Высокомолекулярные соединения. Реакции полимеризации и поликонденсации. Полимеры. Пластмассы, волокна, каучуки.
Высокомолекулярные вещества, состоящие из больших молекул цепного строения, называются полимерами (от греч. «поли» — много, «мерос» — часть). |
Например , полиэтилен, получаемый при полимеризации этилена CH2=CH2:
…-CH2-CH2-CH2-CH2-CH2-CH2-CH2-… или (-CH2—CH2-)n
Молекула полимера называется макромолекулой (от греч. «макрос» — большой, длинный). Молекулярная масса макромолекул достигает десятков — сотен тысяч (и даже миллионов) атомных единиц.
Соединения, из которых образуются полимеры, называются мономерами.
Например , пропилен (пропен) СН2=СH–CH3 является мономером полипропилена
Группа атомов, многократно повторяющаяся в цепной макромолекуле, называется ее структурным звеном.
Мономеры – низкомолекулярные вещества, из которых образуются полимеры. |
Степень полимеризации – число, показывающее количество элементарных звеньев в молекуле полимера.
Степень полимеризации обычно обозначается индексом «n» за скобками, включающими в себя структурное (мономерное) звено: (–CH2–CH2–)n.
- Классификация полимеров
- Классификация по структуре
- Классификация по происхождению
- Классификация по химическому характеру
- Классификация по способу получения
- Свойства полимеров
- Полимеризация и поликонденсация
- Полимеризация
- Поликонденсация
- 4.2.4. Высокомолекулярные соединения. Реакции полимеризации и поликонденсации. Полимеры. Пластмассы, волокна, каучуки.
- Реакции полимеризации
- Полимеры, получаемые реакцией полимеризации, и исходные мономеры
- Мономер
- Получаемый из него полимер
- Структурная формула
- Варианты названия
- Структурная формула
- Варианты названия
- Реакции поликонденсации
- Материалы на основе полимеров
- Пластмассы
- Каучуки
- Волокна
- Классификация волокон по их происхождению
- Химия, Биология, подготовка к ГИА и ЕГЭ
- 💡 Видео
Видео:Реакция полимеризации. 1 часть. 11 класс.Скачать
Классификация полимеров
Полимеры, макромолекулы которых построены строго определенным способом, называют регулярными.
Полимер называется стереорегулярным, если заместители R в основной цепи макромолекул (–CH2–CHR–)n расположены упорядоченно.
Стереорегулярные полимеры обладают гораздо лучшими свойствами – пластичностью, прочностью и теплостойкостью; они способны кристаллизоваться, в отличие от нерегулярных.
Видео:Реакция поликонденсации. 1 часть. 11 класс.Скачать
Классификация по структуре
По структуре полимеры делятся на: линейные, разветвленные и пространственные.
Линейные | Разветвленные | Пространственные |
Состоят из последовательности повторяющихся звеньев с большим отношением длины молекулы к ее поперечному размеру. Целлюлоза, полиэтилен низкого давления, капрон | Макромолекулы разветвленных имеют боковые ответвления от цепи, называемой главной или основной Крахмал |
Линейные — макромолекулы состоят из последовательности повторяющихся звеньев с большим отношением длины молекулы к ее поперечному размеру (целлюлоза, полиэтилен низкого давления, капрон).
Разветвленные — макромолекулы которых имеют боковые ответвления от цепи, называемой главной или основной (крахмал).
Сетчатые (пространственные) — химические связи имеются и между цепями (резина, фенолформальдегидные смолы).
Видео:Как написать уравнения реакции полимеризации?Скачать
Классификация по происхождению
По способу получения полимеры делятся на: природные, синтетические и искусственные.
Природные волокна | Синтетические волокна | Искусственные |
Непосредственно существуют в природе
| Получают полностью химическим путем в реакциях полимеризации и поликонденсации
| Получают модификацией натуральных полимеров
|
Природные полимеры непосредственно существуют в природе (крахмал, целлюлоза и др.).
Синтетические полимеры получают полностью химическим путем в реакциях полимеризации и поликонденсации (полиэтилен, полихлорвинил, фенол-формальдегидные смолы, метилметакрилат и т.д.). Не имеют аналогов в природе.
Искусственные – получают модификацией натуральных полимеров (вискоза –модифицированная целлюлоза, резина –модификация натурального каучука).
Видео:79. Что такое реакции поликонденсацииСкачать
Классификация по химическому характеру
По химическому характеру и составу полимеры и химические волокна бывают: полиэфирные, полиамидные, элементоорганические (например, кремнийорганические полимеры).
Полиэфирные полимеры | Полиамидные полимеры | Элементоорганические |
Содержат группу -СОО- Лавсан (полиэтилентерефталат) | Содержат группу -СО-NH2— Найлон, капрон | Содержат атомы других хим. элементов (кремний и др.). Кремнийорганические полимеры |
Полиэфирные полимеры — содержат группу сложных эфиров -СОО-.
Полиамидные полимеры — содержат пептидную связь -СО-NH2-.
Элементоорганические полимеры — содержат атомы других химических элементов (помимо С, Н, О, N).
Видео:78. Что такое реакции полимеризацииСкачать
Классификация по способу получения
Полимеры получают либо реакциями полимеризации, либо поликонденсацией.
Полимеризация | Поликонденсация |
Это присоединение одних молекул к другим за счет разрыва кратных связей. Побочные продукты, как правило, не образуются. Полиэтилен, полипропилен и др. | Образование полимера происходит за счет реакции замещения. При этом образуется низкомолекулярный побочный продукт. Фенолформальдегидная смола, капрон |
Полимеризация — процесс образования высокомолекулярного вещества(полимера) путём многократного присоединения молекул мономера к активным центрам в растущей молекуле полимера. |
Например , образование полиэтилена происходит по механизму полимеризации:
Поликонденсация – процесс образования высокомолекулярных соединений, протекающий по механизму замещения и сопровождающийся выделением побочных низкомолекулярных продуктов (обычно это вода). |
Например , образование капрона протекает по механизму поликонденсации:
Видео:Полимеризация и поликонденсация | Химия ЕГЭ с Юлией ВишневскойСкачать
Свойства полимеров
По свойствам полимеры можно разделить на: термореактивные, термопластичные и эластомеры.
Термореактивные | Термопластичные | Эластомеры |
Неплавкие и неэластичные материалы. Фенолформальдегидные смолы, полиуретан | Меняют форму при нагревании и сохраняют её. Полиэтилен, полистирол, поливинилхлорид | Эластичные вещества при разных температурах. Натуральный каучук, полихлоропрен |
Термореактивные полимеры — пластмассы, переработка которых в изделия сопровождается необратимой химической реакцией, приводящей к образованию неплавкого и нерастворимого материала.
Например , фенолформальдегидные смолы, полиуретан.
Термопластичные полимеры — меняют форму в нагретом состоянии и сохраняют её после охлаждения.
Например , полиэтилен, полистирол, полихлорвинил и т.д.
Эластомеры – обладают высокоэластичными свойствами в широком интервале температур.
Например , натуральный каучук.
Видео:Реакция полимеризации. Производство полиэтилена. 10 класс.Скачать
Полимеризация и поликонденсация
Видео:Реакция полимеризации. 9 класс.Скачать
Полимеризация
Степень полимеризации — это число, показывающее сколько молекул мономера соединилось в макромолекулу.
Степень полимеризации обычно обозначается индексом «n» за скобками, включающими в себя структурное (мономерное) звено: (–CH2–CH2–)n
Характерные признаки полимеризации.
|
Катализаторами полимеризации могут быть: металлический натрий, пероксиды, кислород, металлоорганические соединения, комплексные соединения.
Процесс образования высокомолекулярных соединений при совместной полимеризации двух или более различных мономеров называют сополимеризацией.
Например , схема сополимеризации этилена с пропиленом:
Важнейшие синтетические полимеры
Изображение с портала orgchem.ru
Важнейшие синтетические полимеры, получаемые реакцией полимеризации, и области их применения:
Полимер | Мономер | Характеристики полимера | Применение полимера |
Полиэтилен (–СН2–СН2–)n | Этилен СН2=СН2 | Синтетический, линейный, термопластичный, химически стойкий | Упаковка, тара |
Полипропилен
| Пропилен СН2=СН–СН3 | Синтетический, линейный, термопластичный, химически стойкий | Трубы, упаковка, ткань (нетканый материал) |
Поливинилхлорид
| Винилхлорид СН2=СН–Сl | Синтетический линейный полимер, т ермопластичный | Натяжные потолки, окна, пленка, трубы, полы, изолента и т.д |
Полистирол
| Стирол
| Синтетический линейный полимер, термопластичный | Упаковка, посуда, потолочные панели |
Полиметилметакрилат
Метиловый эфир метакриловой кислоты | Синтетический линейный полимер, т ермопластичный | Очки, корпуса фар и светильников, душевые кабины, мебель и т.д | |
Тефлон (политетрафторэтилен)
| Тетрафторэтилен
| Синтетический линейный полимер. Термопластичный (t = 260-320 0 C) Обладает очень высокой химической стойкостью | Посуда, пластины утюгов, ленты и скотч, упаковка, изоляция |
Искусственный каучук
Мономер: бутадиен-1,3 (дивинил)
| Синтетический, линейный, эластомер, содержит двойные связи | Резина, изоляция, различные материалы, ракетное топливо | |
Натуральный каучук
| Природный, линейный, эластомер, содержит двойные связи | Резина, изоляция, различные материалы, ракетное топливо | |
Хлоропреновый каучук
| Синтетический, линейный, эластомер, содержит двойные связи | Резина, изоляция, различные материалы, ракетное топливо | |
Бутадиен-стирольный каучук
Мономеры: бутадиен-1,3 и стирол | Синтетический, эластомер | Резина, изоляция, различные материалы, ракетное топливо | |
Полиакрилонитрил
| Акрилонитрил
| Синтетический, линейный | Волокна, пластмассы |
Видео:Реакции разложения. Как понять?Скачать
Поликонденсация
Поликонденсация – процесс образования высокомолекулярных соединений, протекающий по механизму замещения и сопровождающийся выделением побочных низкомолекулярных продуктов, обычно это вода. |
Характерные признаки поликонденсации.
|
Важнейшие синтетические полимеры, получаемые реакцией поликонденсации, и области их применения:
Полимер и м ономер | Характеристики полимера | Применение полимера | |
Капрон Мономер: 6-аминокапроновая кислота (лактам) | Синтетический, линейный, термопластичный, очень эластичный | Полиамидные волокна (нитки, ткани, парашюты, втулки и т.д.) | |
Найлон Мономер: 1,6-диаминогексан и адипиновая кислота (1,6-гександиовая) | Синтетический, полиамидный, линейный, термопластичный | Изготовление втулок, вкладышей, ниток, одежды, гитарных струн (полиамидное волокно) | |
Лавсан (полиэтилентерефталат) Мономер: Этиленгликоль, терефталевая кислота | Синтетический линейный полимер, т ермопластичный, полиэфирный | Натяжные потолки, окна, пленка, трубы, полы, изолента и т.д | |
Фенолформальдегидная смола Мономеры: фенол и формальдегид | Синтетический, пространственный (сетчатый) полимер | Производство ДСП, лаков, клея (БФ-6 применяется в медицине), часто используется с наполнителями | |
Крахмал Мономер: α-глюкоза | Природный, полиэфирный, разветвленный | Пищевая, текстильная, бумажная промышленность, фармацевтика и др. | |
Целлюлоза Мономер: β-глюкоза | Природный, полиэфирный, линейный | Производство бумаги, искусственных волокон, пленок, пластмасс, лакокрасочных материалов, бездымного пороха, взрывчатки, твердого ракетного топлива, получение гидролизного спирта и др. | |
ДНК Мономер: Дезоксирибоза, ортофосфорная кислота, азотистые основания | Природный, полиэфирный, линейный | Функционирование живых организмов | |
РНК Мономер: Рибоза, ортофосфорная кислота, азотистые основания Видео:Как расставлять коэффициенты в уравнении реакции? Химия с нуля 7-8 класс | TutorOnlineСкачать 4.2.4. Высокомолекулярные соединения. Реакции полимеризации и поликонденсации. Полимеры. Пластмассы, волокна, каучуки.Высокомолекулярными соединениями (ВМС) называют соединения с молекулярной массой более 10000. Практически все высокомолекулярные вещества являются полимерами. Полимеры — это вещества, молекулы которых состоят из огромного числа повторяющихся структурных звеньев, соединенных между собой химическими связями. Полимеры могут быть получены с помощью реакций, которые можно разделить на два основных типа: это реакции полимеризации и реакции поликонденсации. Видео:Реакции присоединения и полимеризации в органике | Химия ЕГЭ | УмскулСкачать Реакции полимеризацииРеакции полимеризации — это реакции образования полимера путем объединения огромного числа молекул низкомолекулярного вещества (мономера). Количество молекул мономера ( n ), объединяющихся в одну молекулу полимера, называют степенью полимеризации. В реакцию полимеризации могут вступать соединения с кратными связями в молекулах. Если молекулы мономера одинаковы, то процесс называют гомополимеризацией, а если различны — сополимеризацией. Примерами реакций гомополимеризации, в частности, является реакция образования полиэтилена из этилена: Примером реакции сополимеризации является синтез бутадиен-стирольного каучука из бутадиена-1,3 и стирола: Полимеры, получаемые реакцией полимеризации, и исходные мономерыМономерПолучаемый из него полимерСтруктурная формулаВарианты названияСтруктурная формулаВарианты названия | |||
этилен, этен | полиэтилен | ||
пропилен, пропен | полипропилен | ||
стирол, винилбензол | полистирол, поливинилбензол | ||
винилхлорид, хлористый винил, хлорэтилен, хлорэтен | поливинилхлорид (ПВХ) | ||
тетрафторэтилен (перфторэтилен) | тефлон, политетрафторэтилен | ||
изопрен (2-метилбутадиен-1,3) | изопреновый каучук (натуральный) | ||
бутадиен-1,3 (дивинил) | бутадиеновый каучук, полибутадиен-1,3 | ||
хлоропреновый каучук | |||
бутадиенстирольный каучук |
Видео:Химия 9 класс (Урок№33 - Полимеры.)Скачать
Реакции поликонденсации
Реакции поликонденсации — это реакции образования полимеров из мономеров, в ходе которых, помимо полимера, побочно образуется также низкомолекулярное вещество (чаще всего вода).
В реакции поликонденсации вступают соединения, в состав молекул которых входят какие-либо функциональные группы. При этом реакции поликонденсации по тому, один используется мономер или больше, аналогично реакциям полимеризации делятся на реакции гомополиконденсации и сополиконденсации.
К реакциям гомополиконденсации относятся:
* образование (в природе) молекул полисахарида (крахмала, целлюлозы) из молекул глюкозы:
* реакция образования капрона из ε-аминокапроновой кислоты:
К реакциям сополиконденсации относятся:
* реакция образования фенолформальдегидной смолы:
* реакция образования лавсана (полиэфирного волокна):
Видео:25. Схема реакции и химическое уравнениеСкачать
Материалы на основе полимеров
Пластмассы
Пластмассы — материалы на основе полимеров, которые способны под действием нагревания и давления формоваться и сохранять заданную форму после охлаждения.
Помимо высокомолекулярного вещества в состав пластмасс входят также и другие вещества, однако основным компонентом все же является полимер. Благодаря своим свойствам он связывает все компоненты в единую целую массу, в связи с чем его называют связующим.
Пластмассы в зависимости от их отношения к нагреванию делят на термопластичные полимеры (термопласты) и реактопласты.
Термопласты — вид пластмасс, способных многократно плавиться при нагревании и застывать при охлаждении, благодаря чему возможно многоразовое изменение их изначальной формы.
Реактопласты — пластмассы, молекулы которых при нагревании «сшиваются» в единую трехмерную сетчатую структуру, после чего изменить их форму уже нельзя.
Так, например, термопластами являются пластмассы на основе полиэтилена, полипропилена, поливинилхлорида (ПВХ) и т.д.
Реактопластами, в частности, являются пластмассы на основе фенолформальдегидных смол.
Каучуки
Каучуки — высокоэлластичные полимеры, углеродный скелет которых можно представить следующим образом:
Как мы видим, в молекулах каучуков имеются двойные C=C связи, т.е. каучуки являются непредельными соединениями.
Каучуки получают полимеризацией сопряженных диенов, т.е. соединений, у которых две двойные C=C связи, разделены друг от друга одной одинарной С-С связью.
Так например, особо зарекомендовавшими себя мономерами для получения каучуков являются:
В общем виде (с демонстрацией только углеродного скелета) полимеризация таких соединений с образованием каучуков может быть выражена схемой:
Таким образом, исходя из представленной схемы, уравнение полимеризации изопрена будет выглядеть следующим образом:
Весьма интересным является тот факт, что впервые с каучуком познакомились не самые продвинутые в плане прогресса страны, а племена индейцев, у которых промышленность и научно-технический прогресс отсутствовали как таковые. Естественно, индейцы не получали каучук искусственным путем, а пользовались тем, что давала им природа: в местности, где они проживали (Южная Америка), произрастало дерево гевея, сок которого содержит до 40-50% изопренового каучука. По этой причине изопреновый каучук называют также натуральным, однако он может быть получен и синтетическим путем.
Все остальные виды каучука (хлоропреновый, бутадиеновый) в природе не встречаются, поэтому всех их можно охарактеризовать как синтетические.
Однако каучук, не смотря на свои преимущества, имеет и ряд недостатков. Так, например, из-за того что каучук состоит из длинных, химически не связанных между собой молекул, его свойства делают его пригодным для использования только в узком интервале температур. На жаре каучук становится липким, даже немного текучим и неприятно пахнет, а при низких температурах подвержен затвердеванию и растрескиванию.
Технические характеристики каучука могут быть существенно улучшены его вулканизацией. Вулканизацией каучука называют процесс его нагревания с серой, в результате которого отдельные, изначально не связанные друг с другом, молекулы каучука «сшиваются» друг с другом цепочками из атомов серы (полисульфидными «мостиками»). Схему превращения каучуков в резину на примере синтетического бутадиенового каучука можно продемонстрировать следующим образом:
Волокна
Волокнами называют материалы на основе полимеров линейного строения, пригодные для изготовления нитей, жгутов, текстильных материалов.
Классификация волокон по их происхождению
Искусственные волокна (вискозу, ацетатное волокно) получают химической обработкой уже существующих природных волокон (хлопка и льна).
Синтетические волокна получаются преимущественно реакциями поликонденсации (лавсан, капрон, нейлон).
Видео:Урок №7. Полимеризация через поликонденсацию. Beyond ChemistryСкачать
Химия, Биология, подготовка к ГИА и ЕГЭ
Что же такое полимеризация?
и связанные с ними процессы, ведь, оказывается, почти весь наш мир — полимерный.
Автор статьи — Саид Лутфуллин
Полимеризация – это реакция образования высокомолекулярного соединения из низкомолекулярного. Высокомолекулярное соединение (полимер) – это вещество с большой молекулярной массой, состоящее из многократно повторяющихся сегментов (структурных звеньев), связанных между собой.
Где мы в повседневной жизни можем встретить полимеры?
Везде. Куда бы вы ни поглядели. Полимеры глубоко связались с нашей жизнью, собственно и образовали ее.
Ткани (как синтетические, так и натуральные), пластмассы, резина образованны полимерами. Кроме того, мы сами – тоже состоим из полимеров.
Вспомним определение жизни по Энгельсу:
«Жизнь есть способ существования белковых тел…».
Белки – это природные биополимеры, так же к биополимерам относятся нуклеиновые кислоты и полисахариды.
Какие вещества могут вступать в реакцию полимеризации?
Ответ простой: вещества, содержащие кратные (двойные, тройные) связи.
Давайте рассмотрим первое уравнение полимеризации — схему реакции образования полиэтилена (из него делают пакеты, бутылки, упаковочную пленку и многое другое):
Как мы видим, π-связь рвется, и атомы углерода одной молекулы связываются с атомами углерода соседних молекул. Так образуется длинная цепь полимера. Так как длина полимера может достигать нескольких сотен структурных звеньев, точное число которых, предсказать невозможно, так как в разных молекулах она различная и чтобы не записывать целиком эту цепь, реакцию полимеризации записывают следующим образом:
Где, n – число структурных звеньев в молекуле.
Исходное низкомолекулярное вещество, вступающее в реакцию полимеризации, называется мономер.
Не следует путать структурное звено с мономером.
Мономер и структурное звено имеют одинаковый качественный и количественный состав, но разное химическое строение (отличаются друг от друга количеством кратных связей).
Уравнения полимеризации:
Реакции получения наиболее часто встречающихся полимеров:
- Образование изопренового каучука (природный каучук тоже изопреновый, но строго цис- строения) из 2-метилбутадиена-1,3 (изопрена):
- Образование хлорпренового каучука (синтетический каучук) из 2-хлорбутадиена-1,3 (хлорпрена):
- Образование полистирола (пластмасса) из винилбензола (стирола):
- Образование полипропилена из пропена (пропилена):
Каучуки – это группа полимеров, объединенные общими качествами (эластичность, электроизоляция и т.д.), сырье для производства резины. Раньше для этого использовали натуральный каучук из сока так называемых каучуконосных растений. Позже стали изготавливать искусственные каучуки.
В СССР в 1926 году был объявлен конкурс на лучший способ получения синтетического каучука. Конкурс выиграл Лебедев С.В.
Его метод заключался в следующем:
из этилового спирта производили бутадиен-1,3. Этиловый спирт получали брожением из растительного сырья, которого в СССР было предостаточно, это делало производство дешевле. Бутадиен-1,3 после полимеризации образовывал синтетический каучук:
Чтобы превратить каучук в резину, его подвергают вулканизации.
Вулканизация – это процесс сшивания нитей полимера-каучука в единую сеть, вследствие чего улучшается эластичность, прочность, устойчивость к органическим растворителям .
На схеме ни же показан процесс вулканизации бутадиеновго каучука, путем образования между молекулами полимера дисульфидных мостиков:
Следует отличать реакции полимеризации от реакций поликонденсации.
Реакция поликонденсации – это реакця образования высокомолекулярного соединения из низкомолекулярного, при которой выделяется побочный продукт (вода, аммиак, слороводород и др.)
Способность вещества вступать в реакцию поликонденсации обучлавливается у него наличием покрайней мере двух разных функциональных групп .
Рассмотрим на примере аминокислот:
Две аминокислоты соединились друг с другом, образовав пептидную связь, с выделением побочного продукта – воды. Если процесс продолжить – присоединять к этой цепи остатки аминокислот – по получим белок. Способность аминокислот вступать в реакцию поликонденсации обуславливает наличие в их строение двух функциональных групп: карбоксильной и аминогруппы. В результате реакции поликонденсации помимо полипептидов (белков), образуются нуклеиновые кислоты и полисахариды.
В погоне за качеством продукции, человек научился создавать такие стойкие полимеры, что они не разлагаются несколько тысяч лет. А иногда при разложении выделяют в окружающую среду опасные вещества. Это большая экологическая проблема. Сейчас открываются пункты переработки пластмасс.
Если мы все вместе будет сдавать туда пластмассовые отходы, то внесем огромный вклад в сохранение нашего общего дома – планеты Земля и ее природы.
💡 Видео
Полимеры. Ч.3-3. Полимеризация этилена (элементарно о реакции)Скачать
Химия 10 класс (Урок№15 - Синтетические полимеры. Конденсационные полимеры. Пенопласты.)Скачать
Химия | Тепловой эффект химической реакции (энтальпия)Скачать
Визуализируем реакцию полимеризацииСкачать
ЕГЭ химия. ПолимеризацияСкачать