 3 27 3 + — q 2 — q 2 4 + p 3 27 3
Подбор кубических корней должен удовлетворять на выходе значению — p 3 . Тогда корни исходного уравнения x = y — B 1 3 . Рассмотрим решение предыдущего примера, используя формулу Кардано.
Найти корни заданного уравнения 2 x 3 — 11 x 2 + 12 x + 9 = 0 .
Решение
Видно, что A 0 = 2 , A 1 = — 11 , A 2 = 12 , A 3 = 9 .
Необходимо найти B 1 = A 1 A 0 = — 11 2 , B 2 = A 2 A 0 = 12 2 = 6 , B 3 = A 3 A 0 = 9 2 .
Отсюда следует, что
p = — B 1 2 3 + B 2 = — — 11 2 2 3 + 6 = — 121 12 + 6 = — 49 12 q = 2 B 1 3 27 — B 1 B 2 3 + B 3 = 2 · — 11 2 3 27 — — 11 2 · 6 3 + 9 2 = 343 108
Производим подстановку в формулу Кордано и получим
y = — q 2 + q 2 4 + p 3 27 3 + — q 2 — — q 2 4 + p 3 27 3 = = — 343 216 + 343 2 4 · 108 2 — 49 3 27 · 12 3 3 + — 343 216 — 343 2 4 · 108 2 — 49 3 27 · 12 3 3 = = — 343 216 3 + — 343 216 3
— 343 216 3 имеет три значения. Рассмотрим их ниже.
— 343 216 3 = 7 6 cos π + 2 π · k 3 + i · sin π + 2 π · k 3 , k = 0 , 1 , 2
Если k = 0 , тогда — 343 216 3 = 7 6 cos π 3 + i · sin π 3 = 7 6 1 2 + i · 3 2
Если k = 1 , тогда — 343 216 3 = 7 6 cosπ + i · sinπ = — 7 6
Если k = 2 , тогда — 343 216 3 = 7 6 cos 5 π 3 + i · sin 5 π 3 = 7 6 1 2 — i · 3 2
Необходимо произвести разбиение по парам, тогда получим — p 3 = 49 36 .
Тогда получим пары: 7 6 1 2 + i · 3 2 и 7 6 1 2 — i · 3 2 , — 7 6 и — 7 6 , 7 6 1 2 — i · 3 2 и 7 6 1 2 + i · 3 2 .
Преобразуем при помощи формулы Кордано:
y 1 = — 343 216 3 + — 343 216 3 = = 7 6 1 2 + i · 3 2 + 7 6 1 2 — i · 3 2 = 7 6 1 4 + 3 4 = 7 6 y 2 = — 343 216 3 + — 343 216 3 = — 7 6 + — 7 6 = — 14 6 y 3 = — 343 216 3 + — 343 216 3 = = 7 6 1 2 — i · 3 2 + 7 6 1 2 + i · 3 2 = 7 6 1 4 + 3 4 = 7 6
x 1 = y 1 — B 1 3 = 7 6 + 11 6 = 3 x 2 = y 2 — B 1 3 = — 14 6 + 11 6 = — 1 2 x 3 = y 3 — B 1 3 = 7 6 + 11 6 = 3
Ответ: x 1 = — 1 2 , x 2 , 3 = 3
При решении кубических уравнений можно встретить сведение к решению уравнений 4 степени методом Феррари.
Видео:Математика | Кубические уравнения по методу СталлонеСкачать
«Формулы Виета как один из способов решения кубических уравнений » (стр. 6 )
Из за большого объема этот материал размещен на нескольких страницах: 1 2 3 4 5 6 |
из (1): ; (7)
из (6) и (7) получим: ,
,
.
Если подставить найденные корни в (2) , то получится условие, которому должны удовлетворять коэффициенты для того, чтобы кубическое уравнение имело корни, представляющие арифметическую прогрессию:
.
Обратно, если имеется указанная связь между коэффициентами кубического уравнения, то его корни будут членами геометрической прогрессии.
Ответ: а) ; б) .
Решение кубических уравнений и некоторые выводы о рациональности способов решения.
Пример 1.
Рассмотрим два способа решения:
Вывод: Теорема Виета позволяет рациональнее решить это уравнение.
П р и м е р 2 . Решить уравнение: x 3 – 3x 2 – 13x + 15 = 0 .
1 способ. Ищем первый корень перебором чисел: 0, 1, 2, 3
и подстановкой в уравнение. В результате находим, что 1 является корнем. Тогда делим левую часть этого уравнения на двучлен x – 1, и получаем:
Теперь, решая квадратное уравнение: x 2 – 2x – 15 = 0, находим оставшиеся два корня: x1 = – 3 и x2 = 5 . Ответ : 1; -3; 5.
Вывод: Теорема Виета позволяет рациональнее решить это уравнение.
Формулы Виета и кубические уравнения с параметром.
Пример 3. Определить все значения параметра a, при каждом из которых три различных корня уравнения
x3 + (a2 – 9 a) x 2 + 8ax – 64 = 0 образуют геометрическую прогрессию. Найти эти корни.
Шаг 1: Составление соотношений Виета.
Обозначим символами x1, x2 и x3 три различных корня уравнения и выпишем соотношения Виета для кубического уравнения:
Шаг 2: Использование характеристического свойства геометрической прогрессии.
Из характеристического свойства геометрической прогрессии вытекает, что (x2)2 = x1x3, и тогда последнее из соотношений Виета дает: (x2)3 = 64, то есть
x2 = 4. Подставляя полученный корень в исходное уравнение, найдем все возможные значения a:
43 + 16(a2 – 9 a) + 32a – 64 = 0a(a – 7) = 0.
Осталось проверить найденные a (все остальные значения a заведомо не удовлетворяют условию): 1) При a = 0 уравнение принимает вид x3 = 64 и не имеет трех различных корней.
2) При a = 7 уравнение принимает вид x3 – 14 x 2 + 56x – 64 = 0(x – 4)( x 2 –10x + 16) = 0
(x – 4)(x – 2)(x – 8) = 0 (эти разложения на множители получены делением исходного кубического четырехчлена x3 – 14 x 2 + 56x – 64 на двучлен (x – 4) и разложением частного от деления (x 2 – 10x + 16) на линейные множители). Три его различных корня x1 = 2, x2 = 4 и x3 = 8 образуют геометрическую прогрессию.
Пример 4. Найти все значения параметров a и b, при которых найдутся два различных корня уравнения
x3 – 5 x 2 + 7x = a, которые будут также корнями уравнения x3 – 8x + b = 0.
Шаг 1: Составление соотношений Виета.
Обозначим символами x1, x2 и u корни первого уравнения и символами x1, x2 и v корни второго уравнения. Существование третьего корня u для первого уравнения и третьего корня v для второго уравнения доказывается делением соответственно многочлена x3 – 5 x 2 + 7x – a и многочлена
x3 – 8x + b на квадратный трехчлен (x – x1)(x – x2).
Выпишем формулы Виета для корней первого и второго уравнений:
Шаг 2: Составление квадратного уравнения на общие корни и его решение. Вычтем из второго уравнения первое, получим:
.
Числа x1, x2 также являются корнями последнего уравнения, поскольку их подстановка в исходные уравнения приводит к верным числовым равенствам, а тогда верным будет и разность этих числовых равенств. По теореме Виета для квадратного уравнения имеем:
Сопоставляя эти соотношения с соотношениями Виета для кубических уравнений получим: u = 2, v = –3. Подставляя x1 + x2 = 3 и u = 2 в полученное на первом шаге соотношение x1x2 + (x1 + x2)u = 7, получим, что x1x2 = 1. Теперь находим значения параметров из соотношений Виета для кубических уравнений: a = x1x2u = 2, b = –x1x2v = 3, а для корней x1, x2 получаем систему уравнений:
Решив эту систему, получим
и .
При подстановке a = 2, b = 3 заданные уравнения принимают вид:
x3 – 5 x 2 + 7x = 2 и x3 – 8x + 3 = 0. Вспоминая шаг 2, можно предположить, что общими корнями этих уравнений являются числа
и .
Их подстановка в уравнения подтверждает предположение.
Материал, представленный в работе, расширяет кругозор учащихся, пополняет теоретические знания и практические навыки по решению уравнений высших степеней.
В процессе работы над темой «Формулы Виета как один из способов решения кубических уравнений » я
Изучила литературу по данному вопросу; Познакомилась с понятиями кубический и квадратный трехчлен; Исследовала решения кубических уравнений; Изучила историю поиска корней кубического и квадратного уравнения; Исследовала теорему Виета на применение для решения уравнений высших степеней.
и пришла к выводу:
Остаётся ещё много интересных и важных задач, имеющих не только теоретическое, но и сугубо практическое значение. В перспективе я хочу исследовать на применение теоремы Виета в других уравнениях с высшими степенями и изучить историю их открытия.
1. черки по истории математики. – М.: Мир, 1963.
2. стория математики от Декарта до середины XIX столетия. – М.: Наука, 1966.
3. Гариг Тарталья и Кардано о кубических уравнениях и его общественные основы. – М.: Архив истории науки и техники, 1935.
4. Гордиенко алгебры в Европе в XV–XIX столетиях. Учебное пособие для студентов дневного отделения физико-математического факультета / – Воронежский госпедуниверситет, 2007.
5. История математики с древнейших времен до начала XIX столетия / Под ред. и . Т.1. – М.: Наука, 1970.
6. стория математики в древности. – М.: Наука, 1961.
7. Из истории алгебры XVI – XVII веков. – М.: Наука, 1979.
8. Пачоли Лука. Трактат о счетах и записях. – М.: Финансы и статистика, 1983.
9. Попов задачи. М.: Наука, 1968.
10. Пресман квадратного уравнения с помощью циркуля и линейки. — М., Квант, № 4/72. С. 34.
11. Родионов по математике для поступающих в вузы: Решение задач с параметрами. – М.: МЦ «Аспект», 1992.
12. Рыбников математики. – М.: Изд-во МГУ, 1960.
13. Табачников : Методические разработки для учащихся ОЛ «ВЗМШ» Российской академии образования при МГУ. – М.: Фазис, 1996.
14. Чистяков о математиках. – Минск: Выш. шк., 1963.
15. Чистяков задачи по элементарной математике. – Минск: Выш. шк., 1978.
🔥 Видео
ТЕОРЕМА ВИЕТА // Как решать Квадратные Уравнения по АЛГЕБРЕ 8 классСкачать
Самый простой способ решить кубическое уравнениеСкачать
Формула для корней и теорема Виета | Квадратный трёхчлен #1 | Ботай со мной #020 | Борис ТрушинСкачать
Теорема Виета. 8 класс.Скачать
Кубические уравнения. Деление столбиком. Схема Горнера.Скачать
Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0Скачать
Теорема Виета за 30 сек🦾Скачать
Как решать кубические уравнения Решите уравнение 3 степени 9 класс Разложить на множители ДелениеСкачать
Теорема Виета для кубического многочлена в задачах с параметрамиСкачать
5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать
Как решать квадратные уравнения без дискриминантаСкачать
Алгебра 8. Урок 10 - Теорема Виета и её применение в задачахСкачать