Коррозия никеля в кислой среде уравнение

Видео:Электрохимическая коррозияСкачать

Электрохимическая коррозия

webHimik

подробное решение задач по химии

Видео:Электрохимическая коррозия в кислой средеСкачать

Электрохимическая коррозия в кислой среде

Укажите продукт коррозии при контакте марганца с никелем

Укажите продукт коррозии при контакте марганца с никелем в кислой среде (в присутствии соляной кислоты). Запишите соответствующие химические уравнения.

Решение

A(–) Мn | HCl | Ni (+)K

Окисляться, то есть подвергаться коррозии, будет марганец.

Марганец окисляется: Мn 0 – 2ē = Мn 2+

На никеле будет протекать восстановительный процесс (в кислой среде – водородная деполяризация): 2H + + 2ē = H2.

Суммарное уравнение имеет вид: Мn + 2HCl = МnCl2+ H2.

Ответ: Продуктом коррозии в кислой среде будет хлорид марганца.

В составе гальванического элемента имеются электроды, состоящие из марганца и никеля. Концентрация ионов марганца и никеля в растворах соответственно равны 0,01 и 0,001 моль/л. Рассчитайте ЭДС гальванического элемента.

Решение:

Схема заданного гальванического элемента имеет вид:

(-) А Mn | Mn 2+ || Ni 2+ | Ni K (+).

Е 0 Mn 2+ / Mn=-1,192 В; Е 0 Ni 2+ / Ni = -0,234 В.

По уравнению Нернста:

ЕК = Е Ni 2+ / Ni = Е 0 Ni 2+ / Ni + 0,0,59/2*lg[Ni 2+ ] = -0,234 + 0,03 lg0,01 = -0,234 – 2 = -2,234 В.

ЕA = ЕMn 2+ /Mn = Е 0 Mn 2+ / Mn + 0,059/2* lg[Mn 2+ ] = -1.192 + 0,03 lg0,001 == -1.192 – 3 = -4,192 В.

Найдем значение ЭДС: ЭДС = Еэ = EК — EА = -2,234 – (-4,192) = 1.958 В.

Ответ: ЭДС = 1,958 В.

Пластина из марганца соединена с никелевой пластиной. Какая из пластин подвергнется коррозии? Запишите соответствующие химические уравнения.

Решение:

Марганец в ряду напряжений находится перед никелем и имеет более отрицательное значение стандартного электродного потенциала Е 0 Mn 2+ / Mn=-1,192 В; Е 0 Ni 2+ / Ni = -0,234 В, поэтому при контакте этих двух металлов Mn будет анодом, а Ni – катодом.

Окисляться, то есть подвергаться коррозии, будет марганец.

Металл анода всегда подвергается окислению (растворению):

На катоде в нейтральной среде происходит восстановление кислорода в присутствии воды:

Суммарное уравнение, полученное сложением электронных уравнений анодного и катодного процессов при контакте марганца с никелем, имеет вид

Видео:Опыт 1. Электрохимическая коррозия в кислой средеСкачать

Опыт 1. Электрохимическая коррозия в кислой среде

Коррозия никеля в кислой среде уравнение

8.2 ЭЛЕКТРОХИМИЧЕСКАЯ КОРРОЗИЯ

Причиной электрохимической коррозии * является возникновение на поверхности металла короткозамкнутых гальванических элементов *.

В тонком слое влаги, обычно покрывающем металл, растворяются кислород, углекислый, сернистый и другие газы, присутствующие в атмосферном воздухе. Это создает условия соприкосновения металла с электролитом *. Различные участки поверхности любого металла обладают разными потенциалами. Причинами этого могут быть наличие примесей в металле, различная обработка отдельных его участков, неодинаковые условия (окружающая среда), в которых находятся различные участки поверхности металла. При этом участки поверхности металла с более электроотрицательным потенциалом становятся анодами и растворяются.

Электрохимическая коррозия может развиваться в результате контакта различных металлов. В этом случае будет возникать не микр о- , а макрогальванопара , и коррозия называется контактной (см. детальную классификацию видов коррозии). Сочетания металлов, сильно отличающихся значениями электродных потенциалов *, в технике недопустимы (например, алюминий – медь). В случае коррозии, возникающей при контакте какого-либо металла со сплавом, последний имеет потенциал, соответствующий наиболее активному металлу, входящему в состав сплава. Например, при контакте латуни (сплав цинка и меди) с железом корродировать будет латунь за счет наличия в ней цинка.

Представим схематично работу короткозамкнутого гальванического элемента, возникающего на поверхности металла, подверженного коррозии в электролите * (рисунок 8.1). Анодный участок имеет более электроотрицательный потенциал, поэтому на нем идет процесс окисления металла. Образовавшиеся в процессе окислен ия ио ны переходят в электролит, а часть освободившихся при этом электронов может перемещаться к катодному участку (на рисунке 8.1 показано стрелками). Процесс коррозии будет продолжаться в том случае, если электроны, перешедшие на катодный участок, будут с него удаляться. Иначе произойдет поляризация электродов *, и работа коррозионного гальванического элемента прекратится.

Коррозия никеля в кислой среде уравнение

Рисунок 8.1 – Схема электрохимической коррозии. Д – деполяризатор

Процесс отвода электронов с катодных участков называется деполяризацией. Вещества, при участии которых осуществляется деполяризация, называются деполяризаторами. На практике чаще всего приходится встречаться с двумя типами деполяризации: водородной и кислородной. Тип деполяризации (катодный процесс) зависит от реакции среды раствора электролита.

В кислой среде электрохимическая коррозия протекает с водородной деполяризацией. Рассмотрим коррозию железной пластинки с примесями меди во влажной хлористоводородной атмосфере Имеется в виду атмосфера с примесью газообразного HCl. . В этом случае железо будет анодом ( E ° = –0,44В), а медь – катодом ( E ° =+0,34В). На анодном участке будет происходить процесс окисления железа, а на катодном – процесс деполяризац ии ио нами водорода, которые присутствуют в электролите:

А: Fe – 2e → Fe 2+ – окисление

К: 2 H + + 2e → H2 ↑ – восстановление

Схема возникающего короткозамкнутого гальванического элемента выглядит следующим образом:

A (–) Fe | HCl | Cu (+) К

В нейтральной среде коррозия протекает с кислородной деполяризацией, т.е. роль деполяризатора выполняет кислород, растворенный в воде. Этот вид коррозии наиболее широко распространен в природе: он наблюдается при коррозии металлов в воде, почве и в незагрязненной промышленными газами атмосфере. Если коррозии во влажном воздухе подвергается железо с примесями меди, то электродные процессы можно записать в виде:

(А) Fe – 2e → Fe 2+ – окисление

(К) 2 H2O + O2 + 4e → 4 OH – – восстановление

У поверхности металла в электролите протекают следующие реакции:

Fe 2+ + 2 OH – → Fe( OH)2

Основная масса черных металлов разрушается вследствие процесса ржавления, в основе которого лежат вышеуказанные реакции.

Коррозия металла в результате неравномерного доступа кислорода . Случаи электрохимической коррозии, возникающей вследствие неравномерной аэрации кислородом различных участков металла, очень часто встречаются в промышленности и в подземных сооружениях. Примером может служить коррозия стальной сваи, закопанной в речное дно (рис 8.2).

Коррозия никеля в кислой среде уравнение

Рисунок 8.2 – Коррозия в результате неравномерного доступа кислорода. Б – техническое сооружение; А – анодный участок; К – катодный участок.

Часть конструкции, находящаяся в воде, омывается растворенным в ней кислородом и, в случае возникновения условий для электрохимической коррозии, будет выполнять роль катода. Другая же часть конструкции, находящаяся в почве, будет анодом и подвергнется разрушению.

Видео:Химическая коррозияСкачать

Химическая коррозия

Электрохимические процессы на электродах при коррозии металла

Видео:Коррозия металлов и меры по ее предупреждению. 8 класс.Скачать

Коррозия металлов и меры по ее предупреждению. 8 класс.

Схема развития коррозии поверхности корпуса судна

Задача 139.
На окрашенной поверхности корпуса судна, имеющий дефекты в покрытии, коррозионный ток сосредоточен на поврежденных участках. Составьте схему развития коррозии, а так же рассчитайте потерю металла за месяц если сила коррозионого тока, с учетом зоны действия составила 0,05 А.
Решение:
Анодный процесс:

Fe 0 — 2 Коррозия никеля в кислой среде уравнение= Fe 2+

Катодный процесс в нейтральной среде:

1/2O2 + H2O + 2 Коррозия никеля в кислой среде уравнение= 2OH –

Так как ионы Fe 2+ с гидроксид-ионами OH – образуют нерастворимый гидроксид, то продуктом коррозии будет Fe(OH)2. Воздух окисляет его и образуется ржавчина, гидратированный оксид железа(III):

По формуле объединенного закона электролиза:

m = Э . I . t/F = М . I . t/n.F = K . I . t, где

Э – эквивалентная масса вещества (молярная масса эквивалента); F– постоянная Фарадея, равная 96500 Кл/моль или 96500 А.с/моль;. I – сила тока, А; t – время проведения электролиза, с; М – молярная масса вещества; n – число отданных или принятых электронов; К – электрохимический эквивалент вещества.
Рассчитаем потерю металла, получим:

mпотери(Fe) = (55,845 . 0,05 . 2592000)/(2 . 96500) = 7237512/193000 = 37,5 г.

Металлы, которые применяются дла катодного покрытия стали

Задача 140.
Какие металлы могут выполнять для стальных изделий роль катодных покрытий: Ni, Cr, Mn, Sn, Cu? Запишите схему коррозии никелированного железа и определите продукт коррозии во влажном воздухе?
Решение:
К катодным покрытиям относятся те металлы, у которых потенциал выше потенциала защищаемого металла. Анодными покрытиями являются металлы, у которых электродный потенциал в данных условиях более отрицателен, чем потенциал защищаемого металла.
По таблицам найдем стандартные электродные потенциалы: Fe (-0,441 В); Ni (-0,234 B), Cr (-0,74 B), Mn (-1,18 B), Sn (-0,141 B), Cu (+0,338 B).
Так как у никеля, олова и меди электродные потенциалы выше чем у железа, то эти металлы могут выполнять для стальных изделий роль катодных покрытий.

Схема коррозии никелированного железа

При покрытии железа никелем возникает коррозионная пара, в которой никель является катодом, а железо – анодом, так как железо имеет более отрицательный потенциал (-0,441 В), чем никель (0,234 В). При этом будут протекать следующие электрохимические процессы:

а) Во влажном воздухе:

Анодный процесс: Fe 0 -2 Коррозия никеля в кислой среде уравнение= Fe 2+
Катодный процесс: 1/2O2 + H2O + 2 Коррозия никеля в кислой среде уравнение= 2OH –
Так как ионы Fe 2+ с гидроксильной группой образуют нерастворимый гидроксид, то продуктом атмосферной коррозии железа будет Fe(OH)2. При контакте с кислородом воздуха Fe(OH)2 быстро окисляется до метагидроксида железа FeO(OH), приобретая характерный для него бурый цвет:

б) В растворе кислоты:

Анодный процесс: Fe 0 -2 Коррозия никеля в кислой среде уравнение= Fe 2+
Катодный процесс: 2Н + + 2 Коррозия никеля в кислой среде уравнение= Н2

Водород будет выделяться во внешнюю среду, а ионы железа Fe 2+ с кислотными ионами будут образовывать соль, т. е. железо будет разрушаться с образованием ионов железа Fe 2+ .

Таким образом, при покрытии железа никелем при повреждении или при образовании пор разрушается основной металл – железо. Это пример катодного покрытия металла.

Коррозия железа в кислой среде

Задача 141.
В раствор хлороводородной (соляной) кислоты опустили железную пластинку и железную пластинку, частично покрытую никелем. В каком случае процесс коррозии железа протекает интенсивно? Составьте схемы коррозионных гальванических элементов и напишите электронные уравнения электродных процессов. Рассчитайте ЭДС гальванических элементов.
Решение:
Стандартные электродные потенциалы железа и никеля равны соответственно -0,44 В, -0,24 В.

а) Коррозия железной пластинки в растворе соляной кислоты

Окисляться, т.е. подвергаться коррозии, будет железо. Железо имеет более электроотрицательный стандартный электродный потенциал (-0,44 В), чем водород (0,00 В), поэтому оно является анодом.
Электронные уравнения электродных процессов будут иметь вид:

Анод: Fе 0 – 2 Коррозия никеля в кислой среде уравнение= Fe 2+
Катод: 2Н + + 2 Коррозия никеля в кислой среде уравнение= Н2

Fe 0 + 2H + = Fe 2+ + H2

Так как ионы Fe 2+ с ионами Cl – образуют растворимую соль, придающую светло-бурую окраску раствора, то продуктом коррозии будет FeCl2:

Fe 2+ + 2Cl¯ = FeCl2 (ионная форма);
Fe + 2HCl = FeCl2 + Н2↑ (молекулярная форма).

Образуется хлорид железа и при этом выделяется газообразный водород. Происходит интенсивное разрушение железной пластинки.
Схема коррозионного гальванического элемента будет иметь вид:

или в ионном виде:

б) Коррозия никелированного железа в растворе соляной кислоты

Окисляться, т.е. подвергаться коррозии, будет железо. Железо имеет более электроотрицательный стандартный электродный потенциал (-0,44 В), чем никель (-0,24 В), поэтому оно является анодом, а никель — катодом.
Электронные уравнения электродных процессов будут иметь вид:

Анод: Fе 0 – 2 Коррозия никеля в кислой среде уравнение= Fe 2+
Катод: 2Н+ + 2 Коррозия никеля в кислой среде уравнение= Н2

Fe 0 + 2H + = Fe 2+ + H2

Так как ионы Fe 2+ с ионами Cl¯образуют растворимую соль, придающую светло-бурую окраску раствора, то продуктом коррозии будет FeCl2:

Fe 2+ + 2Cl¯ = FeCl2 (ионная форма);
Fe + 2HCl = FeCl2 + Н2↑ (молекулярная форма).

Образуется хлорид железа и при этом выделяется газообразный водород. Происходит интенсивное разрушение железной пластинки. Ni менее активный металл, чем Fe — катодное покрытие.
Схема коррозионного гальванического элемента:

При нарушении целостности катодного покрытия, между никелем и железом возникает гальваническая пара, и железо, являющееся более активным металлом, под воздействием гальванического тока начнет корродировать.

Выводы:
Разрушение (коррозия) железной пластинки, частично покрытой никелем будет протекать более интенсивно, чем обычной железной пластинки.

📺 Видео

Электрохимическая коррозия (алюминий — медь)Скачать

Электрохимическая коррозия (алюминий — медь)

§13, 9 кл. Коррозия металловСкачать

§13, 9 кл. Коррозия металлов

Коррозия металла. Химия – ПростоСкачать

Коррозия металла. Химия – Просто

Коррозия металлов и её предупреждениеСкачать

Коррозия металлов и её предупреждение

Химия 11 класс (Урок№9 - Коррозия металлов и её предупреждение.)Скачать

Химия 11 класс (Урок№9 - Коррозия металлов и её предупреждение.)

8. Коррозия металловСкачать

8. Коррозия металлов

Коррозия металловСкачать

Коррозия металлов

Химия 8 класс : Коррозия металловСкачать

Химия 8 класс : Коррозия металлов

Межкристаллитная коррозияСкачать

Межкристаллитная коррозия

Химия, 9-й класс, Понятие о коррозии. Методы защиты от коррозииСкачать

Химия, 9-й класс, Понятие о коррозии. Методы защиты от коррозии

Химия 9 Коррозия металловСкачать

Химия 9 Коррозия металлов

Электролиз. 10 класс.Скачать

Электролиз. 10 класс.

Химия 11 класс (Урок№12 - Медь. Цинк. Титан. Хром. Железо. Никель. Платина.)Скачать

Химия 11 класс (Урок№12 - Медь. Цинк. Титан. Хром. Железо. Никель. Платина.)

Электролиз растворов: получение кадмия, никеля, хлора, йода и других. [ChemistryToday]Скачать

Электролиз растворов: получение кадмия, никеля, хлора, йода и других. [ChemistryToday]

ЭлектролизСкачать

Электролиз
Поделиться или сохранить к себе: