Матричный метод решения СЛАУ применяют к решению систем уравнений, у которых количество уравнений соответствует количеству неизвестных. Метод лучше применять для решения систем низкого порядка. Матричный метод решения систем линейных уравнений основывается на применении свойств умножения матриц.
Этот способ, другими словами метод обратной матрицы, называют так, так как решение сводится к обычному матричному уравнению, для решения которого нужно найти обратную матрицу.
Матричный метод решения СЛАУ с определителем, который больше или меньше нуля состоит в следующем:
Предположим, есть СЛУ (система линейных уравнений) с n неизвестными (над произвольным полем):
Значит, её легко перевести в матричную форму:
AX=B, где A — основная матрица системы, B и X — столбцы свободных членов и решений системы соответственно:
Умножим это матричное уравнение слева на A −1 — обратную матрицу к матрице A: A −1 (AX)=A −1 B.
Т.к. A −1 A=E, значит, X=A −1 B. Правая часть уравнения дает столбец решений начальной системы. Условием применимости матричного метода есть невырожденность матрицы A. Необходимым и достаточным условием этого есть неравенство нулю определителя матрицы A:
Для однородной системы линейных уравнений, т.е. если вектор B=0, выполняется обратное правило: у системы AX=0 есть нетривиальное (т.е. не равное нулю) решение лишь когда detA=0. Эта связь между решениями однородных и неоднородных систем линейных уравнений называется альтернатива Фредгольма.
Т.о., решение СЛАУ матричным методом производится по формуле . Либо, решение СЛАУ находят при помощи обратной матрицы A −1 .
Известно, что у квадратной матрицы А порядка n на n есть обратная матрица A −1 только в том случае, если ее определитель ненулевой. Таким образом, систему n линейных алгебраических уравнений с n неизвестными решаем матричным методом только в случае, если определитель основной матрицы системы не равен нулю.
Не взирая на то, что есть ограничения возможности применения такого метода и существуют сложности вычислений при больших значениях коэффициентов и систем высокого порядка, метод можно легко реализовать на ЭВМ.
Видео:Решение системы уравнений методом обратной матрицы.Скачать
Пример решения неоднородной СЛАУ.
Для начала проверим, не равен ли нулю определитель матрицы коэффициентов у неизвестных СЛАУ.
Далее вычисляем алгебраические дополнения для элементов матрицы, которая состоит из коэффициентов при неизвестных. Эти коэффициенты нужны будут для вычисления обратной матрицы.
Теперь находим союзную матрицу, транспонируем её и подставляем в формулу для определения обратной матрицы.
Подставляем переменные в формулу:
Теперь находим неизвестные, перемножая обратную матрицу и столбик свободных членов.
При переходе от обычного вида СЛАУ к матричной форме будьте внимательными с порядком неизвестных переменных в уравнениях системы. Например:
НЕЛЬЗЯ записать как:
Необходимо, для начала, упорядочить неизвестные переменные в кадом уравнении системы и только после этого переходить к матричной записи:
Кроме того, нужно быть внимательными с обозначением неизвестных переменных, вместо x1, x2, …, xn могут оказаться другие буквы. К примеру:
в матричной форме записываем так:
Матричным методом лучше решать системы линейных уравнений, в которых количество уравнений совпадает с числом неизвестных переменных и определитель основной матрицы системы не равен нулю. Когда в системе более 3-х уравнений, на нахождение обратной матрицы потребуется больше вычислительных усилий, поэтому, в этом случае целесообразно использовать для решения метод Гаусса.
Видео:Решение системы уравнений методом обратной матрицы - bezbotvyСкачать
Матричный метод решения СЛАУ: пример решения с помощью обратной матрицы
В данной статье мы расскажем о матричном методе решения системы линейных алгебраических уравнений, найдем его определение и приведем примеры решения.
Метод обратной матрицы — это метод, использующийся при решении СЛАУ в том случае, если число неизвестных равняется числу уравнений.
Найти решение системы n линейных уравнений с n неизвестными:
a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a n 1 x 1 + a n 2 x 2 + . . . + a n n x n = b n
Матричный вид записи: А × X = B
где А = а 11 а 12 ⋯ а 1 n а 21 а 22 ⋯ а 2 n ⋯ ⋯ ⋯ ⋯ а n 1 а n 2 ⋯ а n n — матрица системы.
X = x 1 x 2 ⋮ x n — столбец неизвестных,
B = b 1 b 2 ⋮ b n — столбец свободных коэффициентов.
Из уравнения, которое мы получили, необходимо выразить X . Для этого нужно умножить обе части матричного уравнения слева на A — 1 :
A — 1 × A × X = A — 1 × B .
Так как А — 1 × А = Е , то Е × X = А — 1 × В или X = А — 1 × В .
Обратная матрица к матрице А имеет право на существование только, если выполняется условие d e t A н е р а в е н н у л ю . Поэтому при решении СЛАУ методом обратной матрицы, в первую очередь находится d e t А .
В том случае, если d e t A н е р а в е н н у л ю , у системы имеется только один вариант решения: при помощи метода обратной матрицы. Если d e t А = 0 , то систему нельзя решить данным методом.
Видео:Система линейных уравнений. Метод обратной матрицы. Матричный метод.Скачать
Пример решения системы линейных уравнений с помощью метода обратной матрицы
Решаем СЛАУ методом обратной матрицы:
2 x 1 — 4 x 2 + 3 x 3 = 1 x 1 — 2 x 2 + 4 x 3 = 3 3 x 1 — x 2 + 5 x 3 = 2
- Записываем систему в виде матричного уравнения А X = B , где
А = 2 — 4 3 1 — 2 4 3 — 1 5 , X = x 1 x 2 x 3 , B = 1 3 2 .
- Выражаем из этого уравнения X :
- Находим определитель матрицы А :
d e t A = 2 — 4 3 1 — 2 4 3 — 1 5 = 2 × ( — 2 ) × 5 + 3 × ( — 4 ) × 4 + 3 × ( — 1 ) × 1 — 3 × ( — 2 ) × 3 — — 1 × ( — 4 ) × 5 — 2 × 4 — ( — 1 ) = — 20 — 48 — 3 + 18 + 20 + 8 = — 25
d e t А не равняется 0, следовательно, для этой системы подходит метод решения обратной матрицей.
- Находим обратную матрицу А — 1 при помощи союзной матрицы. Вычисляем алгебраические дополнения А i j к соответствующим элементам матрицы А :
А 11 = ( — 1 ) ( 1 + 1 ) — 2 4 — 1 5 = — 10 + 4 = — 6 ,
А 12 = ( — 1 ) 1 + 2 1 4 3 5 = — ( 5 — 12 ) = 7 ,
А 13 = ( — 1 ) 1 + 3 1 — 2 3 — 1 = — 1 + 6 = 5 ,
А 21 = ( — 1 ) 2 + 1 — 4 3 — 1 5 = — ( — 20 + 3 ) = 17 ,
А 22 = ( — 1 ) 2 + 2 2 3 3 5 — 10 — 9 = 1 ,
А 23 = ( — 1 ) 2 + 3 2 — 4 3 — 1 = — ( — 2 + 12 ) = — 10 ,
А 31 = ( — 1 ) 3 + 1 — 4 3 — 2 4 = — 16 + 6 = — 10 ,
А 32 = ( — 1 ) 3 + 2 2 3 1 4 = — ( 8 — 3 ) = — 5 ,
А 33 = ( — 1 ) 3 + 3 2 — 4 1 — 2 = — 4 + 4 = 0 .
- Записываем союзную матрицу А * , которая составлена из алгебраических дополнений матрицы А :
А * = — 6 7 5 17 1 — 10 — 10 — 5 0
- Записываем обратную матрицу согласно формуле:
A — 1 = 1 d e t A ( A * ) T : А — 1 = — 1 25 — 6 17 — 10 7 1 — 5 5 — 10 0 ,
- Умножаем обратную матрицу А — 1 на столбец свободных членов В и получаем решение системы:
X = A — 1 × B = — 1 25 — 6 17 — 10 7 1 — 5 5 — 10 0 1 3 2 = — 1 25 — 6 + 51 — 20 7 + 3 — 10 5 — 30 + 0 = — 1 0 1
Ответ: x 1 = — 1 ; x 2 = 0 ; x 3 = 1
Видео:Решение системы линейных алгебраических уравнений (СЛАУ) в Excel МАТРИЧНЫМ МЕТОДОМСкачать
Решение систем линейных алгебраических уравнений с помощью обратной матрицы.
Решение систем линейных алгебраических уравнений (СЛАУ) с помощью обратной матрицы (иногда этот способ именуют ещё матричным методом или методом обратной матрицы) требует предварительного ознакомления с таким понятием как матричная форма записи СЛАУ. Метод обратной матрицы предназначен для решения тех систем линейных алгебраических уравнений, у которых определитель матрицы системы отличен от нуля. Естественно, при этом подразумевается, что матрица системы квадратна (понятие определителя существует только для квадратных матриц). Суть метода обратной матрицы можно выразить в трёх пунктах:
- Записать три матрицы: матрицу системы $A$, матрицу неизвестных $X$, матрицу свободных членов $B$.
- Найти обратную матрицу $A^$.
- Используя равенство $X=A^cdot B$ получить решение заданной СЛАУ.
Любую СЛАУ можно записать в матричной форме как $Acdot X=B$, где $A$ – матрица системы, $B$ – матрица свободных членов, $X$ – матрица неизвестных. Пусть матрица $A^$ существует. Умножим обе части равенства $Acdot X=B$ на матрицу $A^$ слева:
Так как $A^cdot A=E$ ($E$ – единичная матрица), то записанное выше равенство станет таким:
Так как $Ecdot X=X$, то:
Перед переходом к чтению примеров рекомендую ознакомиться с методами вычисления обратных матриц, изложенными здесь.
Решить СЛАУ $ left < begin& -5x_1+7x_2=29;\ & 9x_1+8x_2=-11. end right.$ с помощью обратной матрицы.
Запишем матрицу системы $A$, матрицу свободных членов $B$ и матрицу неизвестных $X$.
Найдём обратную матрицу к матрице системы, т.е. вычислим $A^$. В примере №2 на странице, посвящённой нахождению обратных матриц, обратная матрица была уже найдена. Воспользуемся готовым результатом и запишем $A^$:
Теперь подставим все три матрицы ($X$, $A^$, $B$) в равенство $X=A^cdot B$. Затем выполним умножение матриц в правой части данного равенства.
$$ left(begin x_1\ x_2 endright)= -fraccdotleft(begin 8 & -7\ -9 & -5endright)cdot left(begin 29\ -11 endright)=\ =-fraccdot left(begin 8cdot 29+(-7)cdot (-11)\ -9cdot 29+(-5)cdot (-11) endright)= -fraccdot left(begin 309\ -206 endright)=left(begin -3\ 2endright). $$
Итак, мы получили равенство $left(begin x_1\ x_2 endright)=left(begin -3\ 2endright)$. Из этого равенства имеем: $x_1=-3$, $x_2=2$.
Запишем матрицу системы $A$, матрицу свободных членов $B$ и матрицу неизвестных $X$.
Теперь настал черёд найти обратную матрицу к матрице системы, т.е. найти $A^$. В примере №3 на странице, посвящённой нахождению обратных матриц, обратная матрица была уже найдена. Воспользуемся готовым результатом и запишем $A^$:
$$ A^=fraccdot left( begin 6 & -5 & 1 \ 8 & 2 & -16 \ -12 & -3 & 37end right). $$
Теперь подставим все три матрицы ($X$, $A^$, $B$) в равенство $X=A^cdot B$, после чего выполним умножение матриц в правой части данного равенства.
$$ left(begin x_1\ x_2 \ x_3 endright)= fraccdot left( begin 6 & -5 & 1 \ 8 & 2 & -16 \ -12 & -3 & 37end right)cdot left(begin -1\0\6endright)=\ =fraccdot left(begin 6cdot(-1)+(-5)cdot 0+1cdot 6 \ 8cdot (-1)+2cdot 0+(-16)cdot 6 \ -12cdot (-1)+(-3)cdot 0+37cdot 6 endright)=fraccdot left(begin 0\-104\234endright)=left(begin 0\-4\9endright) $$
Итак, мы получили равенство $left(begin x_1\ x_2 \ x_3 endright)=left(begin 0\-4\9endright)$. Из этого равенства имеем: $x_1=0$, $x_2=-4$, $x_3=9$.
Естественно, что решение систем линейных уравнений с помощью обратной матрицы без применения специальных программ вроде Mathcad возможно лишь при сравнительно небольшом количестве переменных. Если СЛАУ содержит четыре и более переменных, то гораздо удобнее в таком случае применить метод Гаусса или метод Гаусса-Жордана.
Заметили ошибку, опечатку, или некорректно отобразилась формула? Отпишите, пожалуйста, об этом в данной теме на форуме (регистрация не требуется).
📽️ Видео
Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать
Матричный метод решения систем уравненийСкачать
9. Метод обратной матрицы для решения систем линейных уравнений / матричный методСкачать
Матричный метод решения систем линейных уравнений (метод обратной матрицы)Скачать
Решение системы уравнений методом ГауссаСкачать
Обратная матрица (2 способа нахождения)Скачать
Метод обратной матрицы решения систем линейных уравненийСкачать
Обратная матрицаСкачать
Решение системы уравнений методом Крамера.Скачать
Линейная алгебра, 7 урок, СЛАУ. Матричный методСкачать
11. Решение систем линейных уравнений методом обратной матрицы (матричный метод)Скачать
Математика без Ху!ни. Метод Гаусса.Скачать
Решение системы уравнений методом Крамера 2x2Скачать
СЛУ метод обратной матрицыСкачать
Линейная алгебра, 5 урок, Обратная матрицаСкачать