Расположение графиков и количество решений системы линейных уравнений
Рассмотрим систему двух уравнений: $ <left< begin 3x-y = 5 \ 3x+2y = 8end right.>$
Построим график каждого из уравнений и найдём точку пересечения.
Точка пересечения (2;1)
Подставим координаты точки пересечения в уравнение:
$ <left< begin3 cdot 2-1 ≡ 5\ 3cdot2+2cdot1 ≡ 8end right.> Rightarrow$ (2;1) — решение системы
Таким образом, точка пересечения графиков уравнений является решением системы.
Графики двух уравнений системы могут пересекаться, быть параллельными и совпадать. Получаем разное количество решений системы в зависимости от соотношения коэффициентов уравнений:
Видео:Алгебраическое определение количества решений системы линейных уравнений | Алгебра IСкачать
Как с помощью графиков определить сколько решений имеет система уравнений
Другими словами, если задано несколько уравнений с одной, двумя или больше неизвестными, и все эти уравнения (равенства) должны одновременно выполняться , такую группу уравнений мы называем системой.
Объединяем уравнения в систему с помощью фигурной скобки:
Графический метод
Недаром ответ записывается так же, как координаты какой-нибудь точки.
Ведь если построить графики для каждого уравнения в одной системе координат, решениями системы уравнений будут точки пересечения графиков.
Например, построим графики уравнений из предыдущего примера.
Пример 1
Для этого сперва выразим y y y в каждом уравнении, чтобы получить функцию (ведь мы привыкли строить функции относительно x x x ):
Для того чтобы графически решить систему уравнений с двумя переменными нужно:
1) построить графики уравнений в одной системе координат;
2) найти координаты точек пересечения этих графиков (координаты точек пересечения графиков и есть решения системы);
Разберем это задание на примере.
Решить графически систему линейных уравнений.
Графическое решение системы уравнений с двумя переменными сводится к отыскиванию координат общих точек графиков уравнений.
Пример 2
Графиком линейной функции является прямая. Две прямые на плоскости могут пересекаться в одной точке, быть параллельными или совпадать. Соответственно система уравнений может:
а) иметь единственное решение;
б) не иметь решений;
в) иметь бесконечное множество решений.
2) Решением системы уравнений является точка (если уравнения являются линейными) пересечения графиков.
Пример 3
Графическое решение системы
Пример 4
Решить графическим способом систему уравнений.
Графиком каждого уравнения служит прямая линия, для построения которой достаточно знать координаты двух точек. Мы составили таблицы значений х и у для каждого из уравнений системы.
Прямую y=2x-3 провели через точки (0; -3) и (2; 1).
Прямую y=x+1 провели через точки (0; 1) и (2; 3).
Графики данных уравнений системы 1) пересекаются в точке А(4; 5). Это и есть единственное решение данной системы.
Пример 5
Выражаем у через х из каждого уравнения системы 2), а затем составим таблицу значений переменных х и у для каждого из полученных уравнений.
Прямую y=2x+9 проводим через точки (0; 9) и (-3; 3). Прямую y=-1,5x+2 проводим через точки (0; 2) и (2; -1).
Наши прямые пересеклись в точке В(-2; 5).
ОБЯЗАТЕЛЬНО: Познакомимся с видео, где нам объяснят как решаются системы линейных уравнений графическим способом. РАССКАЖУТ, КАК РЕШАТЬ СИСТЕМЫ ГРАФИЧЕСКИ.
Видео YouTube
Видео:Алгебра 9 класс. Графическое решение систем уравненийСкачать
6.9.1. Решение систем линейных уравнений графическим способом
Примеры. Решить графическим способом систему уравнений.
Графиком каждого уравнения служит прямая линия, для построения которой достаточно знать координаты двух точек. Мы составили таблицы значений х и у для каждого из уравнений системы.
Прямую y=2x-3 провели через точки (0; -3) и (2; 1).
Прямую y=x+1 провели через точки (0; 1) и (2; 3).
Графики данных уравнений системы 1) пересекаются в точке А(4; 5). Это и есть единственное решение данной системы.
Ответ: (4; 5).
Выражаем у через х из каждого уравнения системы 2), а затем составим таблицу значений переменных х и у для каждого из полученных уравнений.
Прямую y=2x+9 проводим через точки (0; 9) и (-3; 3). Прямую y=-1,5x+2 проводим через точки (0; 2) и (2; -1).
🎦 Видео
Решение системы линейных уравнений графическим методом. 7 класс.Скачать
Система уравнений не имеет решений или имеет бесчисленное множество решенийСкачать
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
огэ математика. №14 Какая система не имеет решений. Сколько решений имеет система?Скачать
Графический способ решения систем уравнений. Алгебра, 9 классСкачать
#75 Урок 36. Определение количества решений системы уравнений. Алгебра 7 класс.Скачать
Количество решений системы уравнений. УпражнениеСкачать
Количество решений системы линейных уравненийСкачать
9 класс, 11 урок, Методы решения систем уравненийСкачать
7 класс, 35 урок, Графическое решение уравненийСкачать
Решение системы уравнений графическим методомСкачать
Урок по теме ГРАФИЧЕСКИЙ СПОСОБ РЕШЕНИЯ СИСТЕМ УРАВНЕНИЙ 7 КЛАСССкачать
Решение систем уравнений второго порядка. 8 класс.Скачать
Сколько решений имеет уравнение?Скачать
Система уравнений и возможное число решенийСкачать
Сколько решений имеет система линейных уравнений и как ее решить.Скачать
Математика | Система уравнений на желтую звездочку (feat Золотой Медалист по бегу)Скачать
МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэСкачать